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Abstract

We use L1 regularized transductive regres-
sion to learn mappings between source
and target features of the training sets
derived for each test sentence and use
these mappings to rerank translation out-
puts. We compare the effectiveness of L1

regularization techniques for regression to
learn mappings between features given in
a sparse feature matrix. The results show
the effectiveness of using L1 regulariza-
tion versus L2 used in ridge regression.
We show that regression mapping is ef-
fective in reranking translation outputs and
in selecting the best system combinations
with encouraging results on different lan-
guage pairs.

1 Introduction

Regression can be used to find mappings be-
tween the source and target feature sets derived
from given parallel corpora. Transduction learn-
ing uses a subset of the training examples that
are closely related to the test set without using
the model induced by the full training set. In
the context of SMT, we select a few training in-
stances for each test instance to guide the transla-
tion process. This also gives us a computational
advantage when considering the high dimension-
ality of the problem. The goal in transductive
regression based machine translation (TRegMT)
is both reducing the computational burden of the
regression approach by reducing the dimension-
ality of the training set and the feature set and
also improving the translation quality by using
transduction. Transductive regression is shown to
achieve higher accuracy than L2 regularized ridge
regression on some machine learning benchmark
datasets (Chapelle et al., 1999).

In an idealized feature mapping matrix where

features are word sequences, we would like to ob-
serve few target features for each source feature
derived from a source sentence. In this setting, we
can think of feature mappings being close to per-
mutation matrices with one nonzero item for each
column. L1 regularization helps us achieve solu-
tions close to the permutation matrices by increas-
ing sparsity.

We show that L1 regularized regression map-
ping is effective in reranking translation outputs
and present encouraging results on different lan-
guage pairs in the translation task of WMT10. In
the system combination task, different translation
outputs of different translation systems are com-
bined to find a better translation. We model system
combination task as a reranking problem among
the competing translation models and present en-
couraging results with the TRegMT system.

Related Work: Regression techniques can
be used to model the relationship between
strings (Cortes et al., 2007). Wang et al. (2007)
applies a string-to-string mapping approach
to machine translation by using ordinary least
squares regression and n-gram string kernels to
a small dataset. Later they use L2 regularized
least squares regression (Wang and Shawe-Taylor,
2008). Although the translation quality they
achieve is not better than Moses (Koehn et al.,
2007), which is accepted to be the state-of-the-art,
they show the feasibility of the approach. Ser-
rano et al. (2009) use kernel regression to find
translation mappings from source to target feature
vectors and experiment with translating hotel
front desk requests. Ueffing (2007) approaches
the transductive learning problem for SMT by
bootstrapping the training using the translations
produced by the SMT system that have a scoring
performance above some threshold as estimated
by the SMT system itself.
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Outline: Section 2 gives an overview of regres-
sion based machine translation, which is used to
find the mappings between the source and target
features of the training set. In section 3 we present
L1 regularized transductive regression for align-
ment learning. Section 4 presents our experiments,
instance selection techniques, and results on the
translation task for WMT10. In section 5, we
present the results on the system combination task
using reranking. The last section concludes.

2 An Overview of Regression Based
Machine Translation

Let X and Y correspond to the token sets used to
represent source and target strings, then a train-
ing sample of m inputs can be represented as
(x1, y1), . . . , (xm, ym) ∈ X∗ × Y ∗, where (xi, yi)
corresponds to a pair of source and target language
token sequences. Our goal is to find a mapping
f : X∗ → Y ∗ that can convert a given set of
source tokens to a set of target tokens that share
the same meaning in the target language.

X∗ Y ∗-

? R ?
-FX FY

g
ΦX ΦY

6
Φ−1

Y

f

h

Figure 1: String-to-string mapping.

Figure 1 depicts the mappings between different
representations. ΦX : X∗ → FX = RNX and
ΦY : Y ∗ → FY = RNY map each string sequence
to a point in high dimensional real number space
where dim(FX) = NX and dim(FY ) = NY .

