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Abstract

We present a unified approach to perform-
ing minimum risk training and minimum
Bayes risk (MBR) decoding with BLEU

in a phrase-based model. Key to our ap-
proach is the use of a Gibbs sampler that
allows us to explore the entire probabil-
ity distribution and maintain a strict prob-
abilistic formulation across the pipeline.
We also describe a new sampling algo-
rithm called corpus sampling which al-
lows us at training time to use BLEU in-
stead of an approximation thereof. Our
approach is theoretically sound and gives
better (up to +0.6%BLEU) and more sta-
ble results than the standard MERT opti-
mization algorithm. By comparing our ap-
proach to lattice MBR, we are also able to
gain crucial insights about both methods.

1 Introduction

According to statistical decision theory, the opti-
mal decision rule for any statistical model is the
solution that minimizes its risk (expected loss).
This solution is often referred to as the Minimum
Bayes Risk (MBR) solution (Kumar and Byrne,
2004). Since machine translation (MT) mod-
els are typically evaluated by BLEU (Papineni et
al., 2002), a loss function which rewards partial
matches, the MBR solution is to be preferred to
the Maximum A Posteriori (MAP) solution.

In most statistical MT (SMT) systems, MBR
is implemented as a reranker of a list1 of trans-
lations generated by a first-pass decoder. This de-
coder typically assigns unnormalised log probabil-
ities (known as scores) to each translation hypoth-

1We use the term list to denote any enumerable represen-
tation of translation hypotheses e.g n-best list, translation lat-
tice or forest.

esis, so these scores must be converted to proba-
bilities in order to apply MBR. In order to perform
this conversion, it is first necessary to compute the
normalization function Z. Since Z is defined as
an intractable sum over all possible translations, it
is approximated by summing over the translations
in the list. The second step is to find the correct
scale factor for the scores using a hyper-parameter
search over held-out data. This is needed because
the model parameters for the first-pass decoder are
normally learnt using MERT (Och, 2003), which
is invariant under scaling of the scores.

Both these steps are theoretically unsatisfactory
methods of estimating the posterior probability
distribution since the approximation to Z is an un-
bounded term and the scaling factor is an artificial
way of inducing a probability distribution.

Recently, (Tromble et al., 2008; Kumar et al.,
2009) have shown that using a search lattice to im-
prove the estimation of the true probability distri-
bution can lead to improved MBR performance.
However, these approaches still rely on MERT for
training the base model, and in fact introduce sev-
eral extra parameters which must also be estimated
using either grid search or a second MERT run.
The lattice pruning required to make these tech-
niques tractable is quite drastic, and is in addi-
tion to the pruning already performed during the
search. Such extensive pruning is liable to render
any probability estimates heavily biased (Blunsom
and Osborne, 2008; Bouchard-Côté et al., 2009).

Here, we present a unified approach to training
and decoding in a phrase-based translation model
(Koehn et al., 2003) which keeps the objective
constant across the translation pipeline and so ob-
viates the need for any extra hyper-parameter fit-
ting. We use the phrase-based Gibbs sampler of
Arun et al. (2009) at training time to compute the
gradient of our minimum risk training objective in
order to apply first-order optimization techniques,
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and at test time we use it to estimate the posterior
distribution required by MBR (Section 3).

We experimented with two different objective
functions for training (Section 4). First, follow-
ing (Arun et al., 2009), we define our objective
at the sentence-level using a sentence-level variant
of BLEU. Then, in order to reduce the mismatch
between training and test loss functions, we also
tried directly optimising the expected corpus level
BLEU, where we introduce a novel sampling tech-
nique, which we call corpus sampling to calculate
the required expectations.

The methods presented in this paper are theo-
retically sound. Moreover, experimental evidence
on three language pairs shows that our training
regime is more stable than MERT, able to gener-
alize better and generally leads to improvement in
translation when used with sampling based MBR
(Section 5). An added benefit is that the trained
weights also lead to better performance when used
with a beam-search based decoder.

