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Abstract

We use hand-coded rules and graph-aligned
logical dependencies to reorder English text
towards Chinese word order. We obtain a
1.5% higher F-score for Giza++ compared to
running with unprocessed text. We describe
this research and its implications for SMT.

1 Introduction

Some statistical machine translation (SMT) systems
use pattern-based rules acquired from linguistically
processed bitexts. They acquire these rules through
the alignment of a parsed structure in one language
with a raw string in the other language (Yamada and
Knight, 2001; Shen et al., 2008) or the alignment
of source/target language parse trees (Zhang et al.,
2008; Cowan, 2008). This paper shows that ma-
chine translation (MT) can also benefit by aligning a
“deeper” level of analysis than parsed text, which in-
cludes semantic role labeling, regularization of pas-
sives and wh constructions, etc. We create GLARF
representations (Meyers et al., 2009) for English and
Chinese sentences, in the form of directed acyclic
graphs. We describe two graph-based techniques
for reordering English sentences to be closer to that
of corresponding Chinese sentences. One technique
is based on manually created rules and the other is
based on an automatic alignment of GLARF repre-
sentations of Chinese/English sentences. After re-
ordering, we align words of the reordered English
with the words of the Chinese, using the Giza++
word aligner(Och and Ney, 2003). For both tech-
niques, the resulting alignment has a higher F-score

than Giza++ on raw text (a 0.7% to 1.5% absolute
improvement). In principle, our reordered text can
be used to improve any Chinese/English SMT sys-
tem for which Giza++ (or other word aligners) are
part of the processing pipeline.

These experiments are a first step in using
GLARF-style analyses for MT, potentially improv-
ing systems that already perform well with aligned
text lacking large gaps in surface alignment. We hy-
pothesize that SMT systems are most likely to ben-
efit from deep analysis for structures where source
and target language word order differs the most. We
propose using deep analysis to reorder such struc-
tures in one language to more closely reflect the
word order of the other language. The text would be
reordered at two stages in an SMT system: (1) prior
to acquiring a translation model; and (2) either prior
to translation (if source text is reordered) or after
translation (if target text is reordered). Our system
moves large constituents (e.g., noun post-modifiers)
to bring English word order closer to that of parallel
Chinese sentences. This improves word alignment
and is likely to improve SMT.

For this work we use two English/Chinese bitext
corpora developed by the Linguistic Data Consor-
tium (LDC): the Tides FBIS corpus and the GALE
Y1 Q4 Chinese/English Word-Alignment corpus.
We used 2300 aligned sentences from FBIS for de-
velopment purposes. We divided the GALE corpus
into into a 3407 sentence development subcorpus
(DEV) and a 1505 sentence test subcorpus (TEST).
We used the LDC’s manual alignments of the FBIS
corpus to score these data.
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2 Related Work in SMT

Four papers stand out as closely related to the
present study. (Collins et al., 2005; Wang et al.,
2007) describe experiments which use manually cre-
ated parse-tree-based rules to reorder one side of
a bitext: German/English in (Collins et al., 2005)
and English/Chinese in (Wang et al., 2007). Both
achieve BLEU score improvements for SMT: 25.2%
to 26.8% for (Collins et al., 2005) and 28.52 to 30.86
for (Wang et al., 2007). (Wang et al., 2007) uses
rules very similar to our own as they use the same
language pair, although they reorder the Chinese,
whereas we reorder the English. The most signifi-
cant differences between our research and (Collins
et al., 2005; Wang et al., 2007) are: (1) our manual
rules benefit from a level of representation “deeper”
than a surface parse; and (2) In addition to the hand-
coded rules, we also use automatic alignment-based
rules. (Wu and Fung, 2009) uses PropBank role la-
bels (Palmer et al., 2005) as the basis of a second
pass filter over an SMT system to improve the BLEU
score from 42.99 to 43.51. The main similarity to
the current study is the use of a level of represen-
tation that is “deeper” than a surface parse. How-
ever, our application of linguistic structure is more
like that of (Wang et al., 2007) and our “deep” level
connects all predicates and arguments in the sen-
tence, regardless of part of speech, rather than just
connecting verbs to their arguments. (Bryl and van
Genabith, 2010) describes an open source LFG F-
structure alignment tool with an algorithm similar to
our previous work. They evaluate their alignment
output on 20 manually-aligned German and English
F-structures. They leave the impact of their work on
MT to future research.