Let MX ∈ RNX×m and MY ∈ RNY ×m such
that MX = [ΦX(x1), . . . ,ΦX(xm)] and MY =
[ΦY (y1), . . . ,ΦY (ym)]. The ridge regression so-
lution using L2 regularization is found as:

HL2 = arg min
H∈RNY ×NX

‖MY −HMX ‖2F +λ‖H‖2F .(1)

Proposition 1 Solution to the cost function given
in Equation 1 is found by the following identities:

H = MY MT
X(MXMT

X + λINX
)−1 (primal)

H = MY (KX + λIm)−1MT
X (dual)

(2)
where KX = MT

XMX is the Gram matrix with
KX(i, j) = kX(xi, xj) and kX(xi, xj) is the ker-
nel function defined as kX(xi, xj) = φ(xi)Tφ(xj).

The primal solution involves the inversion of the
covariance matrix in the feature space (O(N3

X))
and the dual solution involves the inversion of the
kernel matrix in the instance space (O(m3)) and
L2 regularization term prevents the normal equa-
tions to be singular. We use the dual solution when
computing HL2 .

Two main challenges of the RegMT approach
are learning the regression function, g : X∗ →
FY , and solving the pre-image problem, which,
given the features of the estimated target string se-
quence, g(x) = ΦY (ŷ), attempts to find y ∈ Y ∗:
f(x) = arg miny∈Y ∗ ||g(x)−ΦY (y)||2. Pre-image
calculation involves a search over possible transla-
tions minimizing the cost function:

f(x) = arg min
y∈Y ∗

‖ΦY (y)−HΦX(x)‖2

= arg min
y∈Y ∗

kY (y, y)− 2(Ky
Y )T (KX + λIm)−1Kx

X ,(3)

where Ky
Y =[kY (y, y1), . . . , kY (y, ym)]T ∈ Rm×1

and Kx
X ∈ Rm×1 is defined similarly.

We use n-spectrum weighted word ker-
nel (Shawe-Taylor and Cristianini, 2004) as fea-
ture mappers which consider all word sequences
up to order n:

k(x, x′)=

nX
p=1

|x|−p+1X
i=1

|x′|−p+1X
j=1

p I(x[i : i+p−1]=x′[j :j+p−1])

(4)

where x[i : j] denotes a substring of x with the
words in the range [i, j], I(.) is the indicator func-
tion, and p is the number of words in the feature.

3 L1 Regularized Regression

In statistical machine translation, parallel cor-
pora, which contain translations of the same doc-
uments in source and target languages, are used
to estimate a likely target translation for a given
source sentence based on the observed transla-
tions. String kernels lead to very sparse represen-
tations of the feature space and we examine the ef-
fectiveness of L1 regularized regression to find the
mappings between sparsely observed feature sets.

3.1 Sparsity in Translation Mappings

We would like to observe only a few nonzero tar-
get feature coefficients corresponding to a source
feature in the coefficient matrix. An example solu-
tion matrix representing a possible alignment be-
tween unigram source and target features could be
the following:
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H e1 e2 e3
f1 1 1
f2 1
f3 1

Here ei represents unigram source features and fi

represent unigram target features. e1 and e3 have
unambiguous translations whereas e2 is ambigu-
ous. Even if unigram features lead to ambiguity,
we expect higher order features like bigrams and
trigrams to help us resolve the ambiguity. Typical
H matrices have thousands of features. L1 regu-
larization helps us achieve solutions close to per-
mutation matrices by increasing sparsity (Bishop,
2006). In contrast, L2 solutions give us dense ma-
trices.

3.2 L1 Regularized Regression for Learning

HL2 does not give us a sparse solution and most
of the coefficients remain non-zero. L1 norm be-
haves both as a feature selection technique and a
method for reducing coefficient values.

HL1 = arg min
H∈RNY ×NX

‖MY −HMX ‖2F +λ‖H‖1 .(5)

Equation 5 presents the lasso (least absolute
shrinkage and selection operator) (Tibshirani,
1996) solution where the regularization term is
now the L1 matrix norm defined as ‖ H ‖1=∑

i,j |Hi,j |. Since L1 regularization cost is not
differentiable, HL1 is found by optimization or ap-
proximation techniques. We briefly describe three
techniques to obtain L1 regularized regression co-
efficients.

