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Abstract

We consider SCFG-based MT systems that get
syntactic category labels from parsing both
the source and target sides of parallel train-
ing data. The resulting joint nonterminals of-
ten lead to needlessly large label sets that are
not optimized for an MT scenario. This pa-
per presents a method of iteratively coarsening
a label set for a particular language pair and
training corpus. We apply this label collaps-
ing on Chinese–English and French–English
grammars, obtaining test-set improvements of
up to 2.8 BLEU, 5.2 TER, and 0.9 METEOR
on Chinese–English translation. An analysis
of label collapsing’s effect on the grammar
and the decoding process is also given.

1 Introduction

A common modeling choice among syntax-based
statistical machine translation systems is the use of
synchronous context-free grammar (SCFG), where a
source-language string and a target-language string
are produced simultaneously by applying a series of
re-write rules. Given a parallel corpus that has been
statistically word-aligned and annotated with con-
stituency structure on one or both sides, SCFG mod-
els for MT can be learned via a variety of methods.
Parsing may be applied on the source side (Liu et al.,
2006), on the target side (Galley et al., 2004), or on
both sides of the parallel corpus (Lavie et al., 2008;
Zhechev and Way, 2008).

In any of these cases, using the raw label set from
source- and/or target-side parsers can be undesir-
able. Label sets used in statistical parsers are usu-
ally inherited directly from monolingual treebank

projects, where the inventory of category labels was
designed by independent teams of human linguists.
These labels sets are not necessarily ideal for sta-
tistical parsing, let alone for bilingual syntax-based
translation models. Further, the side(s) on which
syntax is represented defines the nonterminal label
space used by the resulting SCFG. A pair of aligned
adjectives, for example, may be labeled ADJ if only
source-side syntax is used, JJ if only target-side syn-
tax is used, or ADJ::JJ if syntax from both sides
is used in the grammar. Beyond such differences,
however, most existing SCFG-based MT systems
do not further modify the nonterminal label set in
use. Those that do require either specialized de-
coders or complicated parameter tuning, or the la-
bel set may be unsatisfactory from a computational
point of view (Section 2).

We believe that representing both source-side and
target-side syntax is important. Even assuming two
monolingually perfect label sets for the source and
target languages, using label information from only
one side ignores any meaningful constraints ex-
pressed in the labels of the other. On the other hand,
using the default node labels from both sides gener-
ates a joint nonterminal set of thousands of unique
labels, not all of which may be useful. Our real pref-
erence is to use a joint nonterminal set adapted to
our particular language pair or translation task.

In this paper, we present the first step towards
a tailored label set: collapsing syntactic categories
to remove the most redundant labels and shrink the
overall source–target nonterminal set.1 There are

1The complementary operation, splitting existing labels, is
beyond the scope of this paper and is left for future work.
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two problems with an overly large label set:
First, it encourages labeling ambiguity among

rules, a well-known practical problem in SCFG-
based MT. Most simply, the same right-hand side
may be observed in rule extraction with a variety of
left-hand-side labels, each leading to a unique rule
in the grammar. The grammar may further contain
many rules with the same structure and reordering
pattern that differ only with respect to the actual la-
bels in use. Together, these properties can cause an
SCFG-based MT system to process a large number
of alternative syntactic derivations that use different
rules but produce identical output strings. Limiting
the possible number of variant labelings cuts down
on ambiguous derivations.

Second, a large label set leads to rule sparsity. A
rule whose right-hand side can only apply on a very
tightly specified set of labels is unlikely to be es-
timated reliably from a parallel corpus or to apply
in all needed cases at test time. However, a coarser
version of its application constraints may be more
frequently observed in training data and more likely
to apply on test data.

