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Abstract

We show that combining both bottom-up rule
chunking and top-down rule segmentation
search strategies in purely unsupervised learn-
ing of phrasal inversion transduction gram-
mars yields significantly better translation ac-
curacy than either strategy alone. Previous ap-
proaches have relied on incrementally building
larger rules by chunking smaller rules bottom-
up; we introduce a complementary top-down
model that incrementally builds shorter rules
by segmenting larger rules. Specifically, we
combine iteratively chunked rules from Saers
et al. (2012) with our new iteratively seg-
mented rules. These integrate seamlessly be-
cause both stay strictly within a pure trans-
duction grammar framework inducing under
matching models during both training and
testing—instead of decoding under a com-
pletely different model architecture than what
is assumed during the training phases, which
violates an elementary principle of machine
learning and statistics. To be able to drive in-
duction top-down, we introduce a minimum
description length objective that trades off
maximum likelihood against model size. We
show empirically that combining the more lib-
eral rule chunking model with a more conser-
vative rule segmentation model results in sig-
nificantly better translations than either strat-
egy in isolation.

1 Introduction

In this paper we combine both bottom-up chunking
and top-down segmentation as search directions in
the unsupervised pursuit of an inversion transduc-
tion grammar (ITG); we also show that the combi-
nation of the resulting grammars is superior to ei-

ther of them in isolation. For the bottom-up chunk-
ing approach we use the method reported in Saers
et al. (2012), and for the top-down segmentation ap-
proach, we introduce a minimum description length
(MDL) learning objective. The new learning objec-
tive is similar to the Bayesian maximum a poste-
riori objective, and makes it possible to learn top-
down, which is impossible using maximum likeli-
hood, as the initial grammar that rewrites the start
symbol to all sentence pairs in the training data al-
ready maximizes the likelihood of the training data.
Since both approaches result in stochastic ITGs, they
can be easily combined into a single stochastic ITG
which allows for seamless combination. The point
of our present work is that the two different search
strategies result in very different grammars so that
the combination of them is superior in terms of trans-
lation accuracy to either of them in isolation.
The transduction grammar approach has the ad-

vantage that induction, tuning and testing are op-
timized on the exact same underlying model—this
used to be a given in machine learning and statistical
prediction, but has been largely ignored in the statis-
tical machine translation (SMT) community, where
most current SMT approaches to learning phrase
translations that (a) require enormous amounts of
run-time memory, and (b) contain a high degree of
redundancy. In particular, phrase-based SMT mod-
els such as Koehn et al. (2003) and Chiang (2007)
often search for candidate translation segments and
transduction rules by committing to a word align-
ment that is completely alien to the grammar, as it
is learned with very different models (Brown et al.
(1993), Vogel et al. (1996)), whose output is then
combined heuristically to form the alignment actu-
ally used to extract lexical segment translations (Och
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and Ney, 2003). The fact that it is even possible
to improve the performance of a phrase-based di-
rect translation system by tossing away most of the
learned segmental translations (Johnson et al., 2007)
illustrates the above points well.
Transduction grammars can also be induced from

treebanks instead of unannotated corpora, which cuts
down the vast search space by enforcing additional,
external constraints. This approach was pioneered
by Galley et al. (2006), and there has been a lot of re-
search since, usually referred to as tree-to-tree, tree-
to-string and string-to-tree, depending on where
the analyses are found in the training data. This com-
plicates the learning process by adding external con-
straints that are bound to match the translation model
poorly; grammarians of English should not be ex-
pected to care about its relationship to Chinese. It
does, however, constitute a way to borrow nonter-
minal categories that help the translation model.
It is also possible for the word alignments leading

to phrase-based SMT models to be learned through
transduction grammars (see for example Cherry and
Lin (2007), Zhang et al. (2008), Blunsom et al.
(2008), Saers andWu (2009), Haghighi et al. (2009),
Blunsom et al. (2009), Saers et al. (2010), Blunsom
and Cohn (2010), Saers and Wu (2011), Neubig et
al. (2011), Neubig et al. (2012)). Even when the
SMT model is hierarchical, most of the information
encoded in the grammar is tossed away, when the
learned model is reduced to a word alignment. A
word alignment can only encode the lexical relation-
ships that exist between a sentence pair according to
a single parse tree, which means that the rest of the
model: the alternative parses and the syntactic struc-
ture, is ignored.
Theminimumdescription length (MDL) objective