In addition to these papers, there has also been
some work on rule-based reordering preprocessors
to word alignment based on shallower linguistic in-
formation. For example (Crego and Mariño, 2006)
reorders based on patterns of POS tags. We hypoth-
esize that this is similar to the above approaches in
that patterns of POS tags are likely to simulate pars-
ing or chunking.

3 Preparing the Data

The two stage parsers of previous decades (Hobbs
and Grishman, 1976) generated a syntactic repre-

sentation analogous to the (more accurate) output
of current treebank-based parsers (Charniak, 2001)
and an additional second stage output that regular-
ized constructions (passive, active, relative clauses)
to representations similar to active clauses with no
gaps, e.g.,The book was read by Marywas given a
representation similar to that ofMary read the book.
Treating the active clause as canonical provides a
way to reduce variation in language and thus, mak-
ing it easier to acquire and apply statistical informa-
tion from corpora–there is more evidence for partic-
ular statistical patterns when applications learn pat-
terns and patterns more readily match data.

Two-stage parsers were influenced by linguistic
theories (Harris, 1968; Chomsky, 1957; Bresnan and
Kaplan, 1982) which distinguish a “surface” and a
“deep” level. The deep level neutralizes differences
between ways to express the same meaning–a pas-
sive likeThe cheese was eaten by ratswas analyzed
in terms of the active formRats ate the cheese. Cur-
rently “semantic parsing” refers to a similar repre-
sentation, e.g., (Wagner et al., 2007) or our own
GLARF (Meyers et al., 2009). However, the term is
also used for semantic role labelers (Gildea and Ju-
rafsky, 2002; Xue, 2008), systems which typically
label semantic relations between verbs and their ar-
guments and rarely cover arguments of other parts
of speech. Second stage semantic parsers like our
own, connect all the tokens in the sentence. Aligned
text processed in this way can (for example) repre-
sent differences in English/Chinese noun modifier
order, including relative clauses. In contrast, few
role labelers handle noun modifiers and none han-
dle relative clauses. Below, we describe the GLARF
framework and our system for generating GLARF
representations of English and Chinese sentences.

For each language, we combine several types of
information which may include: named entity (NE)
tagging, date/number regularization, recognition of
multi-word expressions (the prepositionwith respect
to, the nounhand me downand the verbad lib),
role labels for predicates of all parts of speech, regu-
larizing passives and other constructions, error cor-
rection, among other processes into a single typed
feature structure (TFS) representation. This TFS
is converted into a set of 25-tuples representing
dependency-style relations between pairs of words
in the sentence. Three types of dependencies are
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Figure 1: Word-Aligned Logic1 Dependencies

represented:surfacedependencies (close to the level
of the parser),logic1 dependencies (reflecting var-
ious regularizations) andlogic2 dependencies (re-
flecting the output of a PropBanker, NomBanker
and Penn Discourse Treebank transducer).(Palmer
et al., 2005; Xue and Palmer, 2003; Meyers et al.,
2004; Miltsakaki et al., 2004) The surface depen-
dency graph is a tree; The logic1 dependency graph
is an directed acyclic graph; and The logic2 depen-
dency graph is a directed graph with cycles, cover-
ing only a subset of the tokens in the sentence. For
these experiments, we focus on the logic1 relations,
but will sometimes use the surface relations as well.
Figure 1 is a simple dependency-based logic1 repre-
sentation ofI know the rules of tennisand its Chi-
nese translation. The edge labels name the relations
between heads and dependents, e.g.,I is the SBJ of
knowand the dashed lines indicate word level corre-
spondences. Each node is labeled with both a word
and a unique node identifier (n1, n1’, etc.)

The English system achieves F-scores for logic1
dependencies on parsed news text in the 80–90%
range and the Chinese system achieves F-scores in
the 74–84% range, depending on the complexity of
the text. The English system has been created over
the course of about 9 years, and consequently is
more extensive than the Chinese system, which has
been created over the past 3 years. The systems are
described in more detail in (Meyers et al., 2009).