2 Inference methods for MT

We assume a phrase-based machine translation
model, defined with a log-linear form, with feature
function vector h and parametrized by weight vec-
tor θ, as described in Koehn et al. (2003). The in-
put sentence, f , is segmented into phrases, which
are sequences of adjacent words. Each source
phrase is translated into the target language, to
produce an output sentence e and an alignment
a representing the mapping from source to target
phrases. Phrases are allowed to be reordered.

p(e, a|f ; θ) =
exp [θ · h(e, a, f)]∑

〈e′,a′〉 exp [θ · h(e′, a′, f)]
(1)

MAP decoding under this model consists of
finding the most likely output string, e∗:

e∗ = argmaxe
∑

a∈4(e,f)

p(e, a|f) (2)

where4(e, f) is the set of all derivations of output
string e given source string f .

Summing over all the derivations is intractable,
making approximations necessary. The most com-
mon of these approximations is the Viterbi approx-
imation, which simply chooses the most likely
derivation 〈e∗, a∗〉. This approximation can be
computed in polynomial time via dynamic pro-
gramming (DP). Though fast and effective for
many problems, it has two serious drawbacks for
probabilistic inference. First, the error incurred

by the Viterbi maximum with respect to the true
model maximum is unbounded. Second, the DP
solution requires substantial pruning and restricts
the use of non-local features. The latter problem
persists even in the variational approximations of
Li et al. (2009), which attempt to solve the former.

2.1 Gibbs sampling for phrase-based MT
An alternate approximate inference method for
phrase-based MT without any of the previously
mentioned drawbacks is the Gibbs sampler (Ge-
man and Geman, 1984) of Arun et al. (2009)
which draws samples from the posterior distribu-
tion of the translation model. For the work pre-
sented in this paper, we use this sampler.

The sampler produces a sequence of samples,
SN1 = (e1, a1) . . . (eN , aN ), that are drawn from
the distribution p(e, a|f). These samples can be
used to estimate the expectation of a function
h(e, a, f) as follows:

Ep(a,e|f)[h] = lim
N→∞

1
N

N∑
i=1

h(ai, ei, f) (3)

3 Decoding

In this work, we are interested in performing MBR
decoding with BLEU. We define the MBR decision
rule following Tromble et al. (2008):

e∗ = arg max
e∈εH

∑
e′∈εE

BLEUe(e′)p(e′|f) (4)

where εH refers to the hypothesis space from
which translations are chosen, εE refers to the
evidence space used for calculating risk and
BLEUe(e′) is a gain function that indicates the re-
ward of hypothesising e′ when the reference solu-
tion is e.

To perform MBR decoding using the sampler,
let the function h in Equation 3 be the indica-
tor function h = δ(a, â)δ(e, ê). Then, Equa-
tion 3 provides an estimate of p(â, ê|f), and using
h = δ(e, ê) marginalizes over all derivations a′,
yielding an estimate of p(ê|f). MBR is computed
at the sentence-level while BLEU is a corpus-level
metric, so instead we use a sentence-level approx-
imation of BLEU.2

The sampler can be used to perform two other
decoding tasks: the mode of the estimated dis-
tribution p(â, ê|f) is the maximum derivation
(MaxDeriv) solution while the mode of p(ê|f) is
the maximum translation (MaxTrans) solution.

2The ngram precision counts are smoothed by adding 0.01
for n > 1
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4 Minimum Risk Training

In order to train models suitable for use with Max-
Trans or MBR decoding, we need to employ a
training method which takes account of the whole
distribution. To this end, we employ minimum risk
training to find weights θ for Equation 1 that mini-
mize the expected loss on the training set. We con-
sider two variants of minimum risk training: sen-
tence sampling optimizes an objective defined at
the sentence level and corpus sampling a corpus-
based objective.

4.1 Sentence sampling
Since BLEU, the metric we care about, is a gain
function, our objective function maximizes the ex-
pected gain of our model. The expected gain, G
of a probabilistic translation model on a corpus D,
defined with respect to the gain function BLEUê(e)
is given by

G =
∑
〈ê,f〉∈D

∑
e,a

p(e, a|f)BLEUê(e) (5)

where ê is the reference translation, e is a hypoth-
esis translation and BLEU refers to the sentence-
level approximation of the metric.

