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Abstract

We present a rule extractor for SCFG-based
MT that generalizes many of the contraints
present in existing SCFG extraction algo-
rithms. Our method’s increased rule coverage
comes from allowing multiple alignments, vir-
tual nodes, and multiple tree decompositions
in the extraction process. At decoding time,
we improve automatic metric scores by signif-
icantly increasing the number of phrase pairs
that match a given test set, while our experi-
ments with hierarchical grammar filtering in-
dicate that more intelligent filtering schemes
will also provide a key to future gains.

1 Introduction

Syntax-based machine translation systems, regard-
less of the underlying formalism they use, depend
on a method for acquiring bilingual rules in that for-
malism to build the system’s translation model. In
modern syntax-based MT, this formalism is often
synchronous context-free grammar (SCFG), and the
SCFG rules are obtained automatically from parallel
data through a large variety of methods.

Some SCFG rule extraction techniques require
only Viterbi word alignment links between the
source and target sides of the input corpus (Chi-
ang, 2005), while methods based on linguistic con-
stituency structure require the source and/or target
side of the input to be parsed. Among such tech-
niques, most retain the dependency on Viterbi word
alignments for each sentence (Galley et al., 2004;
Zollmann and Venugopal, 2006; Lavie et al., 2008;
Chiang, 2010) while others make use of a general,

corpus-level statistical lexicon instead of individual
alignment links (Zhechev and Way, 2008). Each
method may also place constraints on the size, for-
mat, or structure of the rules it returns.

This paper describes a new, general-purpose rule
extractor intended for cases in which two parse trees
and Viterbi word alignment links are provided for
each sentence, although compatibility with single-
parse-tree extraction methods can be achieved by
supplying a flat “dummy” parse for the missing tree.
Our framework for rule extraction is thus most sim-
ilar to the Stat-XFER system (Lavie et al., 2008;
Ambati et al., 2009) and the tree-to-tree situation
considered by Chiang (2010). However, we signif-
icantly broaden the scope of allowable rules com-
pared to the Stat-XFER heuristics, and our approach
differs from Chiang’s system in its respect of the lin-
guistic constituency constraints expressed in the in-
put tree structure. In summary, we attempt to extract
the greatest possible number of syntactically moti-
vated rules while not allowing them to violate ex-
plicit constituent boundaries on either the source or
target side. This is achieved by allowing creation of
virtual nodes, by allowing multiple decompositions
of the same tree pair, and by allowing extraction of
SCFG rules beyond the minimial set required to re-
generate the tree pair.

After describing our extraction method and com-
paring it to a number of existing SCFG extraction
techniques, we present a series of experiments ex-
amining the number of rules that may be produced
from an input corpus. We also describe experiments
on Chinese-to-English translation that suggest that
filtering a very large extracted grammar to a more
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Figure 1: Sample input for our rule extraction algorithm. It consists of a source-side parse tree (French) and a target-
side parse tree (English) connected by a Viterbi word alignment.

moderate-sized translation model is an important
consideration for obtaining strong results. Finally,
this paper concludes with some suggestions for fu-
ture work.

2 Rule Extraction Algorithm

We begin with a parallel sentence consisting of a
source-side parse tree S, a target-side parse tree T ,
and a Viterbi word alignment between the trees’
leaves. A sample sentence of this type is shown in
Figure 1. Our goal is to extract a number of SCFG
rules that are licensed by this input.

2.1 Node Alignment

Our algorithm first computes a node alignment be-
tween the parallel trees. A node s in tree S is aligned
to a node t in tree T if the following constraints are

met. First, all words in the yield of s must either
be aligned to words within the yield of t, or they
must be unaligned. Second, the reverse must also
hold: all words in the yield of t must be aligned to
words within the yield of s or again be unaligned.
This is analogous to the word-alignment consistency
constraint of phrase-based SMT phrase extraction
(Koehn et al., 2003). In Figure 1, for example, the
NP dominating the French words les voitures bleues
is aligned to the equivalent English NP node domi-
nating blue cars.