We therefore introduce a method for automati-
cally clustering and collapsing category labels, on
either one or both sides of SCFG rules, for any lan-
guage pair and choice of statistical parsers (Section
3). Turning to alignments between source and tar-
get parse nodes as an additional source of informa-
tion, we calculate a distance metric between any
two labels in one language based on the difference
in alignment probabilities to labels in the other lan-
guage. We then apply a greedy label collapsing al-
gorithm that repeatedly merges the two labels with
the closest distance until some stopping criterion is
reached. The resulting coarsened labels are used in
the SCFG rules of a syntactic machine translation
system in place of the original labels.

In experiments on Chinese–English translation
(Section 4), we find significantly improved perfor-
mance of up to 2.8 BLEU points, 5.2 TER points,
and 0.9 METEOR points by applying varying de-
grees of label collapsing to a baseline syntax-based
MT system (Section 5). In our analysis of the results
(Section 6), we find that the largest immediate effect
of coarsening the label set is to reduce the number of
fully abstract hierarchical SCFG rules present in the
grammar. These rules’ increased permissiveness, in

turn, directs the decoder’s search into a largely dis-
joint realm from the search space explored by the
baseline system. A full summary and ideas for fu-
ture work are given in Section 7.

2 Related Work

One example of modifying the SCFG nonterminal
set is seen in the Syntax-Augmented MT (SAMT)
system of Zollmann and Venugopal (2006). In
SAMT rule extraction, rules whose left-hand sides
correspond exactly to a target-side parse node t re-
tain that label in the grammar. Additional nontermi-
nal labels of the form t1+ t2 are created for rules
spanning two adjacent parse nodes, while catego-
rial grammar–style nonterminals t1/t2 and t1\t2 are
used for rules spanning a partial t1 node that is miss-
ing a t2 node to its right or left.

These compound nonterminals in practice lead to
a very large label set. Probability estimates for rules
with the same structure up to labeling can be com-
bined with the use of a preference grammar (Venu-
gopal et al., 2009), which replaces the variant label-
ings with a single SCFG rule using generic “X” la-
bels. The generic rule’s “preference” over possible
labelings is stored as a probability distribution inside
the rule for use at decoding time. Preference gram-
mars thus reduce the label set size to one for the pur-
poses of some feature calculations — which avoids
the fragmentation of rule scores due to labeling am-
biguity — but the original labels persist for specify-
ing which rules may combine with which others.

Chiang (2010) extended SAMT-style labels to
both source- and target-side parses, also introducing
a mechanism by which SCFG rules may apply at run
time even if their labels do not match. Under Chi-
ang’s soft matching constraint, a rule headed by a la-
bel A::Z may still plug into a substitution site labeled
B::Y by paying additional model costs substB→A

and substY→Z . This is an on-the-fly method of
coarsening the effective label set on a case-by-case
basis. Unfortunately, it also requires tuning a sep-
arate decoder feature for each pair of source-side
and each pair of target-side labels. This tuning can
become prohibitively complex when working with
standard parser label sets, which typically contain
between 30 and 70 labels on each side.
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JJ JJR JJS

Figure 1: Alignment distributions over French labels for the English adjective labels JJ, JJR, and JJS.

3 Label Collapsing Algorithm

We begin with an initial set of SCFG rules extracted
from a parallel parsed corpus, where S denotes the
set of labels used on the source side and T denotes
the set of labels used on the target side. Each rule has
a left-hand side of the form s :: t, where s ∈ S and
t ∈ T , meaning that a node labeled s was aligned to
a node labeled t in a parallel sentence. From the left-
hand sides of all extracted rule instances, we com-
pute label alignment distribution P (s | t) by simple
counting and normalizing:

P (s | t) =
#(s :: t)

#(t)
(1)

We use an analogous equation to calculate P (t | s).
For two target-language labels t1 and t2, we have
an equally simple metric of alignment distribution
difference d: the total of the absolute differences in
likelihood for each aligned source-language label.

d(t1, t2) =
∑
s∈S

|P (s | t1) − P (s | t2)| (2)

Again, the calculation for d(s1, s2) is analogous.
If t1 and t2 are plotted as points in |S|-

dimensional space such that each point’s position in
dimension s is equal to P (s | t), then this metric is
equivalent to the L1 distance between t1 and t2.