Using the probabilistic formulation of Equation
1, the optimization of the objective in (5) is facil-
itated by the fact that it is continuous and differ-
entiable with respect to the model parameters θ to
give

∂G
∂θk

=
∑
〈ê,f〉
∈D

∑
e,a

BLEUê(e)
∂p

∂θk

where
∂p

∂θk
=
(
hk − Ep(e,a|f)[hk]

)
p(e, a|f)

(6)

Since the gradient is expressed in terms of ex-
pectations of feature values, it can easily be calcu-
lated using the sampler and then first-order opti-
mization techniques can be applied to find optimal
values of θ. Because of the noise introduced by
the sampler, we used stochastic gradient descent
(SGD), with a learning rate that gets updated after
each step proportionally to difference in succes-
sive gradients (Schraudolph, 1999).

While our initial formulation of minimum risk
training is similar to that of Arun et al. (2009), in
preliminary experiments we observed a tendency
for translation performance on held-out data to
quickly increase to a maximum and then plateau.
Hypothesizing that we were being trapped in lo-
cal maxima as G is non-convex, we decided to

employ deterministic annealing (Rose, 1998) to
smooth the objective function to ensure that the
optimizer explored as large a region as possible of
the space before it settled on an optimal weight set.
Our instantiation of deterministic annealing (DA)
is based on the work of Smith and Eisner (2006),
and involves the addition of an entropic prior to
the objective in Equation 5 to give

Ĝ =
∑
〈ê,f〉∈D

[(∑
e,a

p(e, a|f)BLEUê(e)

)
+ T.H(p)

]
where H(p) is the entropy of the probability dis-
tribution p(e, a|f), and T > 0 is a temperature
paramater which is gradually lowered as the opti-
mization progresses according to some annealing
schedule.

Differentiating with respect to θk then shows
that the annealed gradient is given by the follow-
ing expression:∑

〈ê,f〉
∈D

∑
e,a

(BLEUê(e)− T (1 + log p))
∂p

∂θk

where
∂p

∂θk
=
(
hk − Ep(e,a|f)[hk]

)
p(e, a|f)

A high value of T leads the optimizer to find
weights which describe a fairly flat distribution,
whereas a lower value of T pushes the optimizer
towards a more peaked distribution. We perform
10 to 20 iterations of SGD at each temperature.

In their deterministic annealing formulation,
(Smith and Eisner, 2006; Li and Eisner, 2009), ex-
press the parameterization of the distribution θ as
γθ̂ (where γ is the scaling factor) and perform op-
timization in two steps, the first optimizing θ̂ and
the second optimizing γ. We experimented with
this two stage optimization process, but found that
simply performing an unconstrained optimization
on θ gave better results.

4.2 Corpus sampling
While the objective functions in Equations 5 and
4.1 use a sentence-level variant of BLEU, the
model’s test-time performance is evaluated with
corpus level BLEU. The lack of correlation be-
tween sentence-level BLEU and corpus BLEU is
well-known (Chiang et al., 2008a). Therefore, in
an effort to address this issue, we tried maximizing
expected corpus BLEU directly.

In other words, given a training corpus of the
form 〈CF , CÊ〉 where CF is a set of source sen-
tences and CÊ its corresponding reference transla-
tions, we consider a gain function defined on the
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hypothesized translation CE of the input CF with
respect to CÊ .

The objective in equation 5 therefore becomes:

G =
∑
CE

P (CE |CF )BLEUCÊ (CE) (7)

The pair (CE , CF ) is denoted as a cor-
pus sample corresponding to a sequence
(e1, a1), . . . , (eN , aN ) of derivations of the
corresponding source strings f1, . . . , fN of
source corpus CF .