Forward Stagewise Regression (FSR): We
experiment with forward stagewise regression
(FSR) (Hastie et al., 2006), which approximates
the lasso. The incremental forward stagewise re-
gression algorithm increases the weight of the pre-
dictor variable that is most correlated with the
residual by a small amount, ε, multiplied with
the sign of the correlation at each step. As
ε → 0, the profile of the coefficients resemble the
lasso (Hastie et al., 2009).

Quadratic Programming (QP): We also use
quadratic programming (QP) to find HL1 . We can
pose lasso as a QP problem as follows (Mørup
and Clemmensen, 2007). We assume that the
rows of MY are independent and solve for each
row i, Myi ∈ R1×m, using non-negative variables

h+
i ,h

−
i ∈ RNX×1 such that hi = h+

i − h−i :

hi = arg min
h

‖Myi − hMX‖2F +λ

NXX
k=1

|hk|, (6)

hi = arg min
h̃i

1

2
h̃i
gMX

gMX
T

h̃i
T − h̃i(gMXMT

yi − λ111), (7)

s.t. h̃i > 0, gMX =

»
MX

−MX

–
, h̃i =

ˆ
h+

i h−i
˜
.

Linear Programming (LP): L1 minimization
can also be posed as a linear programming (LP)
problem by interpreting the error term as the con-
straint (Chen et al., 1998) and solving for each row
i:

hi = arg min
h

‖h‖1 subject to Myi = hMX , (8)

which can again be solved using non-negative
variables. This is a slightly different optimization
and the results can be different but linear program-
ming solvers offer computational advantages.

3.3 Transductive Regression
Transduction uses test instances, which can some-
times be accessible at training time, to learn spe-
cific models tailored towards the test set. Trans-
duction has computational advantages by not us-
ing the full training set and by having to satisfy a
smaller set of constraints. For each test sentence,
we pick a limited number of training instances de-
signed to improve the coverage of correct features
to build a regression model. Section 4.2 details our
instance selection methods.

4 Translation Experiments

We perform experiments on the translation task
of the English-German, German-English, English-
French, English-Spanish, and English-Czech lan-
guage pairs using the training corpus provided in
WMT10.

4.1 Datasets and Baseline
We developed separate SMT models using
Moses (Koehn et al., 2007) with default settings
with maximum sentence length set to 80 using 5-
gram language model and obtained distinct 100-
best lists for the test sets. All systems were tuned
with 2051 sentences and tested with 2525 sen-
tences. We have randomly picked 100 instances
from the development set to be used in tuning the
regression experiments (dev.100). The translation
challenge test set contains 2489 sentences. Num-
ber of sentences in the training set of each system
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and baseline performances for uncased output (test
set BLEU, challenge test set BLEU) are given in
Table 1.

Corpus # sent BLEU BLEU Challenge
en-de 1609988 .1471 .1309
de-en 1609988 .1943 .1556
en-fr 1728965 .2281 .2049
en-es 1715158 .2237 .2106
en-cz 7320238 .1452 .1145

Table 1: Initial uncased performances of the trans-
lation systems.

Feature mappers used are 3-spectrum counting
word kernels, which consider all N -grams up to
order 3 weighted by the number of tokens in the
feature. We segment sentences using some of the
punctuation for managing the feature set better and
do not consider N -grams that cross segments.

We use BLEU (Papineni et al., 2001) and
NIST (Doddington, 2002) evaluation metrics for
measuring the performance of translations auto-
matically.

4.2 Instance Selection

Proper selection of training instances plays an im-
portant role to learn feature mappings with limited
computational resources accurately. In previous
work (Wang and Shawe-Taylor, 2008), sentence
based training instances were selected using tf-idf
retrieval. We transform test sentences to feature
sets obtained by the kernel mapping before mea-
suring their similarities and index the sentences
based on the features. Given a source sentence
of length 20, its feature representation would have
a total of 57 uni/bi/tri-gram features. If we select
closest sentences from the training set, we may not
have translations for all the features in this repre-
sentation. But if we search for translations of each
feature, then we have a higher chance of covering
all the features found in the sentence we are try-
ing to translate. The index acts as a dictionary of
source phrases storing training set entries whose
source sentence match the given source phrase.