Sample alignment distributions into French for
three English adjective labels are shown in Figure
1. Bars in the chart represent alignment probabili-
ties between French and English according to Equa-
tion 1, with the various French labels as s and JJ,
JJR, or JJS as t. To compute an L1 alignment dis-
tribution difference between a pair of English ad-
jective tags, we sum the absolute differences in bar

heights for each column of two graphs, as in Equa-
tion 2. It is already visually clear from Figure 1
that all three English labels are somewhat related
in terms of distribution, but it appears that JJR and
JJS are more closely related to each other than either
is to JJ. This is reflected in the actual L1 distances:
d(JJ, JJR) = 0.9941 and d(JJ, JJS) = 0.8730, but
d(JJR, JJS) = 0.3996.

Given the above method for computing an align-
ment distribution difference for any pair of labels,
we develop an iterative greedy method for label col-
lapsing. At each step, we compute the L1 distance
between all pairs of labels, then collapse the pair
with the smallest distance into a single label. Then
L1 distances are recomputed over the new, smaller
label set, and again the label pair with the smallest
distance is collapsed. This process continues until
some stopping criterion is reached. Label pairs be-
ing considered for collapsing may be only source-
side labels, only target-side labels, or both. In gen-
eral, we choose to allow label collapsing to apply on
either side during each iteration of our algorithm.

In the limit, label collapsing can be applied it-
eratively until all syntactic categories on both the
source and target sides have been collapsed into a
single label. In Section 5, we explore several earlier
and more meaningful stopping points.

4 Experimental Setup

Experiments are conducted on Chinese-to-English
translation using approximately 300,000 sentence
pairs from the FBIS corpus. To obtain parse trees
over both sides of each parallel corpus, we used
the English and Chinese grammars of the Berkeley
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parser (Petrov and Klein, 2007).
Given a parsed and word-aligned parallel sen-

tence, we extract SCFG rules from it following the
procedure of Lavie et al. (2008). The method first
identifies node alignments between the two parse
trees according to support from the word alignments.
A node in the source parse tree will be aligned to
a node in the target parse tree if all the words in
the yield of the source node are either all aligned to
words within the yield of the target node or have no
alignments at all. Then SCFG rules can be extracted
from adjacent levels of aligned nodes, which spec-
ify points at which the tree pair can be decomposed
into minimal SCFG rules. In addition to producing
a minimal rule, each decomposition point also pro-
duces a phrase pair rule with the node pair’s yields
as the right-hand side, as long as the length of the
yield is less than a specified threshold.

Following grammar extraction, labels are option-
ally clustered and collapsed according to the algo-
rithm in Section 3. The grammar is re-written with
the modified nonterminals, then scored as usual ac-
cording to our translation model features. Feature
weights themselves are learned via minimum error
rate training as implemented in Z-MERT (Zaidan,
2009) with the BLEU metric (Papineni et al., 2002).
Decoding is carried out with Joshua (Li et al., 2009),
an open-source platform for SCFG-based MT.

Due to engineering limitations in decoding with
a large grammar, we apply three additional error-
correction and filtering steps to every system. First,
we observed that the syntactic parsers were most
likely to make labeling errors for cardinal numbers
in English and punctuation marks in all languages.
We thus post-process the parses of our training data
to tag all English cardinal numbers as CD and to
overwrite the labels of various punctuation marks
with the correct labels as defined by each language’s
label set. Second, after rule extraction, we com-
pute the distribution of left-hand-side labels for each
unique labeled right-hand side in the grammar, and
we remove the labels in the least frequent 10% of the
distribution. This puts a general-purpose limit on la-
beling ambiguity. Third, we filter and prune the final
scored grammar to each individual development and
test set before decoding: all matching phrase pairs
are retained, along with the most frequent 10,000 hi-
erarchical grammar rules.