Although the sampler described in Section 2
generates samples at the sentence level, we can use
it to generate corpus samples by applying the fol-
lowing procedure (see Figure 1). For each source
sentence f i in the corpus, we generate a sequence
of samples (ei1, a

i
1), . . . , (e

i
n, a

i
n) using the sam-

pler. From each of these sequences of samples, we
then resample new sequences of derivation sam-
ples, one for each source sentence in the corpus.
The first corpus sample is then obtained by iter-
ating through the source sentences and taking the
first resampled derivation for each sentence, then
the second corpus sample by taking the second re-
sampled derivation, and so on. The resampling
step is necessary to eliminate any biases due to the
order of the generated samples.

The corpus sampling procedure invariably gen-
erates a set of samples which are all distinct and so
would give us a uniform estimate of the probabil-
ity distribution P (CE |CF ). However this is not a
problem since we are not interested in evaluating
the actual distribution; we just need to calculate
expectations of feature values and BLEU scores
over the distribution. The feature values of a cor-
pus sample are the average of the feature values of
its constituting derivations and its BLEU score is
computed based on the yield of its derivations.

When training using corpus sampling we pro-
cess the training corpus in batches 〈CF , CÊ〉, treat-
ing each batch as a corpus in its own right, and
updating the weights after each batch.

The gradient for the objective function in (7) is:
∂G
∂θk

=
∑
CE

BLEUCÊ (CE)
∂P

∂θk

where
∂P

∂θk
=
(
hCk − EP (CE |CF )[h

C
k ]
)
P (CE |CF )

where hCk is the k-th component of a corpus
sample feature vector.

During deterministic annealing for sentence
sampling, the entropy term is computed over the

f1 f2 f3

A D K

B E L

A F L

C G L

B H M

f1 f2 f3

A F L

B E L

SAMPLE FROM 

EMPIRICAL 

DISTRIBUTION

Extract Corpus 
Samples

f1 f2 f3

{A, F, L }Corpus Sample 1

{B, E, L }Corpus Sample 2

SAMPLE FROM 
P(e,a | f)

Figure 1: Example illustrating the extraction of 2
corpus samples for a corpus of source sentences
f1, f2, f3. In the first step, we sample 5 deriva-
tions for each source sentence. We then resample
2 derivations from the empirical distributions of
each source sentence.

distribution p(e, a|f) of each individual sentence.
While corpus sampling, we are considering the
distribution P (CE |CF ) but the estimated distribu-
tion is always uniform. So we define the entropic
prior term over the distribution p(e, a|f) of the
sentences making up the corpus sample.

The annealed corpus sampling objective is
therefore:∑
CE

P (CE |CF )BLEUCÊ (CE)+
T

|CF |
∑
f∈CF

H(p(e, a|f))

The gradient of this objective is of similar form
to the sentence sampling gradient in Equation (6).

5 Experiments

5.1 Training Data and Preparation
The experiments in this section were performed
using the Europarl section of the French-English
and German-English parallel corpora from the
WMT09 shared translation task (Callison-Burch et
al., 2009), as well as 300k parallel Arabic-English
sentences from the NIST MT evaluation train-
ing data.3 For all language pairs, we constructed

3The Arabic-English training data consists of the
eTIRR corpus (LDC2004E72), the Arabic news corpus
(LDC2004T17), the Ummah corpus (LDC2004T18), and the
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a phrase-based translation model as described in
Koehn et al. (2003), limiting the phrase length to
5. The target side of the parallel corpus was used
to train 3-gram language models. For the German
and French systems, the DEV2006 set was used
for model tuning and the first half of TEST2007
(in-domain) for heldout testing. Final testing was
performed on NEWS-DEV2009B (out-of-domain)
and the first half of TEST2008 (in-domain). For
the Arabic system, the MT02 set (10 reference
translations) was used for tuning and MT03 and
MT05 (4 reference translations, each) were used
for held-out testing and final testing respectively.
To reduce the size of the phrase table, we used the
association-score technique suggested by Johnson
et al. (2007). Translation quality is reported using
case-insensitive BLEU.