As in phrase-based SMT, where a phrase in one
language may be consistent with multiple possible
phrases in the other language, we allow parse nodes
in both trees to have multiple node alignments. This
is in contrast to one-derivation rule extractors such
as that of Lavie et al. (2008), in which each node
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in S may only be aligned to a single node in T and
vice versa. The French NP node Ma mère, for exam-
ple, aligns to both the NNP and NP nodes in English
producing Mother.

Besides aligning existing nodes in both parse trees
to the extent possible, we also permit the introduc-
tion of “virtual” nodes into either tree. Virtual nodes
are created when two or more contiguous children of
an existing node are aligned consistently to a node or
a similar set of two or more contiguous children of
a node in the opposite parse tree. Virtual nodes may
be aligned to “original” nodes in the opposite tree or
to other virtual nodes.

In Figure 1, the existing English NP node blue
cars can be aligned to a new virtual node in French
that dominates the N node voitures and the AP node
bleues. The virtual node is inserted as the parent
of N and AP, and as the child of the NP node di-
rectly above. In conjunction with node alignments
between existing nodes, this means that the English
NP blue cars is now aligned twice: once to the orig-
inal French NP node and once to the virtual node
N+AP. We thus replicate the behavior of “growing
into the gaps” from phrase-based SMT in the pres-
ence of unaligned words. As another example, a vir-
tual node in French covering the V node avait and
the ADV node toujours could be created to align
consistently with a virtual node in English covering
the VBD node had and the ADVP node always.

Since virtual nodes are always created out of chil-
dren of the same node, they are always consis-
tent with the existing syntactic structure of the tree.
Within the constraints of the existing tree structure
and word alignments, however, all possible virtual
nodes are considered. This is in keeping with our
philosophy of allowing multiple alignments with-
out violating constituent boundaries. Near the top
of the trees in Figure 1, for example, French virtual
nodes NP+VN+NP (aligned to English NP+VP) and
VN+NP+PU (aligned to VP+PU) both exist, even
though they overlap. In our procedure, we do allow a
limit to be placed the number of child nodes that can
be combined into a virtual node. Setting this limit
to two, for instance, will constrain node alignment
to the space of possible synchronous binarizations
consistent with the Viterbi word alignments.

2.2 Grammar Extraction

Given the final set of node alignments between the
source tree and the target tree, SCFG rules are ob-
tained via a grammar extraction step. Rule extrac-
tion proceeds in a depth-first manner, such that rules
are extracted and cached for all descendents of a
source node s before rules in which s is the left-hand
side are considered. Extracting rules where source
node s is the left-hand side consists of two phases:
decomposition and combination.

The first phase is decomposition of node s into
all distinct sets D = {d1, d2, . . . , dn} of descendent
nodes such that D spans the entire yield of node s,
where di ∈ D is node-aligned or is an unaligned ter-
minal for all i, and di has no ancestor a where a is a
descendent of s and a is node-aligned. Each D thus
represents the right-hand side of a minimal SCFG
rule rooted at s. Due to the introduction of overlap-
ping virtual nodes, the decomposition step may in-
volve finding multiple sets of decomposition points
when there are multiple nodes with the same span at
the same level of the tree.

The second phase involves composition of all
rules derived from each element of D subject to cer-
tain constraints. Rules are constructed using s, the
set of nodes Ts = {t | s is aligned to t}, and each
decomposed node set D. The set of left-hand sides
is {s} × Ts, but there may be many right-hand sides
for a given t and D. Define rhs(d) as the set of
right-hand sides of rules that are derived from d, plus
all alignments of d to its aligned set Td. If d is a
terminal, word alignments are used in the place of
node alignments. To create a set of right-hand sides,
we generate the set R = rhs(d1) × . . . × rhs(dn).
For each r ∈ R, we execute a combine operation
such that combine(r) creates a new right-hand side
by combining the component right-hand sides and
recalculating co-indexes between the source- and
target-side nonterminals. Finally, we insert any un-
aligned terminals on either side.

