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TALP Research Center

Universitat Politècnica de Catalunya
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Abstract

We present a model for the inclusion of se-
mantic role annotations in the framework of
confidence estimation for machine translation.
The model has several interesting properties,
most notably: 1) it only requires a linguis-
tic processor on the (generally well-formed)
source side of the translation; 2) it does
not directly rely on properties of the transla-
tion model (hence, it can be applied beyond
phrase-based systems). These features make
it potentially appealing for system ranking,
translation re-ranking and user feedback eval-
uation. Preliminary experiments in pairwise
hypothesis ranking on five confidence estima-
tion benchmarks show that the model has the
potential to capture salient aspects of transla-
tion quality.

1 Introduction

The ability to automatically assess the quality of
translation hypotheses is a key requirement to-
wards the development of accurate and depend-
able translation models. While it is largely agreed
that proper transfer of predicate-argument structures
from source to target is a very strong indicator of
translation quality, especially in relation to ade-
quacy (Lo and Wu, 2010a; 2010b), the incorpora-
tion of this kind of information in the Statistical Ma-
chine Translation (SMT) evaluation pipeline is still
limited to few and isolated cases, e.g., (Giménez and
Màrquez, 2010).

In this paper, we propose a general model for
the incorporation of predicate-level semantic anno-
tations in the framework of Confidence Estimation

(CE) for machine translation, with a specific focus
on the sub-problem of pairwise hypothesis ranking.
The model is based on the following underlying as-
sumption: by observing how automatic alignments
project semantic annotations from source to target
in a parallel corpus, it is possible to isolate features
that are characteristic of good translations, such as
movements of specific arguments for some classes
of predicates. The presence (or absence) of these
features in automatic translations can then be used as
an indicator of their quality. It is important to stress
that we are not claiming that the projections pre-
serve the meaning of the original annotation. Still,
it should be possible to observe regularities that can
be helpful to rank alternative translation hypotheses.

The general workflow (which can easily be ex-
tended to cope with different annotation layers,
such as sequences of meaningful phrase boundaries,
named entities or sequences of chunks or POS tags)
is exemplified in Figure 1. During training (on the
left), the system receives a parallel corpus of source
sentences and the corresponding reference transla-
tions. Source sentences are annotated with a lin-
guistic processor. The annotations are projected us-
ing training alignments, obtaining gold projections
that we can use to learn a model that captures cor-
rect annotation movements, i.e., observed in refer-
ence translations. At test time, we want to assess
the quality of a translation hypothesis given a source
sentence. As shown on the right side of Figure 1, the
first part of the process is the same as during train-
ing: the source sentence is annotated, and the an-
notation is projected onto the translation hypothesis
via automatic alignments. The model is then used
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Figure 1: Architectural overview.

to compare the observed projection against the ex-
pected projection given the source annotation. The
distance between the two projections (observed and
expected) can then be used as a measure of the qual-
ity of the hypothesis.

As it only considers one-sided annotations, our
framework does not require the availability of com-
parable linguistic processors and linguistic annota-
tions, tagsets, etc., on both sides of the translation
process. In this way, it overcomes one of the main
obstacles to the adoption of linguistic analysis for
MT confidence estimation. Furthermore, the fact
that source data is generally well-formed lowers the
requirements on the linguistic processor in terms of
robustness to noisy data, making it possible to em-
ploy a wider range of linguistic processors.

Within this framework, in this paper we describe
our attempt to bridge Semantic Role Labeling (SRL)
and CE by modeling proposition-level semantics for
pairwise translation ranking. The extent to which
this kind of annotations are transferred from source
to target has indeed a very high correlation with re-
spect to human quality assessments (Lo and Wu,
2010a; 2010b). The measure that we propose is then
an ideal addition to already established CE mea-
sures, e.g., (Specia et al., 2009; Blatz et al., 2004),
as it attempts to explicitly model the adequacy of
translation hypotheses as a function of predicate-
argument structure coverage. While we are aware of
the fact that the current definition of the model can
be improved in many different ways, our preliminary
investigation, on five English to Spanish translation

benchmarks, shows promising accuracy on the dif-
ficult task of pairwise translation ranking, even for
translations with very few distinguishing features.