5.2 Baseline

Our baseline system is phrase-based
Moses (Koehn et al., 2007) with feature weights
trained using MERT. Moses and the Gibbs
sampler use identical feature sets.4

The MERT optimization algorithm uses multi-
ple random restarts to avoid getting stuck in a poor
local optima. Therefore, every time MERT is run,
it produces a slightly different final weight vector
leading to varying test set results. While this char-
acteristic of MERT is typically ignored, we ac-
count for it by performing MERT training 10 times
for each of the 3 language pairs, decoding the test
sets with each of the 10 optimized weight sets. We
present the best and the worst test set results along
with the mean and the standard deviation (σ) of
these results in Table 1. We report results using
the Moses implementation of Viterbi, nbest MBR
and lattice MBR decoding (Kumar et al., 2009). 5

For both nbest and lattice MBR decoding, the hy-
pothesis set was composed of the top 1000 unique
translations produced by the Viterbi decoder, and
the same 1000 translations were used as evidence
set for nbest MBR.

As Table 1 shows, translation results using
MERT optimized weights vary markedly from one

sentences with confidence c > 0.995 in the ISI automatically
extracted web parallel corpus (LDC2006T02).

4We use 5 translation model scores, distance-based distor-
tion, language model and word penalty. The reordering limit
is set to 6 for all experiments.

5For nbest and lattice MBR decoding, we optimized for
the scaling factor using a grid-search on held-out data. For
lattice MBR decoding, we optimized the lattice density and
set the p and r parameters as per Tromble et al. (2008).

tuning run to the other, with results varying from
a range of 0.3% BLEU to 1.3% BLEU when using
Viterbi decoding. We also see that, bar in-domain
German to English, MBR decoding gives a small
improvement on all other datasets.

Surprisingly, lattice MBR only gives improve-
ments on two datasets and actually leads to a drop
in performance on the other 3 datasets. We discuss
possible reasons for this in Section 6.

5.3 Sentence sampling

At training time, the optimization algorithm is ini-
tialized with zero weights and the sampler is ini-
tialized with a random derivation from Moses. To
get rid of any initialization biases, the first 100
samples are discarded.6 We then run the sampler
for 1000 iterations after which we perform reheat-
ing whereby the distribution is progressively flat-
tened. Samples are not collected during this pe-
riod. Reheating allows the sampler more mobil-
ity around the search space thus possibly escaping
any local optima it might be trapped in. We subse-
quently run the sampler for 1000 more iterations.
We denote this procedure as running 2 chains of
the sampler. We use batch sizes of 96 randomly
selected sentences for SGD optimization.

During DA, our cooling schedule is an exponen-
tially decaying one with decay rate set to 0.9, per-
forming 20 iterations of SGD optimization at each
temperature setting. Five training runs were per-
formed and the BLEU scores averaged. The fea-
ture weights were output every 50 iterations and
performance measured on the heldout set by run-
ning the sampler as a decoder. At decode time,
we use the same sampler configurations as during
training but run 2 chains each for 5000 iterations.

For MBR decoding, we use the entirety of this
sample set as our evidence set and use the top 1000
most probable translations as the hypothesis set.

5.4 Corpus sampling

For our corpus sampling experiments, we sample
using the same procedure as in sentence sampling
but using 2 chains of 2000 iterations. We then
resample 2000 corpus samples from the empiri-
cal distribution estimated from the first 4000 sam-
ples. For Arabic-English training, we used batch
sizes of 100 randomly selected sentences for ex-
periments without DA and batches of 400 random

6This procedure is referred to as burn-in in the MCMC
literature.
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Viterbi nMBR lMBR
min max mean σ min max mean σ min max mean σ

AR-EN MT05 43.7 44.3 44.0 0.17 44.2 44.5 44.4 0.13 44.2 44.6 44.5 0.12
FR-EN In 33.1 33.4 33.3 0.10 33.2 33.6 33.4 0.12 32.3 32.7 32.6 0.13
FR-EN Out 19.1 19.6 19.4 0.18 19.3 19.7 19.5 0.12 19.1 19.4 19.3 0.12
DE-EN In 27.6 27.9 27.8 0.10 27.6 27.9 27.7 0.10 27.2 27.5 27.4 0.10
DE-EN Out 14.9 16.2 15.7 0.33 15.0 16.3 15.7 0.33 15.3 16.4 16.0 0.30