5 Experiments and Results

In our first set of experiments, we sought to explore
the effect of increasing degrees of label collapsing
on a baseline system and to determine a reasonable
stopping point. Starting with the baseline grammar,
we ran the label collapsing algorithm of Section 3
until all the constituent labels on each side had been
collapsed into a single category. We next examined
the L1 distances between the label pairs that had
been merged in each iteration of the algorithm. This
data is shown in Figure 2 as a plot of L1 distance
versus iteration number. The distances between the
successive labels merged in the first 29 iterations of
the algorithm are nearly monotonically increasing,
followed by a much larger discontinuity at iteration
30. Similar patterns emerge for iterations 30 to 45
and for iterations 46 to 60. The next regions of the
graph, from iterations 61 to 81 and from iterations
82 to 99, show an increasing prevalence of disconti-
nuities. Finally, from iterations 100 to 123, the suc-
cessive L1 distances entirely alternate between very
high and very low values.

Discontinuities are merely the result of a label
pair in one language suddenly scoring much lower
on the distribution difference metric than previously,
thanks to some change that has occurred in the la-
bel set of the other language. Looking back to Fig-
ure 1, for example, we could bring the distributions
for JJ and JJS much closer together by merging A
and ADV on the French side. Although such sudden
drops in distribution difference value are expected,
they may provide an indication of when the label
collapsing algorithm has progressed too far, since
we have so reduced the label set that categories pre-
viously very different have become much less dis-
tinguishable. On the other hand, further reduction of
the label set may have a variety of pratical benefits.

We tested this trade-off empirically by building
five Chinese–English MT systems, each exhibiting
an increasing degree of label collapsing compared to
the original label set, which serves as our baseline.
The degree of label collapsing in each of the five
systems corresponds to one of the major discontinu-
ity features highlighted in the right-hand side Figure
2. The systems were tuned on the NIST MT 2006
data set, and we evaluated performance on the NIST
MT 2003 and 2008 sets. (All data sets have four
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Iter. L1 Dist.
29 0.3646
45 0.5607
60 0.6155
81 0.8665
99 1.1303

Figure 2: Observed L1 distance values for the labels merged in each iteration of our algorithm on a Chinese–English
SCFG. We divide the graph into six distinct regions using the cutoffs at right.

Chinese–English MT 2003 Test Set MT 2008 Test Set
System METEOR BLEU TER METEOR BLEU TER
Baseline 54.35 24.39 68.01 45.68 18.27 69.18
Collapsed, 29 iterations 55.24 27.03 63.77 46.25 19.78 65.88
Collapsed, 45 iterations 54.65 26.69 62.76 46.02 19.60 64.88
Collapsed, 60 iterations 55.11 27.23 63.06 46.30 20.19 65.18
Collapsed, 81 iterations 54.87 26.87 64.92 45.70 20.48 66.75
Collapsed, 99 iterations 54.86 26.16 64.17 45.87 19.52 65.61

Table 1: Results of applying increasing degrees of label collapsing on our Chinese–English baseline system. Bold
figures indicate the best score in each column.

references.) Table 1 reports automatic metric results
for version 1.0 of METEOR (Lavie and Denkowski,
2009) using the default settings, uncased IBM-style
BLEU (Papineni et al., 2002), and uncased TER ver-
sion 0.7 (Snover et al., 2006).

No matter the degree of label collapsing, we find
significant improvements in BLEU and TER scores
on both test sets. On the MT 2003 set, label-
collapsed systems score 1.77 to 2.84 BLEU points
and 3.09 to 5.25 TER points better than the baseline.
On MT 2008, improvements range from 1.25 to 2.21
points on BLEU and from 2.43 to 4.30 points on
TER. Improvements on both sets according to ME-
TEOR, though smaller, are still noticable (up to 0.89
points). In the case of BLEU, we verified the sig-
nificance of the improvements by conducting paired
bootstrap resampling (Koehn, 2004) on the MT 2003

output. With n = 1000 and p < 0.05, all five label-
collapsed systems were statistically significant im-
provements over the baseline, and all other collapsed
systems were significant improvements over the 99-
iteration system.