that we will be using to drive the learning will pro-
vide a way to escape the maximum-likelihood-of-
the-data-given-the-model optimum that we start out
with. However, going only by MDL will also lead to
a degenerate case, where the size of the grammar is
allowed to shrink regardless of how unlikely the cor-
pus becomes. Instead, we will balance the length of
the grammar with the probability of the corpus given
the grammar. This has a natural Bayesian interpreta-
tion where the length of the grammar acts as a prior
over the structure of the grammar.
Similar approaches have been used before, but to

induce monolingual grammars. Stolcke and Omo-
hundro (1994) use a method similar to MDL called
Bayesianmodel merging to learn the structure of hid-
den Markov models as well as stochastic context-
free grammars. The SCFGs are induced by allowing
sequences of nonterminals to be replaced with a sin-
gle nonterminal (chunking) as well as allowing two
nonterminals to merge into one. Grünwald (1996)
uses it to learn nonterminal categories in a context-
free grammar. It has also been used to interpret vi-
sual scenes by classifying the activity that goes on in
a video sequences (Si et al., 2011). Our work in this
paper is markedly different to even the previous NLP
work in that (a) we induce an inversion transduc-
tion grammar (Wu, 1997) rather than a monolingual
grammar, and (b) we focus on learning the terminal
segments rather than the nonterminal categories.
The similar Bayesian approaches to finding the

model structure of ITGs have been tried before, but
only to generate alignments that mismatched trans-
lation models are then trained on, rather than using
the ITG directly as translation model, which we do.
Zhang et al. (2008) use variational Bayes with a spar-
sity prior over the parameters to prevent the size of
the grammar to explode when allowing for adjacent
terminals in the Viterbi biparses to chunk together.
Blunsom et al. (2008), Blunsom et al. (2009) and
Blunsom and Cohn (2010) use Gibbs sampling to
find good phrasal translations. Neubig et al. (2011)
and Neubig et al. (2012) use a method more similar
to ours, but with a Pitman-Yor process as prior over
the structures.
The idea of iteratively segmenting the existing

sentence pairs to find good phrasal translations has
also been tried before; Vilar and Vidal (2005) intro-
duces the Recursive Alignment Model, which recur-
sively determines whether a bispan is a good enough
translation on its own (using IBM model 1), or if it
should be split into two bispans (either in straight or
inverted order). The model uses length of the input
sentence to determine whether to split or not, and
uses very limited local information about the split
point to determine where to split. Training the pa-
rameters is done with a maximum likelihood objec-
tive. In contrast, our model is one single genera-
tive model (as opposed to an ad hoc model), trained
with a minimum description length objective (rather
than trying to maximize the probability of the train-
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ing data).
The rest of the paper is structured so that we first

take a closer look at the minimum description length
principle that will be used to drive the top-down
search (Section 2). We then show how the top-down
grammar is learned (Sections 3 and 4), before show-
ing how we combine the new grammar with that of
Saers et al. (2012) (Section 5). We then detail the
experimental setup that will substantiate our claims
empirically (Section 6) before interpreting the results
of those experiments (Section 7). Finally, we offer
some conclusions (Section 8).

2 Minimum description length

The minimum description length principle is about
finding the optimal balance between the size of a
model and the size of some data given the model
(Solomonoff (1959), Rissanen (1983)). Consider the
information theoretical problem of encoding some
datawith amodel, and then sending both the encoded
data and the information needed to decode the data
(the model) over a channel; the minimum descrip-
tion length would be the minimum number of bits
sent over the channel. The encoded data can be inter-
preted as carrying the information necessary to dis-
ambiguate the ambiguities or uncertainties that the
model has about the data. Theoretically, the model
can grow in size and become more certain about the
data, and it can shrink in size and become more un-
certain about the data. An intuitive interpretation of
this is that the exceptions, which are a part of the en-
coded data, can be moved into the model itself. By
doing so, the size of the model increases, but there
is no longer an exception that needs to be conveyed
about the data. Some “exceptions” occur frequently
enough that it is a good idea to incorporate them into
the model, and some do not; finding the optimal bal-
ance minimizes the total description length.
Formally, the description length (DL) is:

DL (M,D) = DL (D|M) + DL (M) (1)