The GLARF representations are created in a se-
ries of steps involving several processors. The En-
glish pipeline includes: (1) dividing text into sen-
tences; (2) running the JET NE tagger (Ji and Gr-
ishman, 2006); (3) running scripts that clean up data
(to prevent parser crashes); (4) running a parser (cur-
rently Charniak’s 2005 parser based on (Charniak,
2001)); (5) running filters that: (a) correct com-

mon parsing errors; (b) merge NE information with
the parse, resolving conflicts in constituent bound-
aries by hand-coded rules; (c) regularize numbers,
dates, times and holidays; (d) identify heads and
label relations between constituents; (e) regularize
text grammatically (filling empty subjects, resolv-
ing relative clause and Wh gaps, etc.); (f) mark con-
junction scope; (g) identify transparent constituents
(e.g., recognizing, thatA variety of different peo-
plehas the semantic features ofpeople(human), not
those ofvariety, the syntactic head of the phrase.);
among other aspects. The Chinese pipeline is simi-
lar, except that it includes the LDC word segmenter
and a PropBanker (Xue, 2008). Also, the regulariza-
tion routines are not as completely developed, e.g.,
relative clause gaps and passives are not handled
yet. The Chinese system currently uses the Berke-
ley parser (Petrov and Klein, 2007). Each of these
pipelines derives typed feature structure representa-
tions, which are then converted into the 25 tuple rep-
resentation of 3 types of dependencies between pairs
of tokens: surface, logic1 and logic2.

To insure that the logic1 graphs are acyclic, we as-
sume that certain edges are surface only and that the
resulting directed acyclic graphs can have multiple
roots. It turns out that the multiple rooted cases are
mostly limited to a few constructions, the most com-
mon being parenthetical clauses and relative clauses.
A parenthetical clause takes the main clause as an
argument. For example, inThe word ’potato’, he
claimed, is spelled with a final ’e’., the verbclaimed,
takes the entire main clause as an argument, we as-
sume thathe claimedis a dependent on the main
verb (is) spelledlabeled PARENTHETICAL in our
surface dependency structure, but that the main verb
(is) spelledis a dependent of the verbclaimed in
our logic1 structure, labeled COMPLEMENT. Thus
the logic1 surface dependency structure have dis-
tinct roots. In a relative clause, such asthe book that
I read”, we assume that the clausethat I readis a de-
pendent on the nounbookin our surface dependency
structure with the label RELATIVE, butbookis a de-
pendent on the verbread in our logic1 dependency
structure, with the label OBJ. This, means that our
logic1 dependency graphs for sentences containing
relative clauses are multi-rooted. One of the roots is
the same as the root of the surface tree and the other
root is the root of the relative clause graph (a rela-
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tive pronoun or a main verb). Furthermore, there is
a surface path connecting the relative clause root to
the rest of the graph. Noncyclic graph traversal is
possible, provide that: (1) we use the surface path to
enter the graph representing the relative clause – oth-
erwise, the traversal would skip the relative clause;
and (2) we halt the traversal if we reach this path a
second time – this avoids traversing down an end-
less path. The parenthetical and relative clause are
representative of the handful of cases in which naive
representations would introduce loops. All cases of
which we are aware have the essential properties of
one of these two cases: (1) either introducing a dif-
ferent single root of the clause; or (2) introducing an
additional root that can be bridged by a surface path.

4 Manual Reordering Rules

We derived manual rules for making the English
Word Order more like the Chinese by manually in-
specting the data. We inspected the first 100-200
sentences of the DEV corpus by first transliterating
the Chinese into English – replaced each Chinese
word with the aligned English counterpart. Several
patterns emerged which were easy to formalize into
rules in the GLARF framework. These patterns were
verified and sometimes generalized through discus-
sions with native Chinese speakers and linguists.
Our rules, similar to those of (Wang et al., 2007) are
as follows (results are discussed in section 6): (1)
Front a post-nominal PP headed by a preposition in
the list{of, in, with, about)}. (2) Front post-nominal
relative clause that begins withthator does not have
any relative pronoun, such that the main predicate is
not a copula plus adjective construction. (3) Front
post-nominal relative clause that begins withthat or
has no relative pronoun if the main predicate is a
copula+adjective construction which is not negated
by a word from the set{no neither nor never not
n’t}. (4) Front post-nominal reduced relative in the
form of a passive or adjectival phrase. (5) Move ad-
verbialsmore thanand less thanafter numbers that
they modify. (6) Move PPs that post-modify adjec-
tives to the position before the adjective. (7) Move
subordinate conjunctionsbeforeandafter to the end
of the clause that they introduce. (8) Move an ini-
tial one-word-long title (Mr., Ms., Dr., President) to
the end of the name. (9) Move temporal adverbials

(adverb, PP, subordinate clause that is semantically
temporal) to pre-verb position.