The number of instances per feature is chosen
inversely proportional to the frequency of the fea-
ture determined by the following formula:

#instance(f) = n/ ln(1 + idfScore(f)/9.0), (9)

where idfScore(f) sums the idf (inverse document
frequency) of the tokens in feature f and n is a
small number.

4.3 Addition of Brevity Penalty
Detailed analysis of the results shows TRegMT
score achieves better N -gram match percentages
than Moses translation but suffers from the brevity
penalty due to selecting shorter translations. Due
to using a cost function that minimizes the squared
loss, TRegMT score tends to select shorter trans-
lations when the coverage is low. We also observe
that we are able to achieve higher scores for NIST,
which suggests the addition of a brevity penalty to
the score.

Precision based BLEU scoring divides N -gram
match counts toN -gram counts found in the trans-
lation and this gives an advantage to shorter trans-
lations. Therefore, a brevity penalty (BP) is added
to penalize short translations:

BP = min(1− ref-length
trans-length

, 0) (10)

BLEU = e(log(ngramprec)+BP) (11)

where ngramprec represent the sum of n-gram
precisions. Moses rarely incurs BP as it has a word
penalty parameter optimized against BLEU which
penalizes translations that are too long or too short.
For instance, Moses 1-best translation for en-de
system achieves .1309 BLEU versus .1320 BLEU
without BP.

We handle short translations in two ways. We
optimize the λ parameter of QP, which manages
the sparsity of the solution (larger λ values cor-
respond to sparser solutions) against BLEU score
rather than the squared loss. Optimization yields
λ = 20.744. We alternatively add a BP cost to the
squared loss:

BP = e

“
min(1− |ΦY (y)|

|pHΦX (x)+αBP q| ,0)
”

(12)
f(x) = arg min

y∈Y ∗
‖ΦY (y)−HΦX(x)‖2 +λBPBP (13)

where |.| denotes the length of the feature vector,
p.q rounds feature weights to integers, αBP is a
constant weight added to the estimation, and λBP

is the weight given for the BP cost. |pHΦX(x) +
αBP q| represents an estimate of the length of the
reference as found by the TRegMT system. This
BP cost estimate is similar to the cost used in (Ser-
rano et al., 2009) normalized by the length of the
reference. We found αBP = 0.1316 and λBP =
−13.68 when optimized on the en-de system. We
add a BP penalty to all of the reranking results
given in the next section and QP results also use
optimized λ.
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en-de de-en en-fr en-es en-cz
Score BLEU NIST BLEU NIST BLEU NIST BLEU NIST BLEU NIST

Baseline .1309 5.1417 .1556 5.4164 .2049 6.3194 .2106 6.3611 .1145 4.5008
Oracle .1811 6.0252 .2101 6.2103 .2683 7.2409 .2770 7.3190 .1628 5.4501

L2 .1319 5.1680 .1555 5.4344 .2044 6.3370 .2132 6.4093 .1148 4.5187
FSR .1317* 5.1639 .1559 5.4383 .2053 6.3458 .2144 6.4168 .1150 4.5172
LP .1317 5.1695 .1561 5.4304 .2048 6.3245 .2109 6.4176 .1124 4.5143
QP .1309 5.1664 .1550 5.4553 .2033 6.3354* .2121 6.4271 .1150 4.5264

Table 2: Reranking results using TRegMT, TM, and LM scores. We use approximate randomization
test (Riezler and Maxwell, 2005) with 1000 repetitions to determine score difference significance: results
in bold are significant with p ≤ 0.01 and italic results with (*) are significant with p ≤ .05. The
difference of the remaining from the baseline are not statistically significant.