We work through a small example of grammar ex-
traction using Figure 2, which replicates a fragment
of Figure 1 with virtual nodes included. The En-
glish node JJ is aligned to the French nodes A and
AP, the English node NNS is aligned to the French
node N and the virtual node D+N, and the English
node NP is aligned to the French node NP and the
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Figure 2: A fragment of Figure 1 with virtual nodes (sym-
bolized by dashed lines) added on the French side. Nodes
D, N, and AP are all original children of the French NP.

virtual node N+AP. To extract rules from the French
node NP, we consider two potential decompositions:
D1 = {D+N, AP} and D2 = {les, N+AP}. Since
the French NP is aligned only to the English NP, the
set of left-hand sides is {NP::NP}, where we use the
symbol “::” to separate the source and target sides
of joint nonterminal label or a rule.

In the next step, we use cached rules and
alignments to generate all potential right-hand-side
pieces from these top-level nodes:

rhs(D+N) =

{
[D+N1] :: [NNS1],
[les voitures] :: [cars]

}

rhs(AP) =


[AP1] :: [JJ1],
[A1] :: [JJ1],
[bleues] :: [blue]


rhs(les) = ∅

rhs(N+AP) =



[N+AP1] :: [NP1],
[N1 AP2] :: [JJ2 NNS1],
[N1 A2] :: [JJ2 NNS1],
[voitures AP1] :: [JJ1 cars],
[voitures A1] :: [JJ1 cars],
[N1 bleues] :: [blue NNS1],
[voitures bleues] :: [blue cars]


Next we must combine these pieces. For example,
from D1 we derive the full right-hand sides

1. combine([les voitures]::[cars], [bleues]::[blue])
= [les voitures bleues]::[blue cars]

2. combine([les voitures]::[cars], [A1]::[JJ1])
= [les voitures A1]::[JJ1 cars]

3. combine([les voitures]::[cars], [AP1]::[JJ1])
= [les voitures AP1]::[JJ1 cars]

4. combine([D+N1]::[NNS1], [bleues]::[blue])
= [D+N1 bleues]::[blue NNS1]

5. combine([D+N1]::[NNS1], [A1]::[JJ1])
= [D+N1 A2]::[JJ2 NNS1]

6. combine([D+N1]::[NNS1], [AP1]::[JJ1])
= [D+N1 AP2]::[JJ2 NNS1]

Similarly, we derive seven full right-hand sides from
D2. Since rhs(les) is empty, rules derived have
right-hand sides equivalent to rhs(N+AP) with the
unaligned les added on the source side to com-
plete the span of the French NP. For example,
combine([N+AP1]::[NP1]) = [les N+AP1]::[NP1].

In the final step, the left-hand side is added to each
full right-hand side. Thus,

NP :: NP→ [les voitures A1] :: [JJ1 cars]

is one example rule extracted from this tree.
The number of rules can grow rapidly: if the parse

tree has a branching factor of b and a depth of h,
there are potentially O(2bh

) rules extracted. To con-
trol this, we allow certain constraints on the rules ex-
tracted that can short-circuit right-hand-side forma-
tion. We allow separate restrictions on the number
of items that may appear on the right-hand side of
phrase pair rules (maxp) and hierarchical grammar
rules (maxg). We also optionally allow the exclu-
sion of parallel unary rules — that is, rules whose
right-hand sides consist solely of a pair of aligned
nonterminals.
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Tree Multiple Virtual Multiple
System Constraints Alignments Nodes Derivations
Hiero No — — Yes
Stat-XFER Yes No Some No
GHKM Yes No No Yes
SAMT No No Yes Yes
Chiang (2010) No No Yes Yes
This work Yes Yes Yes Yes

Table 1: Comparisons between the rule extractor described in this paper and other SCFG rule extraction methods.

3 Comparison to Other Methods

Table 1 compares the rule extractor described in Sec-
tion 2 to other SCFG extraction methods described
in the literature. We include comparisons of our
work against the Hiero system (Chiang, 2005), the
Stat-XFER system rule learner most recently de-
scribed by Ambati et al. (2009), the composed ver-
sion of GHKM rule extraction (Galley et al., 2006),
the so-called Syntax-Augmented MT (SAMT) sys-
tem (Zollmann and Venugopal, 2006), and a Hiero–
SAMT extension with source- and target-side syntax
described by Chiang (2010). Note that some of these
methods make use of only target-side parse trees —
or no parse trees at all, in the case of Hiero — but
our primary interest in comparison is the constraints
placed on the rule extraction process rather than the
final output form of the rules themselves. We high-
light four specific dimensions along these lines.