5 Automatic Node Alignment and its
Application for Word Alignment

In this experiment, we automatically derive re-
orderings of the English sentences from an align-
ment between nodes in logic1 dependency graphs
for the English (source) and Chinese (target) sen-
tences. Source/Target designations are for conve-
nience, since the direction of MT is irrelevant.

We define an alignment as a partial function from
the nodes in the source graph and the nodes in the
target graph. We, furthermore, assume that this map-
ping is 1 to 1 for most node pairs, but can be n to 1
(or 1 to n). Furthermore, we allow some nodes, in
effect, to represent multiple tokens. These are iden-
tified as part of the GLARF analysis of a particular
sentence string and reflect language-specific rules.
Thus, for our purposes, a mapping between a source
and target node, each representing a multi-word ex-
pression is 1 to 1, rather than N to N.

We identify the following types of multi-word ex-
pressions for this purpose: (a) idiomatic expressions
from our monolingual lexicons, (b) dates, (c) times
(d) numbers and (e) ACE (Grishman, 2000) NEs.
Dates, holidays and times are regularized using ISO-
TimeML, e.g., January 3, 1977 becomes 1977-03-01
and numbers are converted to Arabic numbers.

5.1 ALIGN-ALG1

This work uses a modified version of ALIGN-
ALG1, a graph alignment algorithm we previously
used to align 1990s-style two-stage parser output for
MT experiments. ALIGN-ALG1 is anO(n2) algo-
rithm, n is the maximum number of nodes in the
source and target graphs (Meyers et al., 1996; Mey-
ers et al., 1998). Given Source TreeT and Target
TreeT ′, analignment(T, T ′) is a partial function
from nodesN in T to nodesN ′ in T ′. An exhaus-
tive search of possible alignments would consider all
non-intersecting combinations of theT ×T ′ pairs of
source/target nodes – There are at mostT ! such pair-
ings whereT >= T ′.1 However, ALIGN-ALG1 as-
sumes that some of these pairings are unlikely, and

1This ignores N to 1 matches, which we allow, although rel-
atively rarely.
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favors pairings that assume the structure of the trees
correspond more closely. In particular, it is assumed
that ancestor nodes are more likely to match if most
of their descendant nodes match as well.

ALIGN-ALG1 finds the highest scoring align-
ment, where the score of an alignment is the sum
of the scores of the node pairs in the partial func-
tion. The score for each node pair(n, n′) partially
depends on the scores of a mapping from the chil-
dren ofn to the children ofn′. While the process
of calculating the scores is recursive, it can be made
efficient using dynamic programming.

ALIGN-ALG1 assumes that we alignr and r′,
the roots ofT andT ′. Calculating the scores forr
andr′, entails calculating the scores of pairs of their
children, and by extension all mappings fromN to
N ′ that obey the dominance preserving constraint:
Given nodesn1 andn2 in N and nodesn′1 andn′2
in N ′, where all 4 nodes are part of the alignment,
it cannot be the case that:n1 dominatesn2, but
n′1 does not dominaten′2. Here,dominatesmeans
is an ancestor in the dependency graph. ALIGN-
ALG1 scores each pair of nodes using the formula:
Score(n, n′) = Lex(n, n′) + ChildV al(n, n′),
whereLex(n, n′) is a score based on matching the
words labeling nodesn andn′, e.g., the score is 1 if
the pair is found in a bilingual dictionary and 0 oth-
erwise. Givenn has childrenc0, . . . , ci andn′ has
childrenc′0, . . . , c

′
j , to calculate ChildVal: (1) Cre-

ate Child-Matrix, a(i+ 1)× (j + 1) matrix (2) Fill
every position (1 <= x <= i, 1 <= x′ <= j)
with Score(x, x′) (3) Fill every position (i+1,1 <=
x′ <= j) with Score(n, x′) minus a penalty (e.g.,
- .1) for collapsing an edge. This treatsn′ andx′

as a single unit, matched ton.2 (4) Fill every po-
sition (1 <= x <= i, j+1) with Score(x, n′) mi-
nus a penalty forcollapsing an edge. Thusn + x is
paired with n’. (5) Set (i+1,j+1) to−∞. Collapsing
both source and target edges is not permitted. (6) For
all sets of positions in the matrix such that no node
or column is repeated, select the set with the high-
est aggregate score. The aggregate score is the nu-
meric value ofChildV al(n, n′). If (n,n’) is part of
the alignment that is ultimately chosen, this choice
of node pairs is also part of the alignment. There

2The slight penalty represents that collapsing edges compli-
cate the analysis and is thus disfavored (Occam’s Razor).

are at mostmax(i + 1, j + 1)! possible pairings.
Rather than calculating them all, a greedy heuristic
can reduce the calculation time with minimal effect
on accuracy: the highest scoring cell in the matrix is
chosen first, conflicting cells are eliminated, the next
highest scoring cell is chosen, etc.