Thus, though the system that provides the highest
score changes across metrics and test sets, the over-
all pattern of scores suggests that over-collapsing la-
bels may start to weaken results. A more moderate
stopping point is thus preferable, but beyond that we
suspect the best result is determined more by the test
set, automatic metric choice, and MERT instability
than systematic changes in the label set.

6 Analysis

Table 1 showed a strong practical benefit to running
the label collapsing algorithm. In this section, we

102



seek to further understand where this benefit comes
from, tracing the effects of label collapsing via its
modification of labels themselves, the differences in
the resulting grammars, and collapsing’s effect on
decoding and output.

6.1 Labels Selected for Collapsing

Our first concern is for the size of the grammar’s
overall nonterminal set. The baseline system uses a
total of 55 labels on the Chinese side and 71 on the
English side, leading to an observed joint nontermi-
nal set of 1556 unique labels. After 29 iterations
of label collapsing, this is reduced to 46 Chinese,
51 English, and 1035 joint labels — a reduction of
33%. In the grammar of our most collapsed gram-
mar variant (99 iterations), the nonterminal set is re-
duced to 14 English and 14 Chinese labels, for a to-
tal of 106 joint labels and a reduction of 93% from
the baseline grammar. This demonstrates one facet
of our introductory claim from Section 1: since we
have improved translation results by removing the
vast majority of our grammar nonterminals, most of
the initial joint Chinese–English syntactic categories
were not necessary for Chinese–English translation.

We identify three broad trends in the sets of labels
that are collapsed:

• Full Subtype Collapsing. The Chinese-side
parses include six phrase-level tags for various
types of verb compounds. As label collapsing
progresses, these labels are all combined with
each other at relatively low L1 distances.

• Partial Subtype Collapsing. In English, three
of the four noun labels (NN, NNS, and NNPS)
form a cohesive cluster early on in Chinese–
English collapsing. However, the fourth tag
(NNP, for singular proper nouns) remains sep-
arate, then later joins a cluster for more
adjective-like labels.

• Combination by Syntactic Function. In
French–English label collapsing (see below),
we find the creation of a combined label in
English for reduced relative clauses (RRC),
adjective phrases headed by a wh-adjective
(WHADJP), and interjections (INTJ). Even
though these tags are unrelated in surface form,

at some level they all represent parenthetical in-
sertions or explanatory phrases.

The formulation of the L1 distance metric in Sec-
tion 3 means that our label collapsing algorithm will
naturally produce different label clusters for differ-
ent input grammars — any change in the Viterbi
word alignments, underlying parallel corpus, initial
label set, or choice of automatic parser will neces-
sarily change the label alignment distributions on
which the collapsing algorithm is based. In par-
ticular, the label clusters formed in one language
are likely to be markedly different depending on
which other language it is paired with. We exam-
ine these differences in more detail for the case of
English when paired with either Chinese or with
French. Our 29-iteration run of label collapsing for
Chinese–English merged labels on the English side
19 times. For an exact comparison, we run iterations
of label collapsing on a large-scale French–English
grammar, extracted in the same way as the Chinese–
English grammar, until the same number of English-
side merges have been carried out, then examine the
results.

Table 2 shows the English label clusters cre-
ated from the Chinese–English and French–English
grammars, arranged by broad syntactic categories.
The differences in English label clusters hint at dif-
ferences in the source-side label sets, as well as
structural divergences relevant for translating Chi-
nese versus French into English.