Table 1: Baseline results - MERT trained models decoded using Viterbi, nbest MBR (nMBR) and lattice
MBR (lMBR). MERT was run 10 times for each language pair. We report minimum, maximum, mean
and standard deviation of test set BLEU scores across the 10 runs.
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Figure 2: Heldout performance for German-English training averaged across 5 minimum risk training
runs. Best scores achieved are indicated by dotted line.

sentences with DA. The size of the batches cor-
responds to the number of sentences that form a
corpus sample. For German/French to English ex-
periments, we used batches of 100 random sen-
tences for training with and without DA. We per-
form 10 optimizations at each temperature setting
during deterministic annealing. Test time condi-
tions are identical to the sentence sampling ones
and we measure performance on a held-out set af-
ter every 20 iterations of the learner.

5.5 Results

Figures 2 and 3 show the scores on the German-
English and Arabic-English held-out sets respec-
tively comparing all four training regimes: corpus
vs sentence sampling, DA vs without DA. Results
for French-English training are similar.

We focus our analysis on the Arabic-English ex-
perimental setup. Without deterministic anneal-
ing, the learner converges quickly, usually after
just 20 iterations, after which performance de-
grades steadily. The magnitudes of the weights
are large, sharpening the distribution. There is
not much diversity amongst the sampled deriva-
tions, i.e. the entropy of the sample set is low.
Therefore, all 3 decoding regimes give very simi-
lar results. With the addition of the entropic prior,
the model is slow to converge before the so-called
phase transition occurs (usually after around 50

iterations), after which performance goes up to
reach a peak (45.2 BLEU) higher than that without
the prior (44.2 BLEU), before steadily declining.
The entropic prior encourages diversity among the
sample set, especially at high temperature settings.

In the presence of diversity, the benefits of
marginalization over derivations is clear: Max-
Trans does better than MaxDeriv and MBR does
best, confirm recent findings of (Blunsom et al.,
2008; Arun et al., 2009) that MaxTrans improves
over MaxDeriv decoding for models trained to ac-
count for multiple derivations. As the temperature
decreases to zero, the model sharpens, effectively
intent on maximizing one-best performance and
thus voiding the benefits of MaxTrans and MBR.
Figures 2 and 3 also show that corpus sampling
improves over sentence sampling, although not by
much (+ 0.3 BLEU).

5.6 Comparison with MERT baseline

Having established the superiority of the pipeline
of expected corpus BLEU training with DA fol-
lowed by MBR decoding over other alternatives
considered, we compare it to the best results ob-
tained with MERT optimized Moses (bold scores
from Table 1). To account for sampler variance
during both training and decoding, we average
scores across 50 runs; 10 decoding runs each using
the best weight set from 5 training runs. Results
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Figure 3: Heldout performance for Arabic-English training averaged across 5 minimum risk training
runs. Best scores achieved are indicated by dotted line.

are shown in Table 2.7

We observe that on 3 out of 5 datasets, the sam-
pler results are much more stable than MERT and
as stable on the other 2 datasets. We attribute the
improved stability to the more powerful optimiza-
tion algorithm used by the sampler which uses gra-
dient information to steer the model towards better
weights. MERT, alternatively, optimizes one fea-
ture at a time using line search and therefore does
not explore the full feature space as thoroughly.

Translation results with the sampler are better
than with MERT on 2 datasets, are equal on an-
other 2 and worse in one case. The improvements
withe the sampler are obtained in the case of out-
of-domain data suggesting that the minimum risk
training objective generalizes better than the 1-
best objective of MERT.