To capture different aspects of the projection of
SRL annotations we employ two instances of the
abstract architecture shown in Figure 1. The first
works at the proposition level, and models the cor-
rect movement of arguments from source to target.
The second works at the argument level, and models
the fluency and adequacy of individual arguments
within each predicate-argument structure. The mod-
els that we learn during training are simple phrase-
based translation models working on different kinds
of sequences, i.e., role labels in the former case and
words in the latter. To evaluate the adequacy of an
automatically projected proposition or argument, we
force the corresponding translation model to gener-
ate it (via constrained decoding). The reachability
and confidence of each translation are features that
we exploit to compare alternative translations, by
combining them in a simple voting scheme.

To score systems which are not under our direct
control (the typical scenario in CE benchmarks), we
introduce a component that generates source-target
alignments for any pair of aligned test sentences.
This addition has the nice property of allowing us
to handle the translation as a black-box, decoupling
the evaluation from a specific system and, in theory,
allowing the model to cope with phrase-based, rule-
based or hierarchical systems alike, as well as with
human-generated translations.

The rest of the paper is structured as follows: in
Section 2 we will review a selection of related work;
in Section 3 we will detail our approach; in Section 4
we will present the results of our evaluation; finally,
in Section 5 we will draw our conclusions.

2 Related work

Confidence estimation is the sub-problem within
MT evaluation concerned with the assessment of
translation quality in the absence of reference trans-
lations. A relevant initial work on this topic is
the survey by Blatz et al. (2004), in which the au-
thors define a rich set of features based on source
data, translation hypotheses, n-best lists and model
characteristics to classify translations as “good”
or “bad”. In their observations, they conclude

2



that the most relevant features are those based on
source/target pairs and on characteristics of the
translation model.

Specia et al. (2009) build on top these results by
designing a feature-selection framework for confi-
dence estimation. Translations are considered as
black-boxs (i.e., no system or model-dependent fea-
tures are employed), and novel features based on the
number of content words, a POS language model on
the target side, punctuation and number matchers in
source and target translations and the percentage of
uni-grams are introduced. Features are selected via
Partial Least Squares (PLS) regression (Wold et al.,
1984). Inductive Confidence Machines (Papadopou-
los et al., 2002) are used to estimate an optimal
threshold to distinguish between “good” and “bad”
translations. Even though the authors show that a
small set of shallow features and some supervision
can produce good results on a specific benchmark,
we are convinced that more linguistic features are
needed for these methods to perform better across a
wider spectrum of domains and applications.

Concerning the usage of SRL for SMT, Wu and
Fung (2009) reported a first successful application of
semantic role labels to improve translation quality.
They note that improvements in translation quality
are not reflected by traditional MT evaluation met-
rics (Doddington, 2002; Papineni et al., 2002) based
on n-gram overlaps. To further investigate the topic,
Lo and Wu (2010a; 2010b) involved human annota-
tors to demonstrate that the quality of semantic role
projection on translated sentences is very highly cor-
related with human assessments.

Giménez and Màrquez (2010) describe a frame-
work for MT evaluation and meta-evaluation com-
bining a rich set of n-gram-based and linguistic met-
rics, including several variants of a metric based on
SRL. Automatic and reference translations are anno-
tated independently, and the lexical overlap between
corresponding arguments is employed as an indica-
tor of translation quality. The authors show that syn-
tactic and semantic information can achieve higher
reliability in system ranking than purely lexical mea-
sures.

Our original contribution lies in the attempt to ex-
ploit SRL for assessing translation quality in a CE
scenario, i.e., in the absence of reference transla-
tions. By accounting for whole predicate-argument

sequences as well as individual arguments, our
model has the potential to capture aspects which
relate both to the adequacy and to the fluency of
a translation. Furthermore, we outline a general
framework for the inclusion of linguistic processors
in CE that has the advantage of requiring resources
and software tools only on the source side of the
translation, where well-formed input can reasonably
be expected.