Consider the example in Figure 1, assum-
ing the dashed lines connect lexical matches
(the function LEX returns 1 for these node
pairs). Where n1 and n1’ are the roots,
Score(n1, n1′) = 1 + ChildV al(n1, n1′). Cal-
culating ChildV al(n1, n1′) requires a recursive
descent down the pairs of nodes, until the bot-
tom most pair is scored.Score(n6, n6′) = 1.
Score(n5, n6′) = 0 + .9 (derived by collaps-
ing an edge and subtracting a penalty of .1).
Score(n3, n3′) = 1 + .9 = 1.9. Score(n2, n2′) =
1. ChildV al(n1, n1′) = 1 + 1.9 = 2.9. Thus
Score(n1, n1′) = 3.9. The alignment includes:
(n1, n1′), (n2, n2′), (n3, n3′), (n5, n6′), (n6, n6′).

The collapsing of edges helps recognize cases
where multiple predicates form substructures, e.g.,
take a walk, is angry, etc. in one tree can map to sin-
gle verbs in the other tree, allowing outgoing edges
from walk or angry to map to outgoing edges of the
corresponding verb, e.g., the agent and goal ofJohn
walked to the storecould map to the agent and goal
of John took a walk to the store.

In practice, ALIGN-ALG1 falls short because:
(1) Our translation dictionary does not have suffi-
cient coverage for the algorithm to perform well; (2)
The assumption that the roots of both graphs should
be aligned is often false. Parallel text often reflects
a dynamic, rather than a literal translation. In one
pair of aligned sentences in the FBIS corpus, the
English phrasethe above mentioned requestscor-
responds to: meaningthese re-
quests of Chen Shui-bian– Chen Shui-bianhas no
counterpart in the English. Parts of translations can
be omitted due to: (a) the discretion of the trans-
lators, (b) the expected world knowledge of partic-
ular language communities, (c) the cultural impor-
tance of particular information, etc.; (3) Violations
of the dominance-preserving constraint exist. The
most common type that we have observed consists
of sequences of transparent nouns andof (e.g.,se-
ries of) in English corresponding to quantifiers in
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Chinese ( ). Thus the head of the English con-
struction corresponds to the dependent of the Chi-
nese construction and vice versa.

5.2 Lexical Resources

Our primary bilingual Chinese/English dictionary
(LEX1) had insufficient coverage for ALIGN-ALG1
to be effective. LEX1 is a merger between:
The LDC 2002 Chinese-English Dictionary and
HowNet. In addition, we manually added additional
translations of units of measure from English. We
also used NEDICT, a name translation dictionary (Ji
et al., 2009) and AUTODICT, English/Chinese word
to word pairs with high similarity scores taken from
MT phase tables created as part of the (Zhang et al.,
2007) system. The NEDICT was used both for pre-
cise matches and partial matches (since, NEs can
often be synonymous with substrings of NEs). In
addition, we used some WordNet (Fellbaum, 1998)
synonyms of English to expand the coverage of all
the dictionaries, allowing English words to match
Chinese word translations of their synonyms. We
allowed additional matches of function words that
served similar functions in the two languages includ-
ing: copulas, pronouns and determiners.

Finally, we use a mutual information (MI) based
approach to find further lexical information. We run
our alignment program over the corpus two times,
the first time, we acquire statistical information
useful for generating a MI-based score. This score
is used as a lexical score on the second pass for
items that do not match any of the dictionaries. On
the first pass, we tally the frequency of each pair
of source/target wordss and t, such that neither
s, nor t are matched lexically to any other item
in the sentence. We, furthermore, keep track of
the number of times each word appears in the
corpus and the number of times each word appeared
unaligned in the corpus. We tally MI as follows:

pair−frequency2

1+(source−word−frequency×target−word−frequency)
One is added to the denominator as a variation on
add-one smoothing (Laplace, 1816), intended to
penalize low frequency scores. We calculate this
score in two ways: (a) using the global frequencies
of the source and target words; and (b) using the
frequency these words were unaligned. The larger
of the two scores is the one that is actually use.