Tree Constraints. As we mentioned in this pa-
per’s introduction, we do not allow any part of our
extracted rules to violate constituent boundaries in
the input parse trees. This is in contrast to Hiero-
derived techniques, which focus on expanding gram-
mar coverage by extracting rules for all spans in
the input sentence pair that are consistently word-
aligned, regardless of their correspondence to lin-
guistic constituents. Practitioners of both phrase-
based and syntax-based SMT have reported severe
grammar coverage issues when rules are required to
exactly match parse constituents (Koehn et al., 2003;
Chiang, 2010). In our work, we attempt to improve
the coverage of the grammar by allowing multiple
node alignments, virtual nodes, and multiple tree
decompositions rather than ignoring structure con-
straints.

Multiple Alignments. In contrast to all other ex-
traction methods in Table 1, ours allows a node in
one parse tree to be aligned with multiple nodes
in the other tree, as long as the word-alignment
and structure constraints are satisfied. However, we
do not allow a node to have multiple simultaneous
alignments — a single node alignment must be cho-
sen for extracting an individual rule. In practice,
this prevents extraction of “triangle” rules where the
same node appears on both the left- and right-hand
side of the same rule.1

Virtual Nodes. In keeping with our philosophy
of representing multiple alignments, our use of mul-
tiple and overlapping virtual nodes is less restrictive
than the single-alignment constraint of Stat-XFER.
Another key difference is that Stat-XFER requires
all virtual nodes to be aligned to original nodes in
the other language, while we permit virtual–virtual
node alignments. In respecting existing tree struc-
ture constraints, our virtual node placement is more
restrictive than SAMT or Chiang, where extracted
nodes may cross existing constituent boundaries.

Multiple Derivations. Galley et al. (2006) ar-
gued that breaking a single tree pair into multiple
decompositions is important for correct probability
modeling. We agree, and we base our rule extrac-
tor’s acquisition of multiple derivations per tree pair
on techniques from both GHKM and Hiero. More
specifically, we borrow from Hiero the idea of cre-
ating hierarchical rules by subtracting and abstract-
ing all possible subsets of smaller phrases (aligned
nodes in our case) from larger phrases. Like GHKM,

1Figure 2 includes a potential triangle rule, D+N :: NNS→
[les N1] :: [NNS1], where the English NNS node appears on
both sides of the rule. It is simultaneously aligned to the French
D+N and N nodes.
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we do this exhaustively within some limit, although
in our case we use a rank limit on a rule’s right-hand
side rather than a limit on the depth of the subn-
ode subtractions. Our constraint achieves the goal
of controlling the size of the rule set while remaining
flexibile in terms of depth depending on the shape of
the parse trees.

4 Experiments

We conducted experiments with our rule extrac-
tor on the FBIS corpus, made up of approximately
302,000 Chinese–English sentence pairs. We parsed
the corpus with the Chinese and English grammars
of the Berkeley parser (Petrov and Klein, 2007) and
word-aligned it with GIZA++ (Och and Ney, 2003).
The parsed and word-aligned FBIS corpus served as
the input to our rule extractor, which we ran with a
number of different settings.

First, we acquired a baseline rule extraction
(“xfer-orig”) from our corpus using an implementa-
tion of the basic Stat-XFER rule learner (Lavie et al.,
2008), which decomposes each input tree pair into a
single set of minimal SCFG rules2 using only origi-
nal nodes in the parse trees. Next, we tested the ef-
fect of allowing multiple decompositions by running
our own rule learner, but restricting its rules to also
only make use of original nodes (“compatible”). Fi-
nally, we investigated the total number of extractable
rules by allowing the creation of virtual nodes from
up to four adjacent sibling nodes and placing two
different limits on the length of the right-hand side
(“full-short” and “full-long”). These configurations
are summarized in Table 2.