For example, Table 2 shows partial subtype col-
lapsing of the English verb tags when paired with
French. The French Berkeley parser has a single tag,
V, to represent all verbs, and most English verb tags
as well as the tag for modals very consistently align
to it. The exception is VBG, for present-progressive
or gerundive verb forms, which is more easily con-
flatable in French–English translation with a noun or
an adjective. In translation from Chinese, however,
it is VBG that is combined early on with a smaller
selection of English verb labels that correspond most
strongly to a basic Chinese verb. Other English verb
tags are more likely to align to Chinese copulas, ex-
istential verbs, and nouns; they are not combined
with the group for more “typical” verbs until itera-
tion 67. The adverb series presents another example
of translational divergence between language pairs.
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Cluster Chinese–English French–English
Nouns NN NNS NNPS # NN NNS $
Verbs VB VBG VBN VB VBD VBN VBP VBZ MD
Adverbs RB RBR RBR RBS
Punctuation LRB RRB “ ” , . “ ”
Prepositions IN TO SYM
Determiners DT PRP$
Noun phrases NP NX QP UCP NAC NP WHNP NX WHADVP NAC
Adjective phrases ADJP WHADJP
Adverb phrases ADVP WHADVP
Prepositional phrases PP WHPP
Sentences S SINV SBARQ FRAG S SQ SBARQ

Table 2: English-side label clusters created after partial label collapsing of a Chinese–English and a French–English
grammar. In each case, the algorithm has been run until merges have occurred 19 times on the English side.

6.2 Effect on the Grammar

With a smaller label set, we also expect a reduc-
tion in the overall size of our various label-collapsed
grammars as labeling ambiguity is removed. In the
aggregate, however, even 99 iterations of Chinese–
English label collapsing has a minimal effect on
the total number of unique rules in the resulting
SCFG. A clearer picture emerges when we sepa-
rate rules according to their form. Figure 3 parti-
tions the grammar into three parts: one for phrase
pairs, where the rules’ right-hand sides are made up
entirely of terminals (“P-type” rules); one for hier-
archical rules whose right-hand sides are made up
entirely of nonterminals (abstract or “A-type” rules);
and one for hierarchical rules whose right-hand sides
include a mix of terminals and nonterminals (re-
maining grammar or “G-type” rules).

This separation reveals two interesting facts.
First, although the size of the label set continues
to shrink considerably between iterations 29 and 81,
the number of unique rules in the grammar remains
relatively unchanged. Second, the reduction in the
size of the grammar is largely due to a reduction in
the number of fully abstract grammar rules, rather
than phrase pairs or partially lexicalized grammar
rules. From these observations, we infer that the ma-
jor practical benefit of label collapsing is a reduction
in rule sparsity rather than a reduction in left-hand-
side labeling ambiguity. Many highly ambiguous
rules have had their possible left-hand-side labels ef-
fectively pruned down by the pre-processing steps
we described in Section 4, which in preliminary ex-

Figure 3: The effect of label collapsing on the number of
unique phrase pairs, partially lexicalized grammar rules,
and fully abstract grammar rules.

periments had a larger effect on the overall size of
the grammar than label collapsing. As a more com-
plementary technique, increasing the applicability of
the fully abstract rules via label collapsing is impor-
tant for performance. Such rules make up 49% to
59% of the hierarchical rules retained at decoding
time, and they account for 76% to 87% of the rule
application instances on the MT 2003 test set.

6.3 Effect on Decoding and Output

Interestingly, the label collapsing algorithm does
not owe its success at decoding time to a signif-
icant increase in the number of rule applications.
Among our systems, both the 45-iteration and the
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60-iteration collapsed versions scored highly ac-
cording to automatic metrics. Nevertheless, the 45-
iteration system used 32% and 38% more rule appli-
cations than the baseline on the MT 2003 and MT
2008 test sets, respectively, while the 60-iteration
system used 15% and 11% fewer. The number of
unique rule types and the number of reordering rules
applied on a test set may also go up or down.