MERT/Moses Sampler
Test set Best σ MBR σ

AR-EN MT05 44.5 (lMBR) 0.12 44.5 0.14
FR-EN In 33.4 (nMBR) 0.12 33.2 0.06
FR-EN Out 19.5 (nMBR) 0.12 19.8 0.05
DE-EN In 27.8 (Viterbi) 0.10 27.8 0.11
DE-EN Out 16.0 (lMBR) 0.30 16.6 0.12

Table 2: Final results comparing MERT/Moses
pipeline with unified sampler pipeline. Sampler
uses corpus sampling during training and MBR
decoding at test time. Moses results are aver-
aged across decoding runs using weights from
10 MERT runs and sampler results are averaged
across 10 decoding runs for each of 5 different
training runs. We report BLEU scores and standard
deviation (σ).

7The MBR decoding times, averaged over 10 decoding
runs of 50 sentences each, are 10 secs/sent for Moses nbest
MBR, 40 secs/sent for Moses lattice MBR and 180 secs/sent
for the sampler.

Viterbi nMBR lMBR Sampler
MBR

AR-EN MT05 44.2 44.4 44.8 44.8
FR-EN In 33.1 33.2 33.3 33.3
FR-EN Out 19.6 19.8 19.9 19.9
DE-EN In 27.7 27.9 28.0 28.0
DE-EN Out 16.0 16.3 16.6 16.6

Table 3: Comparison of decoding methods using
expected BLEU trained weights. We report Viterbi,
nbest MBR (nMBR) and lattice MBR (lMBR) de-
coding scores vs best sampler MBR decoding per-
formance. We selected the best weight set based
on performance on heldout data.

5.7 Moses with expected BLEU weights

In a final set of experiments, we reran the Moses
decoder this time using weights obtained through
expected BLEU optimization. Here, for each lan-
guage pair, we picked the weight set that gave the
best results on held-out data. Note that the results
which we show in Table 3 are over one run only,
so are not strictly comparable to those in Table 2
which are averaged over several training and de-
coding runs. We also report the best results ob-
tained with the sampler MBR decoder using these
weights.

In contrast to Table 1, here we see a consistent
improvement across all test-sets when going from
Viterbi decoding to n-best then to lattice MBR.
Except for in-domain French-English, the transla-
tion results are superior to the best scores shown
(in bold) in Table 1, confirming that the minimum
risk training objective is able to find good weight
sets. Interestingly, we also observe that sampler
MBR gets the same exact results for all test sets as
lattice MBR.

371



6 Discussion

We have shown that the sampler of Arun et al.
(2009) can be used to perform minimum risk train-
ing over an unpruned search space. Our pro-
posed corpus sampling technique, like MERT, is
able to optimize corpus BLEU directly whereas
alternate parameter estimation techniques usually
employed in SMT optimize approximations of
BLEU. Chiang et al. (2008b) accounts for the on-
line nature of the MIRA optimization algorithm
by smoothing the sentence-level BLEU precision
counts of a translation with a weighted average of
the precision counts of previously decoded sen-
tences, thus approximating corpus BLEU. As
for minimum risk training, prior implementations
have either used sentence-level BLEU (Zens et al.,
2007) or a linear approximation to BLEU (Smith
and Eisner, 2006; Li and Eisner, 2009).

At test time, the sampler works best as an MBR
decoder, but also allows us to verify past claims
about the benefits of marginalizing over align-
ments during decoding. We compare the sam-
pler MBR decoder’s performance against MERT-
optimized Moses run under three different decod-
ing regimes, finding that the sampler does as well
or better on 4 out of 5 datasets.

Our training and testing pipeline has the advan-
tage of being able to handle a large number of both
local and global features so we expect in the future
to outperform the standard MERT and dynamic
programming-based search pipeline further.

As shown in Section 5.2, lattice MBR in some
cases leads to a marked drop in performance. (Ku-
mar et al., 2009) mention that the linear approx-
imation to BLEU used in their lattice MBR algo-
rithm is not guaranteed to match corpus BLEU, es-
pecially on unseen test sets. To account for these
cases, they allow their algorithm to back-off to the
MAP solution. One possible reason for the drop
in performance in our lattice MBR experiments is
that the implementation we use does not employ
this back-off strategy.