Rule Set maxp maxg Virtual Unary
xfer-orig 10 ∞ No Yes
compatible 10 5 No Yes
full-short 5 5 Yes No
full-long 7 7 Yes No

Table 2: Rule sets considered by a Stat-XFER baseline
(“xfer-orig”) and our own rule extractor.

2In practice, some Stat-XFER aligned nodes produce two
rules instead of one: a minimal hierarchical SCFG rule is al-
ways produced, and a phrase pair rule will also be produced for
node yields within the maxp cutoff.

4.1 Rules Extracted

As expected, we find that allowing multiple decom-
positions of each tree pair has a significant effect on
the number of extracted rules. Table 3 breaks the ex-
tracted rules for each configuration down into phrase
pairs (all terminals on the right-hand side) and hier-
archical rules (containing at least one nonterminal
on the right-hand side). We also count the num-
ber of extracted rule instances (tokens) against the
number of unique rules (types). The results show
that multiple decomposition leads to a four-fold in-
crease in the number of extracted grammar rules,
even when the length of the Stat-XFER baseline
rules is unbounded. The number of extracted phrase
pairs shows a smaller increase, but this is expected:
the number of possible phrase pairs is proportional
to the square of the sentence length, while the num-
ber of possible hierarchical rules is exponential, so
there is more room for coverage improvement in the
hierarchical grammar.

With virtual nodes included, there is again a large
jump in both the number of extracted rule tokens and
types, even at relatively short length limits. When
both maxp and maxg are set to 7, our rule ex-
tractor produces 1.5 times as many unique phrase
pairs and 20.5 times as many unique hierarchical
rules as the baseline Stat-XFER system, and nearly
twice the number of hierarchical rules as when us-
ing length limits of 5. Ambati et al. (2009) showed
the usefulness of extending rule extraction from ex-
act original–original node alignments to cases in
which original–virtual and virtual–original align-
ments were also permitted. Our experiments con-
firm this, as only 60% (full-short) and 54% (full-
long) of our extracted rule types are made up of only
original–original node alignments. Further, we find
a contribution from the new virtual–virtual case: ap-
proximately 8% of the rules extracted in the “full-
long” configuration from Table 3 are headed by a
virtual–virtual alignment, and a similar number have
a virtual–virtual alignment on their right-hand sides.

All four of the extracted rule sets show Zipfian
distributions over rule frequency counts. In the xfer-
orig, full-short, and full-long configurations, be-
tween 82% and 86% of the extracted phrase pair
rules, and between 88% and 92% of the extracted
hierarchical rules, were observed only once. These
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Extracted Instances Unique Rules
Rule Set Phrase Hierarchical Phrase Hierarchical
xfer-orig 6,646,791 1,876,384 1,929,641 767,573
compatible 8,709,589 6,657,590 2,016,227 3,590,184
full-short 10,190,487 14,190,066 2,877,650 8,313,690
full-long 10,288,731 22,479,863 2,970,403 15,750,695

Table 3: The number of extracted rule instances (tokens) and unique rules (types) produced by the Stat-XFER system
(“xfer-orig”) and three configurations of our rule extractor.

percentages are remarkably consistent despite sub-
stantial changes in grammar size, meaning that our
more exhaustive method of rule extraction does not
produce a disproportionate number of singletons.3

On the other hand, it does weaken the average count
of an extracted hierarchical rule type. From Table 3,
we can compute that the average phrase pair count
remains at 3.5 when we move from xfer-orig to the
two full configurations; however, the average hier-
archical rule count drops from 2.4 to 1.7 (full-short)
and finally 1.4 (full-long). This likely again reflects
the exponential increase in the number of extractable
hierarchical rules compared to the quadratic increase
in the phrase pairs.