3 Model

The task of semantic role labeling (SRL) consists
in recognizing and automatically annotating seman-
tic relations between a predicate word (not nec-
essarily a verb) and its arguments in natural lan-
guage texts. The resulting predicate-argument struc-
tures are commonly referred to as propositions, even
though we will also use the more general term anno-
tations.

In PropBank (Palmer et al., 2005) style anno-
tations, which our model is based on, predicates
are generally verbs and roles are divided into two
classes: core roles (labeled A0, A1, . . . A5), whose
semantic value is defined by the predicate syntactic
frame, and adjunct roles (labeled AM-*, e.g., AM-
TMP or AM-LOC) 1 which are a closed set of verb-
independent semantic labels accounting for predi-
cate aspects such as temporal, locative, manner or
purpose. For instance, in the sentence “The com-
mission met to discuss the problem” we can iden-
tify two predicates, met and discuss. The corre-
sponding annotations are “[A0 The commission] [pred
met] [AM-PRP to discuss the problem]” and “[A0 The
commission] met to [pred discuss] [A1 the problem]”.
Here, A0 and A1 play the role of prototypical sub-
ject and object, respectively, and AM-PRP is an ad-
junct modifier expressing a notion of purpose.

Sentence annotations are inherently non-
sequential, as shown by the previous example in
which the predicate and one of the arguments of
the second proposition (i.e., discuss and A1) are
completely embedded within an argument of the
first proposition (i.e., AM-PRP). Following a widely
adopted simplification, the annotations in a sentence
are modeled independently. Furthermore we de-

1The actual role labels are in the form Arg0, . . . Arg1 and
ArgM-*, but we prefer to adopt their shorter form.
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scribe each annotation at two levels: a proposition
level, where we model the movement of arguments
from source to target; and an argument level, were
we model the adequacy and fluency of individual
argument translations. The comparison of two
alternative translations takes into account all these
factors but it models each of them independently,
i.e., we consider how properly each propositions is
rendered in each hypothesis, and how properly each
argument is translated within each proposition.

3.1 Annotation and argument projection

At the proposition level, we simply represent the se-
quence of role-label in each proposition, ignoring
their lexical content with the exception of the pred-
icate word. Considering the previous example, the
sentence would then be represented by the two se-
quences “A0 met AM-PRP” and “A0 * discuss A1”.
In the latter case, the special character “*” marks
a “gap” between A0 and the predicate word. The
annotation is projected onto the translation via di-
rect word alignments obtained through a constrained
machine translation process (i.e., we force the de-
coder to generate the desired translation). Eventual
discontinuities in the projection of an argument are
modeled as gaps. If two arguments insist on a shared
subset of words, then their labels are combined. If
the projection of an argument is a subset of the pro-
jection of the predicate word, then the argument is
discarded. If the overlap is partial, then the non-
overlapping part of the projection is represented.

If a word insertion occurs next to an argument
or the predicate, then we include it in the final se-
quence. This decision is motivated by the consider-
ation that insertions at the boundary of an argument
may be a clue of different syntactic realizations of
the same predicate across the two languages (Levin,
1993). For example, the English construct “A0 give
A2 A1” could be rendered as “doy A1 a A2” in Span-
ish. Here, the insertion of the preposition “a” at de-
coding can be an important indicator of translation
quality.

This level of detail is insufficient to model some
important features of predicate-argument structures,
such as inter-argument semantic or syntactic depen-
dencies, but it is sufficient to capture a variety of
interesting linguistic phenomena. For instance, A0-
predicate inversion translating SVO into VSO lan-

guages, or the convergence of multiple source argu-
ments into a single target argument when translating
into a morphologically richer language. We should
also stress again that we are not claiming that the
structures that we observe on the target side are lin-
guistically motivated, but only that they contain rel-
evant clues to assess quality aspects of translation.

As for the representation of individual arguments,
we simply represent their surface form, i.e., the
sequence of words spanning each argument. So,
for example, the argument representations extracted
from “[A0 The commission] [pred met] [AM-PRP to
discuss the problem]” would be “The commission”,
“met”, “to discuss the problem”. To project each ar-
gument we align all its words with the target side.
The leftmost and the rightmost aligned words de-
fine the boundaries of the argument in the target sen-
tence. All the words in between (including eventual
gaps) are considered as part of the projection of the
argument. This approach is consistent with Prop-
Bank style annotations, in which arguments are con-
tiguous word sequences, and it allows us to employ a
standard translation model to evaluate the fluency of
the argument projection. The rationale here is that
we rely on proposition level annotations to convey
the semantic structure of the sentence, while at the
argument level we are more interested in evaluating
the lexical appropriateness of their realization.