Instead, the practical effect of making the gram-
mar more permissive seems to be a significant
change in the search space explored during decod-
ing. This can be seen superficially via an exam-
ination of output n-best lists. On both test sets
combined (2276 sentences), the 60-iteration label-
collapsed system’s top-best output appears in the
baseline’s 100-best list in only 81 sentences. When
it does appear in the baseline, the improved system’s
translation is ranked fairly highly — always 30th
place or higher. Conversely, the baseline’s top-best
output tends to be ranked lower in the improved sys-
tem’s n-best list: among the 114 times it appears, it
is placed as low as 87th.

We ran a small follow-up analysis on the transla-
tion fragments explored during decoding. Using a
modified version of the Joshua decoder, we dumped
lists of hypergraph entries that were explored by
cube pruning during Joshua’s lazy generation of a
100-best list. These entries represent the decoder’s
approximative search through the larger space of
translations licenced by the grammar for each test
sentence. We then compared the hypergraph entries,
excluding glue rules, produced on the first 100 sen-
tences of the MT 2003 test set by both the baseline
and the 60-iteration label-collapsed system.

A full 90% of the entries produced by the label-
collapsed system had no analogue in the baseline
system. The average length of the entries that do
match is 2.3 source words, compared with an aver-
age of 6.2 words for the non-matched entries. We
believe that the increased permissiveness of the hi-
erarchical grammar rules is again the root cause of
these results. Low-level constituents are more likely
to be matched in both the baseline and the label-
collapsed system, but different applications of the
grammar rules, perhaps combined with retuned fea-
ture weights, leads the search for larger translation
fragments into new areas.

7 Conclusions and Future Work

This paper has presented a language-specific method
for automatically coarsening the label set used in
an SCFG-based MT system. Our motivation for
collapsing labels comes from the intuition that the
full cross-product of joint source–target labels, as
produced by statistical parsers, is too large and not
specifically created for bilingual MT modeling. The
greedy collapsing algorithm we developed is based
on iterative merging of the two single-language la-
bels whose alignment distributions are most similar
according to a simple L1 distance metric.

In applying varying degrees of label collapsing to
a baseline MT system, we found significantly im-
proved automatic metric results even when the size
of the joint label set had been reduced by 93%. The
best results, however, were obtained with more mod-
erate coarsening. The coarser labels that our method
produces are syntactically meaningful and represent
specific cross-language behaviors of the language
pair involved. At the grammar level, label collaps-
ing primarily caused a reduction in the number of
rules whose right-hand sides are made up entirely of
nonterminals. The coarser labels made the grammar
more permissive, cutting down on the problem of
rule sparsity. Labeling ambiguity, on the other hand,
was more effectively addressed by pre-processing
we applied to the grammar beforehand. At run time,
the more permissive collapsed grammar allowed the
decoder to search a markedly different region of the
allowable translation space than in the baseline sys-
tem, generally leading to improved output.

One shortcoming of our current algorithm is that
it is based entirely on label alignment distribution
without regard to the different contexts in which la-
bels occur. It thus cannot distinguish between two
labels that align similarly but appear in very different
rules. For example, singular common nouns (NN)
and plural proper nouns (NNPS) in English both
most frequently align to French nouns (N) and are
thus strong candidates for label collapsing under our
algorithm. However, when building noun phrases,
an N::NNPS will more likely require a rule to delete
a French-side determiner, while an N::NN will typ-
ically require a determiner in both French and En-
glish. Thus, collapsing NN and NNPS may lead to
additional ambiguity or incorrect choices when ap-
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plying larger rules.
Another dimension to be explored is the trade-off

between greedy collapsing and other methods that
cluster all labels at once. K-means clustering could
be a reasonable contrast in this respect; its down-
side would be that all labels in one language must
be assigned to clusters without knowledge of what
clusters are being formed in the other language.

Finally, label collapsing is only the first step in a
broader exploration of SCFG labeling for MT. We
also plan to investigate methods for refining exist-
ing category labels in order to find finer-grained sub-
types that are useful for translating a particular lan-
guage pair. By running label collapsing and refining
together, our end goal is to be able to adapt standard
parser labels to individual translation scenarios.
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