Different lexicons are given different weights.

Matches between words in the hand-coded transla-
tion dictionary and NEDICT are given a score of
1.0. Matches in other dictionaries are allotted lower
scores to represent that these are based on automati-
cally acquired information, which we assume is less
reliable than manually coded information.3

5.3 ALIGN-ALG2

With ALIGN-ALG2, we partially address two lim-
itations of ALIGN-ALG1: (1) the assumption that
the roots of source and target graph are aligned;
and (2) the dominance-preserving constraint. Ba-
sically, we assume that structural similarity is fa-
vored, but not necessarily at the global level. Thus
it is likely that many subparts of corresponding trees
correspond closely, but not necessarily the highest
nodes in the trees.

We use ALIGN-ALG1 to align every possible pair
of S source nodes andT target nodes. Then we look
for P , the highest scoring node pair of allSXT

pairs. P and all the pairs of descendants that are
used to derive this score (the highest scoring pairs
of children, grand children, etc.) become the initial
output. Then we find all unmatched source and tar-
get children, and look up the highest scoring pair of
these nodes, and we repeat the process, adding the
resulting node pairs to the output. We continue to
repeat this process until either all the nodes are in-
cluded in the output or there is no remaining pair
with a score above a threshold score (we leave au-
tomatic methods of tuning this score to future work
and preliminarily have set this parameter to .3). This
means that: 1) some parts of the graphs are left un-
aligned (the alignment is a partial mapping); 2) the
alignment is more resilient to misalignment caused
by differences in graph structure, regardless of the
reason; and 3) the alignment may be between pair
of unconnected graphs, each containing subsets of
nodes and edges in the source and target graphs.
While more complex than ALIGN-ALG1, ALIGN-
ALG2 performs relatively quickly. After one itera-
tion using ALIGN-ALG1, scores are looked up, not
recalculated.

3Current informal weights of .2 to .6 may be replaced with
automatically tuned weights (hill-climbing, etc.) in future work.
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5.4 Treating Multiple Tokens as One

In some cases, parsing and segmentation of text
can be corrected through minor modifications to our
alignment routine. Similarly, we use bilingual lex-
ical information to determine that certain other ad-
jacent tokens should be treated as single words for
purposes of alignment.

Given a language for which segmentation is a
common source of processing error (Chinese), if a
token is unaligned, we check to see whether subdi-
viding the token into two sub-tokens would allow
one or both of these sub-tokens to be alignable with
unaligned tokens in the other language. We iter-
ate through the string one token at a time, trying
all partitions. Given a source tokenABC, consist-
ing of segmentsA, B andC, we test the two pairs of
subsequences{A, BC} and{AB, C}, to see which
of the two partitions (if any) could be aligned with
unaligned target tokens and we compare the scores
of both, selecting the highest score. Unless no par-
tition yields further source/target matches, we then
choose the highest scoring partition and add the re-
sulting node pairings to our alignment. In a similar
way, if there are a pair of aligned names consisting
of source tokenssj . . . sk and target tokenstj . . . tk,
we look for adjacent unaligned source nodes (a se-
quence of nodes ending insj−1 or beginning with
sk+1) and/or adjacent target language nodes, such
that adding these nodes to the name sequence would
produce at least as high a lexical score. The lexi-
con can also be used to match two adjacent items to
the same word. We use a similar routine that checks
our lexicons for words that are adjacent to matching
words. This is particularly meaningful for the entries
automatically acquired by means of MI, as our cur-
rent method for acquiring MI would not distinguish
between 1 to 1 and N to 1 cases. Thus MI scores
for adjacent items typically does mean that an N to
1 match is appropriate. For example, the Chinese
word had high MI with every word
in the sequence (exceptand): ambassador extraor-
dinary and plenipotentiary(example is from FBIS).
This routine was able to cause our procedure to treat
this English sequence as a single token.

5.5 Using Node Alignment for Reordering

Given a node alignment, we can attempt to reorder
the source language so that words associated with
aligned nodes reflect the order of the words label-
ing the corresponding target nodes. Specifically,
we reorder our surface phrase structure-based repre-
sentation of the source language (English) and then
print out all the words yielded from the resulting
reordered tree. Reordering takes place in a bottom
up fashion as follows: for each phraseP with chil-
drenc0 . . . cn, reorder the structure beneath the child
nodes first. Then build the new-constituent right
to left, one child at a time fromcn . . . c0. Start-
ing with an empty sequence, each item is put in
its proper place among the constituents in the se-
quence so far. At each step, place someci after some
cj in ci+1 . . . cn, such thatcj align precedes ci
and cj is after everyck in ci+1 . . . cn such that
ci align precedes ck. If cj does not exist,ci is
placed at the beginning of the sequence so far.