The projection of a proposition and its arguments
for an example sentence is shown in Figure 2. Here,
s is the original sentence and h1 and h2 are two
translation hypotheses. The figure shows how the
whole proposition (p) and the predicate word (pred)
along with its arguments (A0, A1 and A2) are repre-
sented after projection on the two hypotheses. As we
can observe, in both cases thank (the predicate word)
gets aligned with the word gracias. For h1, the de-
coder aligns I (A0) to doy, leaving a gap between A0
and the predicate word. The gap gets filled by gen-
erating the word las. Since the gap is adjacent to at
least one argument, las is included in the representa-
tion of p for h1. In h2, the projection of A0 exactly
overlaps the projection of the predicate (“Gracias”),
and therefore A0 is not included in n for h2.

3.2 Comparing hypotheses

At test time, we want to use our model to com-
pare translation pairs and recognize the most reli-
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s I thank the commissioner for the detailed reply
h1 Doy las gracias al comisario por la detallada respuesta
h2 Gracias , al señor comisario por para el respuesta

p A0 thank A1 A2 pred thank
h1 A0 +las gracias A1 A2 h1 gracias
h2 Gracias A1 A2 h2 Gracias

A1 the commissioner A0 I
h1 al comisario h1 doy
h2 al señor comisario h2 Gracias

A2 for the detailed reply
h2 por la detallada respuesta
h2 para el respuesta

Figure 2: Comparison between two alternative transla-
tions h1 and h2 for the source sentence s.

able. Let s be the source sentence, and h1 and h2

be two translation hypotheses. For each proposition
p in s, we assign a confidence value to its represen-
tation in h1 and h2, i.e., p1 and p2, by forcing the
proposition-level translation system to generate the
projection observed in the corresponding hypothe-
sis. The reachability of p1 (respectively, p2) and the
decoder confidence in translating p as p1 are used as
features to estimate p1 (p2) accuracy. Similarly, for
each argument a in each proposition p we generate
its automatic projection on h1 and h2, i.e., a1 and
a2. We force the argument-level decoder to translate
a into a1 and a2, and use the respective reachability
and translation confidence as features accounting for
their appropriateness.

The best translation hypothesis (h1 or h2) is then
selected according to the following decision func-
tion:

h∗ = arg max
i∈{0,1}

∑
k

fk(hi, hj 6=i, s) (1)

where each feature function fk(·, ·, ·) defines a com-
parison measure between its first two arguments, and
returns 1 if the first argument is greater (better) than
the second, and 0 otherwise. In short, the decision
function selects the hypothesis that wins the highest
number of comparisons.

The feature functions that we defined account
for the following factors, the last three being eval-
uated once for each proposition in s: (1) Num-
ber of successfully translated propositions; (2) Av-
erage translation confidence for projected proposi-
tions; (3) Number of times that a proposition in hi

has higher confidence than the corresponding propo-
sition in hi 6=j ; (4) Number of successfully translated
arguments; (5) Average translation confidence for
projected arguments; (6) Number of times that an
argument in hi has higher confidence than the corre-
sponding argument in hi 6=j .

With reference to Figure 2, the two translation hy-
potheses have been scored 4 (very good) and 2 (bad)
by human annotators. The score assigned by the
proposition decoder to p1 is higher than p2, hence
comparisons (2) and (3) are won by h1. Accord-
ing to the arguments decoder, h1 does a better job
at representing A0 and A2; h2 is better at rendering
A1, and pred is a tie. Therefore, h1 also prevails
according to (6). Given the very high confidence as-
signed to the translation of A2 in h1, the hypothesis
also prevails in (5). In this case, (1) and (4) do not
contribute to the decision as the two projections have
the same coverage.