Table 3 provides valuable insights as to the mer-
its of the lattice MBR approach versus our own
sampling based pipeline. Firstly, whereas with
MERT optimized weights, the benefits of lattice
MBR are debatable (Table 1), running Moses with
minimum risk trained weights gives results that
are in line with what we would expect - lattice
MBR does systematically better than competing
decoding algorithms. This suggests that the unbi-

ased minimum risk training criterion used by the
sampler is a better fit for lattice MBR than the
MERT criterion, and also that the mismatch be-
tween linear and corpus BLEU mentioned before
might not be the reason for the results in Table 1.

Secondly, we find that sampling MBR matches
lattice MBR on the minimum risk trained weights.
The MBR sampler uses samples drawn from the
distribution as hypothesis and evidence sets, typi-
cally 1000 samples for the former and 10000 sam-
ples for the latter. In the lattice MBR experiments
of Tromble et al. (2008), it is shown that this size
of hypothesis set is sufficient. Their evidence set,
however, is significantly larger than ours.8Table 3
suggests that, since it is not biased by heuris-
tic pruning, the sampler’s limited evidence set is
enough to give a good estimate of the probabil-
ity distribution whereas beam-search based MBR
needs to scale from using n-best lists to lattices to
get equivalent results.

Sampling the phrase-based model is expensive,
meaning that lattice MBR is still faster (around
4x) to run than sampler MBR. However, due to
the unified nature of the training and decoding cri-
terion in our approach, the minimum risk trained
weights can be plugged directly into the sam-
pler MBR decoder, whereas lattice MBR requires
an additional expensive step of tuning the model
hyper-parameters (Kumar et al., 2009).

In future work, we also intend to look at more
efficient ways of generating samples. One pos-
sibility is to interleave Gibbs sampling steps us-
ing low order ngram language model distributions
with Metropolis-Hasting steps that use higher or-
der language model distributions.

7 Related Work

Expected BLEU training for phrase-based models
has been successfully attempted by (Smith and
Eisner, 2006; Zens et al., 2007), however they both
used biased n-best lists to approximate the pos-
terior distribution. Li and Eisner (2009) present
work on performing expected BLEU training with
deterministic annealing on translation forests gen-
erated by Hiero (Chiang, 2007). Since BLEU does
not factorize over the search graph, they use the
linear approximation of Tromble et al. (2008) in-
stead.

Pauls et al. (2009) present an alternate training
criterion over translation forests called CoBLEU,

8up to 1081 as per Tromble et al. (2008)
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similar in spirit to expected BLEU training, but
aimed to maximize the expected counts of n-grams
appearing in reference translations. This training
criterion is used in conjunction with consensus de-
coding (DeNero et al., 2009), a linear-time ap-
proximation of MBR.

In contrast to the approaches above, the algo-
rithms presented in this paper are able to explore
an unpruned search space. By using corpus sam-
pling, we can perform minimum risk training with
corpus BLEU rather than any approximations of
this metric. Also, since we maintain a probabilis-
tic formulation across training and decoding, our
approach does not require a grid-search for a scal-
ing factor as in Tromble et al. (2008).

8 Conclusions

We have presented a unified approach to the task
of parameter estimation and decoding for a phrase-
based system using the standard translation eval-
uation metric, BLEU. Using a Gibbs sampler to
explore the entire probability distribution allows
us to implement two probabilistic sound algo-
rithms, minimum risk training and its equivalent,
MBR decoding, in an unbiased way. The proba-
bilistic formulation also allows us to use gradient
based optimization techniques which produce sta-
ble model parameters. At decoding time, we show
the benefits of marginalizing over derivations and
that MBR gives better results than other decoding
criteria.

Since our optimization algorithm can cope with
a large number of features, in future work, we
plan to incorporate more expressive features in
the model. We use a Gibbs sampler for inference
so there is scope for exploring non-local features
which might not easily be added to dynamic pro-
gramming based models.
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