Where M is the model and D is the data. Note the
clear parallel to probabilities that have been moved
into the logarithmic domain.
In natural language processing, we never have

complete data to train on, so we need our models to
generalize to unseen data. A model that is very cer-
tain about the training data runs the risk of not being

able to generalize to new data: it is over-fitting. It
is bad enough when estimating the parameters of a
transduction grammar, and catastrophic when induc-
ing the structure of the grammar. The key concept
that we want to capture when learning the structure
of a transduction grammar is generalization. This is
the property that allow it to translate new, unseen,
input. The challenge is to pin down what general-
ization actually is, and how to measure it.
One property of generalization for grammars is

that it will lower the probability of the training data.
This may seem counterintuitive, but can be under-
stood as moving some of the probability mass away
from the training data and putting it in unseen data.
A second property is that rules that are specific to
the training data can be eliminated from the gram-
mar (or replaced with less specific rules that generate
the same thing). The second property would shorten
the description of the grammar, and the first would
make the description of the corpus given the gram-
mar longer. That is: generalization raises the first
term and lowers the second in Equation 1. A good
generalization will lower the total MDL, whereas a
poor onewill raise it; a good generalizationwill trade
a little data certainty for more model parsimony.

2.1 Measuring the length of a corpus
The information-theoretic view of the problem also
gives a hint at the operationalization of length. Shan-
non (1948) stipulates that the number of bits it takes
to encode that a probabilistic variable has taken a cer-
tain value can be encoded using as little as the nega-
tive logarithmic probability of that outcome.
Following this, the parallel corpus given the trans-

duction grammar gives the number of bits required
to encode it: DL (C|G) = −log2 (P (C|G)), where
C is the corpus and G is the grammar.

2.2 Measuring the length of an ITG
Since information theory deals with encoding se-
quences of symbols, we need some way to serialize
an inversion transduction grammar (ITG) into a mes-
sage whose length can be measured.
To serialize an ITG, we first need to determine

the alphabet that the message will be written in. We
need one symbol for every nonterminal, L0-terminal
and L1-terminal. We will also make the assump-
tion that all these symbols are used in at least one
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rule, so that it is sufficient to serialize the rules in
order to express the entire grammar. To serialize
the rules, we need some kind of delimiter to know
where one rule starts and the next ends; we will ex-
ploit the fact that we also need to specify whether the
rule is straight or inverted (unary rules are assumed
to be straight), and merge these two functions into
one symbol. This gives the union of the symbols of
the grammar and the set {[], ⟨⟩}, where [] signals the
beginning of a straight rule, and ⟨⟩ signals the be-
ginning of an inverted rule. The serialized format
of a rule will be: rule type/start marker, followed by
the left-hand side nonterminal, followed by all right-
hand side symbols. The symbols on the right-hand
sides are either nonterminals or biterminals—pairs
ofL0-terminals andL1-terminals that model transla-
tion equivalences. The serialized form of a grammar
is the serialized form of all rules concatenated.
Consider the following toy grammar:

S → A, A → ⟨AA⟩, A → [AA] ,
A → have/有, A → yes/有, A → yes/是

Its serialized form would be:

[]SA⟨⟩AAA[]AAA[]Ahave有[]Ayes有[]Ayes是

Now we can, again turn to information theory to ar-
rive at an encoding for this message. Assuming a
uniform distribution over the symbols, each symbol
will require −log2

(
1
N

)
bits to encode (where N is

the number of different symbols—the type count).
The above example has 8 symbols, meaning that
each symbol requires 3 bits. The entire message is
23 symbols long, which means that we need 69 bits
to encode it.

3 Model initialization

Rather than starting out with a general transduction
grammar and fitting it to the training data, we do the
exact opposite: we start with a transduction gram-
mar that fits the training data as well as possible, and
generalize from there. The transduction grammar
that fits the training data the best is the one where
the start symbol rewrites to the full sentence pairs
that it has to generate. It is also possible to add any
number of nonterminal symbols in the layer between
the start symbol and the bisentences without altering

the probability of the training data. We take advan-
tage of this by allowing for one intermediate sym-
bol so that the start symbol conforms to the normal
form and always rewrites to precisely one nontermi-
nal symbol. This violate the MDL principle, as the
introduction of new symbols, by definition, makes
the description of the model longer, but conforming
to the normal form of ITGs was deemedmore impor-
tant than strictly minimizing the description length.
Our initial grammar thus looks like this:

S → A,

A → e0..T0/f0..V0 ,

A → e0..T1/f0..V1 ,

...,

A → e0..TN
/f0..VN

Where S is the start symbol, A is the nonterminal,
N is the number of sentence pairs in the training cor-
pus, Ti is the length of the ith output sentence (which
makes e0..Ti the ith output sentence), and Vi is the
length of the ith input sentence (which makes f0..Vi

the ith input sentence).