4 Evaluation

In this section, we present the results obtained by
applying the proposed method to the task of rank-
ing consistency, or pairwise ranking of alternative
translations: that is, given a source sentence s, and
two candidate translations h1 and h2, decide which
one is a better translation for s. Pairwise ranking
is a simplified setting for CE that is general enough
to model the selection of the best translation among
a finite set of alternatives. Even though it cannot
measure translation quality in isolation, a reliable
pairwise ranking model would be sufficient to solve
many common practical CE problems, such as sys-
tem ranking, user feedback filtering or hypotheses
re-ranking.

4.1 Datasets

We ran our experiments on the human assessments
released as part of the ACL Workshops on Machine
Translations in 2007 (Callison-Burch et al., 2007),
2008 (Callison-Burch et al., 2008), 2009 (Callison-
Burch et al., 2009) and 2010 (Callison-Burch et al.,
2010). These datasets will be referred to as wm-
tYY(t) in the remainder, YY being the last two digits
of the year of the workshop and t = n for newswire
data or t = e for Europarl data. So, for example,
wmt08e is the Europarl test set of the 2008 edition
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of the workshop. As our system is trained on Eu-
roparl data, newswire test sets are to be considered
out-of-domain. All the experiments are relative to
English to Spanish translations.

The wmt08, wmt09 and wmt10 datasets provide
a ranking among systems within the range [1,5] (1
being the worst system, and 5 the best). The dif-
ferent datasets contain assessments for a different
number of systems, namely: 11 for wmt08(e), 10 for
wmt08(n), 9 for wmt09 and 16 for wmt10n. Gener-
ally, multiple annotations are available for each an-
notated sentence. In all cases in which multiple as-
sessments are available, we used the average of the
assessments.

The wmt07 dataset would be the most interesting
of all, in that it provides separate assessments for
the two main dimensions of translation quality, ade-
quacy and fluency, as well as system rankings. Un-
luckily, the number of annotations in this dataset is
very small, and after eliminating the ties the num-
bers are even smaller. As results on such small num-
bers would not be very representative, we decided
not to include them in our evaluation.

We also evaluated on the dataset described
in (Specia et al., 2010), which we will refer to as
specia. As the system is based on Europarl data, it
is to be considered an in-domain benchmark. The
dataset includes results produced by four different
systems, each translation being annotated by only
one judge. Given the size of the corpus (the output
of each system has been annotated on the same set
of 4,000 sentences), this dataset is the most repre-
sentative among those that we considered. It is also
especially interesting for two other reasons: 1) sys-
tems are assigned a score ranging from 1 (bad) to 4
(good as it is) based on the number of edits required
to produce a publication-ready translation. There-
fore, here we have an absolute measure of transla-
tion accuracy, as opposed to relative rankings; 2)
each system involved in the evaluation has very pe-
culiar characteristics, hence they are very likely to
generate quite different translations for the same in-
put sentences.

4.2 Setup
Our model consists of four main components: an
automatic semantic role labeler (to annotate source
sentences); a lexical translation model (to gener-

ate the alignments required to map the annotations
onto a translation hypothesis); a translation model
for predicate-argument structures, to assign a score
to projected annotations; and a translation model for
role fillers, to assign a score to the projection of each
argument.

To automatically label our training data with se-
mantic roles we used the Swirl system2 (Surdeanu
and Turmo, 2005) with the bundled English mod-
els for syntactic and semantic parsing. On the
CoNLL-2005 benchmark (Carreras and Màrquez,
2005), Swirl sports an F1-measure of 76.46. This
figure drops to 75 for mixed data, and to 65.42 on
out-of-domain data, which we can regard as a con-
servative estimate of the accuracy of the labeler on
wmt benchmarks.

For all the translation tasks we employed the
Moses phrase-based decoder3 in a single-factor con-
figuration. The -constraint command line pa-
rameter is used to force Moses to output the desired
translation. For the English to Spanish lexical trans-
lation model, we used an already available model
learned using all available wmt10e data.