Definition of X align precedes Y , where X and
Y are nodes sharing the same parent: (1) LetpairsX
be the set of source/target pairs in the alignment such
that some (leaf node) descendant ofX is the source
node in the pair; (2) LetpairsY be the set of pairs
in the alignment such that some descendant ofY is
the source node in the pair; (3) letXtmax be the last
target member of a pair inpairsX , where the or-
der is determined by the word order of the target
words labeling the nodes; (4) letYtmin be the first
target member of a pair inpairsY , where the order
is determined the same way; (5) letXsmin be the
first source member of a pair inpairsx, according
to the source sentence word order; (6) letYsmax be
the last source word in a pair inpairsY ordered the
same way. (7)X align precedes Y if: Xtmax pre-
cedesYtmin and there is no source/target pairQ,R

in the alignment such that: (A)R precedes,Ytmin;
(B) Xtmax precedesR; (C)Q either precedesXsmin

or followsYsmax; (D) If Q precedesYsmax, thenR
does not precedeYtmin.

Essentially, thealign precedes operator pro-
vides a conservative way to order the source sub-
treesS1 andS2 by their aligned target sub-tree coun-
terpartsT1 andT2. The idea is that ifT1 andT2

are ordered in an opposite manner toS1 and S2,
the source subtrees should trade places. However,
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System DEV TEST
BASELINE 53.1% 49.9%
MANUAL 54.0% 50.6%

(p < .01) (not significant)
ALIGN 53.5% 51.1%

(p < .05) (p < .01)
ALIGN+MI 53.8% 51.4%

(p < .01) (p < .01)

Table 1: F Scores for Reordering Rules

a source/target pairBs, Bt can block this reorder-
ing if doing so would upset the order of the moved
constituents relative toBs andBt e.g., if before the
move,Bs precedesS2 andBt precedesT2, but af-
ter the moveS2 would precedeBs. This reordering
proceeds from right to left, halting after placingc0.

6 Results

The results summarized in table 1, provide F-scores
(the harmonic mean of precision and recall) of the
word alignment resulting from running GIZA++
with and without our reordering rules, using the
LDC’s manually created word alignments for our
DEV and TEST corpora.4 Giza++ is run with En-
glish as source and Chinese as target. Our baseline
is the result of running Giza++ on the raw text. The
statistical significance of differences from the base-
line are provided in parentheses, next to each non-
baseline score(rounded to 2 significant digits). We
divided both corpora into 20 parts and ran all ver-
sions of the program on each section. We compared
the system output for each section against the base-
line and used the sign test to calculate statistical sig-
nificance. All system output except one5 achieved
at leastp < .05 and most systems achieved signifi-
cance well belowp < .01.

Informally, we observe that the rules reordering
common noun modifiers produce most of the total

4We used F-scores, which (Fraser and Marcu, 2007) show to
correlate well with improvements in BLEU. We weighted pre-
cision and recall evenly since we do not currently have BLEU
scores for MT that use these alignments and therefore cannot
tune the weights. Our results also showed improvements in
alignment error rate (AER) (Och and Ney, 2000), which incor-
porate the “possible” and “sure” portions of the manual align-
ment into F-score, but do not seem to correlate well with BLEU.

5When run on the test corpus, the manual system outper-
formed the baseline system on only 13 out of 20 sections.

improvement. However, space limitations prevent a
detailed exploration of these differences. The results
show that for both DEV and TEST corpora, both re-
ordering approaches improve F-scores of GIZA++
over the baseline. The manual rules (MANUAL)
seem to suffer somewhat from overtraining on the
DEV corpus, as they were designed based on DEV
corpus examples, whereas the alignment based ap-
proaches (ALIGN and subsequent entries in the ta-
ble) seem resilient to these effects. The use of Mu-
tual Information (ALIGN+MI) seems to further im-
prove the F-score.