4 Model generalization

To generalize the initial inversion transduction gram-
mar we need to identify parts of the existing biter-
minals that could be validly used in isolation, and
allow them to combine with other segments. This
is the very feature that allows a finite transduction
grammar to generate an infinite set of sentence pairs.
Doing this moves some of the probability mass,
which was concentrated in the training data, to un-
seen data—the very definition of generalization. Our
general strategy is to propose a number of sets of
biterminal rules and a place to segment them, eval-
uate how the description length would change if we
were to apply one of these sets of segmentations to
the grammar, and commit to the best set. That is:
we do a greedy search over the power set of possi-
ble segmentations of the rule set. As we will see, this
intractable problem can be reasonable efficiently ap-
proximated, which is what we have implemented and
tested.
The key component in the approach is the ability

to evaluate how the description length would change
if a specific segmentation was made in the grammar.
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This can then be extended to a set of segmentations,
which only leaves the problem of generating suitable
sets of segmentations.
The key to a successful segmentation is to maxi-

mize the potential for reuse. Any segment that can
be reused saves model size. Consider the terminal
rule:

A → five thousand yen is my limit/
我最多出五千日元

(Chinese gloss: ’wŏ zùi dūo chū wŭ qīan rì yúan’).
This rule can be split into three rules:

A → ⟨AA⟩,
A → five thousand yen/五千日元,

A → is my limit/我最多出

Note that the original rule consists of 16 symbols (in
our encoding scheme), whereas the new three rules
consists of 4 + 9 + 9 = 22 symbols. It is reason-
able to believe that the bracketing inverted rule is in
the grammar already, but this still leaves 18 symbols,
which is decidedly longer than 16 symbols—and we
need to get the length to be shorter if we want to see
a net gain, since the length of the corpus given the
grammar is likely to be longer with the segmented
rules. What we really need to do is find a way to
reuse the lexical rules that came out of the segmen-
tation. Now suppose the grammar also contained this
terminal rule:

A → the total fare is five thousand yen/
总共的费用是五千日元

(Chinese gloss: ’zŏng gòng de fèi yòng shì wŭ qīan
rì yúan’). This rule can also be split into three rules:

A → [AA] ,

A → the total fare is/总共的费用是,

A → five thousand yen/五千日元

Again, we will assume that the structural rule is al-
ready present in the grammar, the old rule was 19
symbols long, and the two new terminal rules are
12+9 = 21 symbols long. Again we are out of luck,
as the new rules are longer than the old one, and three
rules are likely to be less probable than one rule dur-
ing parsing. The way to make this work is to realize

that the two existing rules share a bilingual affix—a
biaffix: “five thousand dollars” translating into “五
千日元”. If we make the two changes at the same
time, we get rid of 16 + 19 = 35 symbols worth of
rules, and introduce a mere 9 + 9 + 12 = 30 sym-
bols worth of rules (assuming the structural rules are
already in the grammar). Making these two changes
at the same time is essential, as the length of the five
saved symbols can be used to offset the likely in-
crease in the length of the corpus given the data. And
of course: the more rules we can find with shared bi-
affixes, the more likely we are to find a good set of
segmentations.
Our algorithm takes advantage of the above obser-

vation by focusing on the biaffixes found in the train-
ing data. Each biaffix defines a set of lexical rules
paired up with a possible segmentation. We evaluate
the biaffixes by estimating the change in description
length associated with committing to all the segmen-
tations defined by a biaffix. This allows us to find
the best set of segmentations, but rather than com-
mitting only to the one best set of segmentations, we
will collect all sets which would improve descrip-
tion length, and try to commit to as many of them
as possible. The pseudocode for our algorithm is as
follows:
G // The grammar

biaffixes_to_rules // Maps biaffixes to the

// rules they occur in

biaffixes_delta = [] // A list of biaffixes and

// their DL impact on G

for each biaffix b :

delta = eval_dl(b, biaffixes_to_rules[b], G)

if (delta < 0)

biaffixes_delta.push(b, delta)

sort_by_delta(biaffixes_delta)

for each b:delta pair in biaffixes_delta :

real_delta = eval_dl(b, biaffixes_to_rules[b], G)

if (real_delta < 0)

G = make_segmentations(b, biaffixes_to_rules[b], G)