To build the proposition level translation system,
we first annotated all the English sentences from the
wmt10e (en→es) training set with Swirl; then, we
forced the lexical translation model to generate the
alignments for the reference translations and pro-
jected the annotations on the target side. The process
resulted in 2,493,476 parallel annotations. 5,000 an-
notations were held-out for model tuning. The train-
ing data was used to estimate a 5-gram language
model and the translation model, which we later op-
timized on held-out data.

As for the argument level translator, we trained
it on parallel word sequences spanning the same
role in an annotation and its projection. Each such
pair constitutes a training example for the argu-
ment translator, each argument representation being
modeled independently from the others. With the
same setup used for the proposition translator, we
collected 4,578,480 parallel argument fillers from
wmt10e en→es training data, holding out 20,000
pairs for model tuning.

2http://www.surdeanu.name/mihai/swirl/
3http://www.statmt.org/moses/
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4.3 A note on recall

The main limitation of the model in its current im-
plementation is its low recall. The translation model
that we use to generate the alignments is mostly re-
sponsible for it. In fact, in approximately 35% of the
cases the constrained translation model is not able
to generate the required hypothesis. An obvious im-
provement would consist in using just an alignment
model for this task, instead of resorting to transla-
tion, for instance following the approach adopted in
(Esplà et al., 2011). It should also be noted that,
while this component adds the interesting property
of decoupling the measure from the system that pro-
duced the hypothesis, it is not strictly necessary in
all those cases in which translation alignments are
already available, e.g., for N-best re-ranking.

The second component that suffers from recall
problems is the semantic role labeler, which fails in
annotating sentences in approximately 6% of the re-
maining cases. These failures are by and large due
to the lack of proper verbal predicates in the target
sentence, and as such expose a limiting factor of the
underlying model. In another 3% of the cases, an
annotation is produced but it cannot be projected on
the hypothesis, since the predicate word on the target
side gets deleted during translation.

Another important consideration is that no mea-
sure for CE is conceived to be used in isolation, and
our measure is no exception. In combination with
others, the measure should only trigger when ap-
propriate, i.e., when it is able to capture interesting
patterns that are significant to discriminate transla-
tion quality. If it abstains, the other measures would
compensate for the missing values. In this respect,
we should also consider that not being able to pro-
duce a translation may be inherently considered an
indicator of translation quality.

4.4 Results

Table 1 lists, in each block of rows, pairwise classifi-
cation accuracy results obtained on a specific bench-
mark. The benchmarks are sorted in order of re-
verse relevance, the largest benchmark (specia) be-
ing listed first. In each row, we show results obtained
for different configurations in which the variable is
the distance d between two assessment scores. So,
for example, the row d = 1 accounts for all the

specia Corr Wrong Und(%) Acc(%)

d = 1 1076 656 14.26 62.12
d = 2 272 84 11.00 76.40
d = 3 30 8 13.64 78.95
d ≥ 1 1378 748 13.72 64.82
d ≥ 2 302 92 11.26 76.65
d ≥ 3 30 8 13.64 78.95

wmt10n Corr Wrong Und(%) Acc(%)

d = 1 428 374 15.04 53.37
d = 2 232 196 18.01 54.21
d = 3 98 74 16.50 56.98
d ≥ 1 784 664 16.20 54.14
d ≥ 2 356 290 17.60 55.11
d ≥ 3 124 94 16.79 56.88

wmt09n Corr Wrong Und(%) Acc(%)

d = 1 70 60 19.75 53.85
d = 2 30 40 20.45 42.86
d = 3 26 10 18.18 72.22
d ≥ 1 134 116 19.87 53.60
d ≥ 2 64 56 20.00 53.33
d ≥ 3 34 16 19.35 68.00

wmt08n Corr Wrong Und(%) Acc(%)

d = 1 64 36 12.28 64.00
d = 2 26 24 19.35 52.00
d = 3 12 6 18.18 66.67
d ≥ 1 104 70 14.71 59.77
d ≥ 2 40 34 17.78 54.05
d ≥ 3 14 10 14.29 58.33

wmt08e Corr Wrong Und(%) Acc(%)

d = 1 62 34 21.31 64.58
d = 2 40 30 10.26 57.14
d = 3 22 8 11.76 73.33
d ≥ 1 134 80 15.75 62.62
d ≥ 2 72 46 10.61 61.02
d ≥ 3 32 16 11.11 66.67