4.2 Translation Results

The grammars obtained from our rule extractor can
be filtered and formatted for use with a variety of
SCFG-based decoders and rule formats. We car-
ried out end-to-end translation experiments with the
various extracted rule sets from the FBIS corpus us-
ing the open-source decoder Joshua (Li et al., 2009).
Given a source-language string, Joshua translates by
producing a synchronous parse of it according to a
scored SCFG and a target-side language model. A
significant engineering challenge in building a real
MT system of this type is selecting a more moderate-
sized subset of all extracted rules to retain in the final
translation model. This is an especially important
consideration when dealing with expanded rule sets
derived from virtual nodes and multiple decomposi-
tions in each input tree.

In our experiments, we pass all grammars through

3The compatible configuration is somewhat of an outlier. It
has proportionally fewer singleton phrase pairs (80%) than the
other variants, likely because it allows multiple alignments and
multiple decompositions without allowing virtual nodes.

two preprocessing steps before any translation
model scoring. First, we noticed that English car-
dinal numbers and punctuation marks in many lan-
guages tend to receive incorrect nonterminal labels
during parsing, despite being closed-class items with
clearly defined tags. Therefore, before rule extrac-
tion, we globally correct the nodel labels of all-
numeral terminals in English and certain punctua-
tion marks in both English and Chinese. Second,
we attempt to reduce derivational ambiguity in cases
where the same SCFG right-hand side appears in
the grammar after extraction with a large number of
possible left-hand-side labels. To this end, we sort
the possible left-hand sides by frequency for each
unique right-hand side, and we remove the least fre-
quent 10 percent of the label distribution.

Our translation model scoring is based on the fea-
ture set of Hanneman et al. (2010). This includes
the standard bidirectional conditional maximum-
likelihood scores at both the word and phrase level
on the right-hand side of rules. We also include
maximum-likelihood scores for the left-hand-side
label given all or part of the right-hand side. Using
statistics local to each rule, we set binary indicator
features for rules whose frequencies are ≤ 3, plus
five additional indicator features according to the
format of the rule’s right-hand side, such as whether
it is fully abstract. Since the system in this paper
is not constructed using any non-syntactic rules, we
do not include the Hanneman et al. (2010) “not la-
belable” maximum-likelihood features or the indica-
tor features related to non-syntactic labels.

Beyond the above preprocessing and scoring
common to all grammars, we experiment with three
different solutions to the more difficult problem of
selecting a final translation grammar. In any case,
we separate phrase pair rules from hierarchical rules

141



Rule Set Filter BLEU TER MET
xfer-orig 10k 24.39 68.01 54.35
xfer-orig 5k+100k 25.95 66.27 54.77
compatible 10k 24.28 65.30 53.58
full-short 10k 25.16 66.25 54.33
full-short 100k 25.51 65.56 54.15
full-short 5k+100k 26.08 64.32 54.58
full-long 10k 25.74 65.52 54.55
full-long 100k 25.53 66.24 53.68
full-long 5k+100k 25.83 64.55 54.35

Table 4: Automatic metric results using different rule
sets, as well as different grammar filtering methods.

and include in the grammar all phrase pair rules
matching a given tuning or testing set. Any im-
provement in phrase pair coverage during the extrac-
tion stage is thus directly passed along to decoding.
For hierarchical rules, we experiment with retain-
ing the 10,000 or 100,000 most frequently extracted
unique rules. We also separate fully abstract hier-
archical rules from partially lexicalized hierarchical
rules, and in a further selection technique we retain
the 5,000 most frequent abstract and 100,000 most
frequent partially lexicalized rules.

Given these final rule sets, we tune our MT sys-
tems on the NIST MT 2006 data set using the min-
imum error-rate training package Z-MERT (Zaidan,
2009), and we test on NIST MT 2003. Both sets
have four reference translations. Table 4 presents
case-insensitive evaluation results on the test set ac-
cording to the automatic metrics BLEU (Papineni et
al., 2002), TER (Snover et al., 2006), and METEOR
(Lavie and Denkowski, 2009).4 The trend in the
results is that including a larger grammar is gener-
ally better for performance, but filtering techniques
also play a substantial role in determining how well
a given grammar will perform at run time.