The methods eval_dl, sort_by_delta and
make_segmentations evaluates the impact on de-
scription length that committing to a biaffix would
cause, sorts a list of biaffixes according to this delta,
and applies all the changes associated with a biaffix
to the grammar, respectively.
Evaluating the impact on description length

breaks down into two parts: the difference in de-
scription length of the grammar DL (G′) − DL (G)
(where G′ is the grammar that results from applying
all the changes that committing to a biaffix dictates),
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and the difference in description length of the corpus
given the grammar DL (C|G′) − DL (C|G). These
two quantities are simply added up to get the total
change in description length.
The difference in grammar length is calculated

as described in Section 2.2. The difference in de-
scription length of the corpus given the grammar
can be calculated by biparsing the corpus, since
DL (C|G′) = −log2 (P (C|p′)) and DL (C|G) =
−log2 (P (C|p)) where p′ and p are the rule prob-
ability functions of G′ and G respectively. Bipars-
ing is, however, a very costly process that we do not
want to have inside a loop. Instead, we assume that
we have the original corpus probability (through bi-
parsing outside the loop), and estimate the new cor-
pus probability from it (in closed form). Given that
we are splitting the rule r0 into the three rules r1,
r2 and r3, and that the probability mass of r0 is dis-
tributed uniformly over the new rules, the new rule
probability function p′ will be identical to p, except
that:

p′ (r0) = 0,

p′ (r1) = p (r1) +
1

3
p (r0) ,

p′ (r2) = p (r2) +
1

3
p (r0) ,

p′ (r3) = p (r3) +
1

3
p (r0)

Since we have eliminated all the occurrences of r0

and replaced them with combinations of r1, r2 and
r3, the probability of the corpus given this new rule
probability function will be:

P
(
C|p′) = P (C|p)

p′ (r1) p′ (r2) p′ (r3)

p (r0)

To make this into a description length, we need to
take the negative logarithm of the above, which re-
sults in:

DL
(
C|G′) =

DL (C|G) − log2

(
p′ (r1) p′ (r2) p′ (r3)

p (r0)

)
The difference in description length of the corpus
given the grammar can now be expressed as:

DL (C|G′) − DL (C|G) =

−log2

(
p′(r1)p′(r2)p′(r3)

p(r0)

)

To calculate the impact of a set of segmentations, we
need to take all the changes into account in one go.
We do this in a two-pass fashion, first calculating
the new probability function (p′) and the change in
grammar description length (taking care not to count
the same rule twice), and then, in the second pass,
calculating the change in corpus description length.

5 Model combination

Themodel we learn by iteratively subsegmenting the
training data is guaranteed to be parsimonious while
retaining a decent fit to the training data; these are
desirable qualities, but there is a real risk that we
failed to make some generalization that we should
have made; to counter this risk, we can use a model
trained under more liberal conditions. We chose the
approach taken by Saers et al. (2012) for two rea-
sons: (a) the model has the same form as our model,
which means that we can integrate it seamlessly, and
(b) their aims are similar to ours but their method
differs significantly; specifically, they let the model
grow in size as long as the data reduces in size. Both
these qualities make it a suitable complement for our
model.
Assuming we have two grammars (Ga and Gb)

that we want to combine, the interpolation param-
eter α will determine the probability function of the
combined grammar such that:

pa+b (r) = αpa (r) + (1 − α)pb (r)

for all rules r in the union of the two rule sets, and
where pa+b is the rule probability function of the
combined grammar and pa and pb are the rule prob-
ability functions of Ga and Gb respectively. Some
initial experiments indicated that an α value of about
0.4 was reasonable (when Ga was the grammar ob-
tained through the training scheme outlined above,
and Gb was the grammar obtained through the train-
ing scheme outlined in Saers et al. (2012)), so we
used 0.4 in this paper.

6 Experimental setup

We have made the claim that iterative top-down seg-
mentation guided by the objective of minimizing the
description length gives a better precision grammar
than iterative bottom-up chunking, and that the com-
bination of the two gives superior results to either
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Figure 1: Description length in bits over the different it-
erations of top-down search. The lower portion represents
DL (G) and the upper portion represents DL (C|G).

approach in isolation. We have outlined how this
can be done in practice, and we now substantiate that
claim empirically.
We will initialize a stochastic bracketing inver-

sion transduction grammar (BITG) to rewrite it’s
one nonterminal symbol directly into all the sen-
tence pairs of the training data (iteration 0). We will
then segment the grammar iteratively a total of seven
times (iterations 1–7). For each iteration we will
record the change in description length and test the
grammar. Each iteration requires us to biparse the
training data, which we do with the cubic time algo-
rithm described in Saers et al. (2009), with a beam
width of 100.
As training data, we use the IWSLT07 Chinese–