The two approaches worked for many of the same
phenomena, e.g., they fronted many of the same
noun post-modifiers. The advantage of the hand-
coded rules seems to be that they cover reordering
of words which we cannot align. For example, a
rule that fronts post-nominalof phrases operates re-
gardless of dictionary coverage. Thus the rule-based
version fronted theof phrase in the NPthe govern-
ment of the Guangxi Zhuangzu Autonomous Region
in our DEV corpus, due to the absolute application
of the rule. However, the alignment-based version
did not front the PP because the name was not found
in NEDICT. On the other hand, exceptions to this
rule were better handled by the alignment-based sys-
tem. For example, ifseries ofaligns with the quan-
tifier , the PP would be incorrectly fronted
by the manual, but not the alignment-based system.
Also, the alignment-based method can handle cases
not covered by our rules with minimal labor. Thus,
the automatic system, but not the manual-rule sys-
tem fronted the locative PPin Guangxi to the po-
sition betweenbeenandquite in the sentence:for-
eign businessmen have been quite actively investing
in Guangxi. This is closer to the Chinese, but may
have been difficult to predict with an automatic rule
for several reasons, e.g., it is not clear if all post-
verbal locative phrases should front.

We further analyzed the DEV ALIGN+MI run to
determine both how often nodes were combined to-
gether by our algorithm to produce N to 1 align-
ments and the number of reorderings undertaken. It
turns out that out of the 59,032 pairs of nodes were
aligned for 3076 sentence pairs:6 55,391 alignments

6When sentences were misparsed in one language or the
other they were not reordered by the program.
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were 1 to 1 (93.8% of the total) , 3443 alignments
were 2 to 1 (5.8% of the total) and 203 alignments
were N to 1, where N is greater than 2 (0.3% of the
total). The reordering program moved 1597 single
tokens; 2140 blocks 2 or 3 tokens long; 1203 blocks
of 4 or 5 tokens; 610 blocks of 6 or 7 tokens, 419
blocks of 8, 9 or 10 tokens, and 383 blocks of more
than 10 tokens.

7 Concluding Remarks

We have demonstrated that deep level linguistic
analysis can be used to improve word alignment re-
sults. It is natural to consider whether or not these
reorderings are likely to improve MT results. Both
the manual and alignment-based systems moved
post-nominal English modifiers to pre-nominal po-
sition, to reflect Chinese word order – other move-
ments were much less frequent. In principle, these
selective reorderings may help SMT systems iden-
tify phrasesof English that correspond tophrasesof
Chinese, thus improving the quality of the phrase ta-
bles, especially when large chunks are moved. We
would also expect that the precision of our system to
be more important than the recall, since our system
would not yield an improvement if it produced too
much noise. Further experiments with current MT
systems are needed to assess whether this is actually
the case. We are considering such tests for future re-
search, using the Moses SMT system (Koehn et al.,
2007).

Our representation had several possible advan-
tages over pure parse-based methods. We used se-
mantic features such as temporal, locative and trans-
parent (whether a low-content words inherits its se-
mantics) to help guide our alignment. The regu-
larized structure, also, helped identify long-distance
dependency relationships. We are also consider-
ing several improvements for our alignment-based
rules: (1) using additional dictionary resources such
as CATVAR (Habash and Dorr, 2003), so that cross-
part-of speech alignments can be more readily rec-
ognized; (2) finding more optimal orderings for
unaligned source language words. For example,
the alignment-based method reordereda bright star
arising from China’s policyto a bright arising from
China ’s policy star, separatingbright from star,
even thoughbright starfunction as a unit; (3) incor-

porating and using multi-word bilingual dictionary
entries.; (4) automatic methods for tuning parame-
ters of our system that are currently hand-coded; (5)
training MI on a much larger corpus; (6) investigat-
ing possible ways to merge the manual-rules with
the alignment-based approach; and (7) performing
similar experiments with English/Japanese bitexts.

We would expect both parse-based approaches
and our system to handle mismatches that cover
large distances better than more shallow approaches
to reordering, e.g., (Crego and Mariño, 2006) in the
same way that a full-parse handles constituent struc-
ture more completely than a chunker. In addition,
we would expect our approach to work best in lan-
guages where there are large differences in word or-
der, as these are exactly the cases that all predicate-
argument structure is designed to handle well (they
reduce apparent variation in structure). Towards this
end we are currently working on a Japanese/English
system. Obviously, the cost of developing GLARF
(or similar) systems are high, require linguistic ex-
pertise and may not be possible for resource-poor
languages. Nevertheless, we maintain that such sys-
tems are useful for many purposes and are there-
fore worth the cost. The GLARF system for En-
glish is available for download athttp://nlp.
cs.nyu.edu/meyers/GLARF.html.
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