We first compare the results in Table 4 for dif-
ferent rule sets all filtered the same way at decod-
ing time. With only 10,000 hierarchical rules in use
(“10k”), the improvements in scores indicate that an
important contribution is being made by the addi-
tional phrase pair coverage provided by each suc-

4For METEOR scoring we use version 1.0 of the metric,
tuned to HTER with the exact, stemming, and synonymy mod-
ules enabled.

cessive rule set. The original Stat-XFER rule ex-
traction provides 244,988 phrase pairs that match
the MT 2003 test set. This is already increased to
520,995 in the compatible system using multiple de-
compositions. With virtual nodes enabled, the full
system produces 766,379 matching phrase pairs up
to length 5 or 776,707 up to length 7. These systems
both score significantly higher than the Stat-XFER
baseline according to BLEU and TER, and the ME-
TEOR scores are likely statistically equivalent.

Across all configurations, we find that changing
the grammar filtering technique — possibly com-
bined with retuned decoder feature weights — also
has a large influence on automatic metric scores.
Larger hierarchical grammars tend to score better, in
some cases to the point of erasing the score differ-
ences between rule sets. From this we conclude that
making effective use of the extracted grammar, no
matter its size, with intelligent filtering techniques
is at least as important as the number and type of
rules extracted overall. Though the filtering results
in Table 4 are still somewhat inconclusive, the rel-
ative success of the “5k+100k” setting shows that
filtering fully abstract and partially lexicalized rules
separately is a reasonable starting approach. While
fully abstract rules do tend to be more frequently ob-
served in grammar extraction, and thus more reliably
scored in the translation model, they also have the
ability to overapply at decoding time because their
use is not restricted to any particular lexical context.

5 Conclusions and Future Work

We demonstrated in Section 4.1 that the general
SCFG extraction algorithm described in this paper
is capable of producing very large linguistically mo-
tivated rule sets. These rule sets can improve auto-
matic metric scores at decoding time. At the same
time, we see the results in Section 4.2 as a spring-
board to more advanced and more intelligent meth-
ods of grammar filtering. Our major research ques-
tion for future work is to determine how to make the
best runtime use of the grammars we can extract.

As we saw in Section 2, multiple decompositions
of a single parse tree allow the same constituent to
be built in a variety of ways. This is generally good
for coverage, but its downside at run time is that the
decoder must manage a larger number of competing
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derivations that, in the end, produce the same output
string. Grammar filtering that explicitly attempts to
limit the derivational ambiguity of the retained rules
may prevent the translation model probabilities of
correct outputs from getting fragmented into redun-
dant derivations. So far we have only approximated
this by using fully abstract rules as a proxy for the
most derivationally ambiguous rules.

Filtering based on the content of virtual nodes
may also be a reasonable strategy for selecting use-
ful grammar rules and discarding those whose con-
tributions are less necessary. For example, we find
in our current output many applications of rules
involving virtual nodes that consist of an open-
class category and a mark of punctuation, such as
VBD+COMMA and NN+PU. While there is noth-
ing technically wrong with these rules, they may not
be as helpful in translation as rules for nouns and
adjectives such as JJ+NNP+NN or NNP+NNP in flat
noun phrase structures such as former U.S. president
Bill Clinton.

A final concern in making use of our large ex-
tracted grammars is the effect virtual nodes have
on the size of the nonterminal set. The Stat-XFER
baseline grammar from our “xfer-orig” configura-
tion uses a nonterminal set of 1,577 unique labels.
In our rule extractor so far, we have adopted the con-
vention of naming virtual nodes with a concatena-
tion of their component sibling labels, separated by
“+”s. With the large number of virtual node labels
that may be created, this gives our “full-short” and
“full-long” extracted grammars nonterminal sets of
around 73,000 unique labels. An undesirable conse-
quence of such a large label set is that a particular
SCFG right-hand side may acquire a large variety
of left-hand-side labels, further contributing to the
derivational ambiguity problems discussed above.
In future work, the problem could be addressed by
reconsidering our naming scheme for virtual nodes,
by allowing fuzzy matching of labels at translation
time (Chiang, 2010), or by other techniques aimed
at reducing the size of the overall nonterminal set.
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