Table 1: Results on five confidence estimation bench-
marks. An n next to the task name (e.g. wmt08n) stands
for a news (i.e. out of domain) corpus, whereas an e (e.g.
wmt08e) stands for a Europarl (i.e. in domain) corpus.
The specia corpus is in-domain.

comparisons in which the distance between scores
is exactly one, while row d ≥ 2 considers all the
cases in which the distance is at least 2. For each
test, the columns show: the number of correct (Corr)
and wrong (Wrong) decisions, the percentage of un-
decidable cases (Und), i.e., the cases in which the
scoring function cannot decide between the two hy-
potheses, and the accuracy of classification (Acc)
measured without considering the unbreakable ties.
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The accuracy for d ≥ 1, i.e., on all the available
annotations, is shown in bold.

First, we can observe that the results are above the
baseline (an accuracy of 50% for evenly distributed
binary classification) on all the benchmarks and for
all configurations. The only outlier is wmt09n for
d = 2, with an accuracy of 42.86%. Across the
different datasets, results vary from promising (spe-
cia and wmt08e, where accuracy is generally above
60%) to mildly good (wmt10n), but across all the
board the method seems to be able to provide useful
clues for confidence estimation.

As expected, the accuracy of classification tends
to increase as the difference between hypotheses be-
comes more manifest. In four cases out of six, the
accuracy for d = 3 is above 60%, with the notable
peaks on specia, wmt09n and wmt08e where it goes
over 70% (on the first, it arrives almost at 80%).
Unluckily, very few translations have very different
quality (a measure of the difficulty of the task). Nev-
ertheless, the general trend seems to support the re-
liability of the approach.

When we consider the results on the whole
datasets (i.e., d ≥ 1), pairwise classification accu-
racy ranges from 54% (for wmt09n and wmt10n,
both out-of-domain), to 63-64% (for specia and
wmt08e, both in-domain). Interestingly, the perfor-
mance on wmt08n, which is also out-of-domain, is
closer to in-domain benchmarks, i.e., 60%. These
figures suggest that the method is consistently reli-
able on in-domain data, but also out-of-domain eval-
uation can benefit from its application. The differ-
ence in performance between wmt08n and the other
out-of-domain benchmarks will be reason of further
investigation as future work, as well as the drop in
performance for d = 2 on three of the benchmarks.

5 Conclusions

We have presented a model to exploit the rich in-
formation encoded by predicate-argument structures
for confidence estimation in machine translation.
The model is based on a battery of translation sys-
tems, which we use to study the movement and
the internal representation of propositions and ar-
guments projected from source to target via auto-
matic alignments. Our preliminary results, obtained
on five different benchmarks, suggest that the ap-

proach is well grounded and that semantic annota-
tions have the potential to be successfully employed
for this task.

The model can be improved in many ways, its ma-
jor weakness being its low recall as discussed in Sec-
tion 4.3. Another area in which there is margin for
improvement is the representation of predicate ar-
gument structures. It is reasonable to assume that
different representations could yield very different
results. Introducing more clues about the seman-
tic content of the whole predicate argument struc-
ture, e.g., by including argument head words in the
representation of the proposition, or considering a
more fine-grained representation at the proposition
level, could make it possible to assess the quality of
a translation reducing the need to back-off to indi-
vidual arguments. As for the representation of ar-
guments, a first and straightforward improvement
would be to train a separate model for each argument
class, or to move to a factored model that would al-
low us to model explicitly the insertion of words or
the overlap of argument words due to the projection.

Another important research direction involves the
combination of this measure with already assessed
metric sets for CE, e.g., (Specia et al., 2010), to un-
derstand to what extent it can contribute to improve
the overall performance. In this respect, we would
also like to move from a heuristic scoring function
to a statistical model.

Finally, we would like to test the generality of the
approach by designing other features based on the
same “annotate, project, measure” framework, as we
strongly believe that it is an effective yet simple way
to combine several linguistic features for machine
translation evaluation. For example, we would like
to apply a similar framework to model the movement
of chunks or POS sequences.
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