English data set (Fordyce, 2007), which contains
46,867 sentence pairs of training data, 506 Chinese
sentences of development data with 16 English ref-
erence translations, and 489 Chinese sentences with
6 English reference translations each as test data; all
the sentences are taken from the traveling domain.
Since the Chinese is written without whitespace, we
use a tool that tries to clump characters together into
more “word like” sequences (Wu, 1999).
As the bottom-up grammar, we will reuse the

grammar learned in Saers et al. (2012), specifically,
we will use the BITG that was bootstrapped from
a bracketing finite-state transduction grammar (BF-
STG) that has been chunked twice, giving bitermi-
nals where the monolingual segments are 0–4 tokens
long. The bottom-up grammar is trained on the same
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Figure 2: Number of rules learned during top-down
search over the different iterations.

data as our model.
To test the learned grammars as translation mod-

els, we first tune the grammar parameters to the train-
ing data using expectation maximization (Dempster
et al., 1977) and parse forests acquired with the
above mentioned biparser, again with a beam width
of 100. To do the actual decoding, we use our
in-house ITG decoder. The decoder uses a CKY-
style parsing algorithm (Cocke, 1969; Kasami, 1965;
Younger, 1967) and cube pruning (Chiang, 2007) to
integrate the language model scores. The decoder
builds an efficient hypergraph structure which is then
scored using both the induced grammar and the lan-
guage model. The weights for the language model
and the grammar, are tuned towards BLEU (Papineni
et al., 2002) using MERT (Och, 2003). We use the
ZMERT (Zaidan, 2009) implementation ofMERT as
it is a robust and flexible implementation of MERT,
while being loosely coupled with the decoder. We
use SRILM (Stolcke, 2002) for training a trigram
language model on the English side of the training
data. To evaluate the quality of the resulting transla-
tions, we use BLEU, and NIST (Doddington, 2002).

7 Experimental results

The results from running the experiments detailed
in the previous section can be summarized in four
graphs. Figures 1 and 2 show the size of our new,
segmenting model during induction, in terms of de-
scription length and in terms of rule count. The ini-
tial ITG is at iteration 0, where the vast majority
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Figure 3: Variations in BLEU score over different iter-
ations. The thin line represents the baseline bottom-up
search (Saers et al., 2012), the dotted line represents the
top-down search, and the thick line represents the com-
bined results.

of the size is taken up by the model (DL (G)), and
very little by the data (DL (C|G))—just as we pre-
dicted. The trend over the induction phase is a sharp
decrease in model size, and a moderate increase in
data size, with the overall size constantly decreas-
ing. Note that, although the number of rules rises,
the total description length decreases. Again, this is
precisely what we expected. The size of the model
learned according to Saers et al. (2012) is close to 30
Mbits—far off the chart. This shows that our new
top-down approach is indeed learning a more parsi-
monious grammar than the bottom-up approach.
Figures 3 and 4 shows the translation quality of

the learned model. The thin flat lines show the qual-
ity of the bottom-up approach (Saers et al., 2012),
whereas the thick curves shows the quality of the
new, top-down model presented in this paper with-
out (dotted line), and without the bottom-up model
(solid line). Although the MDL-based model is bet-
ter than the old model, the combination of the two
is still superior. It is particularly encouraging to see
that the over-fitting that seems to take place after iter-
ation 3 with the MDL-based approach is ameliorated
with the bottom-up model.

8 Conclusions

We have introduced a purely unsupervised learning
scheme for phrasal stochastic inversion transduction
grammars that is the first to combine two oppos-
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Figure 4: Variations in NIST score over different iter-
ations. The thin line represents the baseline bottom-up
search (Saers et al., 2012), the dotted line represents the
top-down search, and the thick line represents the com-
bined results.

ing ways of searching for the phrasal translations: a
bottom-up rule chunking approach driven by a maxi-
mum likelihood (ML) objective and a top-down rule
segmenting approach driven by a minimum descrip-
tion length (MDL) objective. The combination ap-
proach takes advantage of the fact that the conser-
vative top-down MDL-driven rule segmenting ap-
proach learns a very parsimonious, yet competitive,
model when compared to a liberal bottom-up ML-
driven approach. Results show that the combination
of the two opposing approaches is significantly su-
perior to either of them in isolation.
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