4.4 Reranking Experiments
We rerank N -best lists by using linear combina-
tions of the following scoring functions:

1. TRegMT: Transductive regression based ma-
chine translation scores as found by Equa-
tion 3.

2. TM: Translation model scores we obtain
from the baseline SMT system that is used
to generate the N -best lists.

3. LM: 5-gram language model scores that the
baseline SMT system uses when calculating
the translation model scores.

The training set we obtain may not contain all
of the features of the reference target due to low
coverage. Therefore, when performing reranking,
we also add the cost coming from the features of
ΦY (y) that are not represented in the training set
to the squared loss as in:

‖ΦY (y) \ FY ‖2 + ‖ΦY (y)−HΦX(x)‖2, (14)

where ΦY (y) \ FY represent the features of y not
represented in the training set.

We note that TRegMT score only contains or-
dering information as present in the bi/tri-gram
features in the training set. Therefore, the ad-
dition of a 5-gram LM score as well as the TM
score, which also incorporates the LM score in
itself, improves the performance. We are not
able to improve the BLEU score when we use
TRegMT score by itself however we are able to
achieve improvements in the NIST and 1-WER
scores. The performance increase is important for
two reasons. First of all, we are able to improve
the performance using blended spectrum 3-gram
features against translations obtained with 5-gram
language model and higher order features. Out-
performing higher order n-gram models is known

to be a difficult task (Galley and Manning, 2009).
Secondly, increasing the performance with rerank-
ing itself is a hard task since possible translations
are already constrained by the ones observed inN -
best lists. Therefore, an increase in the N -best list
size may increase the score gaps.

Table 2 presents reranking results on all of the
language pairs we considered, using TRegMT,
TM, and LM scores with the combination weights
learned in the development set. We are able to
achieve better BLEU and NIST scores on all of the
listed systems. We are able to see up to .38 BLEU
points increase for the en-es pair. Oracle reranking
performances are obtained by using BLEU scoring
metric.

If we used only the TM and LM scores when
reranking with the en-de system, then we would
obtain .1309 BLEU and 5.1472 NIST scores. We
only see a minor increase in the NIST score and no
change in the BLEU score with this setting when
compared with the baseline given in Table 2.

Due to computational reasons, we do not use
the same number of instances to train different
models. In our experiments, we used n = 3 for
L2, n = 1.5 for FSR, and n = 1.2 for QP and
LP solutions to select the number of instances in
Equation 9. The average number of instances used
per sentence in training corresponding to these
choices are approximately 140, 74, and 61. Even
with these decreased number of training instances,
L1 regularized regression techniques are able to
achieve comparable scores to L2 regularized re-
gression model in Table 2.

5 System Combination Experiments

We perform experiments on the system com-
bination task for the English-German, German-
English, English-French, English-Spanish, and
English-Czech language pairs using the training
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en-de de-en en-fr en-es en-cz
Score BLEU NIST BLEU NIST BLEU NIST BLEU NIST BLEU NIST

Random .1490 5.6555 .2088 6.4886 .2415 6.8948 .2648 7.2563 .1283 4.9238
Best model .1658 5.9610 .2408 6.9861 .2864 7.5272 .3047 7.7559 .1576 5.4480

L2 .1694 5.9974 .2336 6.9398 .2948 7.7037 .3036 7.8120 .1657 5.5654
FSR .1689 5.9638 .2357 6.9254 .2947 7.7107 .3049 7.8156 .1657 5.5632
LP .1694 5.9954 .2368 6.8850 .2928 7.7157 .3027 7.7838 .1659 5.5680
QP .1692 5.9983 .2368 6.9172 .2913 7.6949 .3040 7.8086 .1662 5.5785

Table 3: Reranking results using TRegMT, TM, and LM scores. bold correspond to the best score in
each rectangle of scores.

corpus provided in WMT10.

5.1 Datasets

We use the training set provided in WMT10 to in-
dex and select transductive instances from. The
challenge split the test set for the translation task
of 2489 sentences into a tuning set of 455 sen-
tences and a test set with the remaining 2034 sen-
tences. Translation outputs for each system is
given in a separate file and the number of sys-
tem outputs per translation pair varies. We have
tokenized and lowercased each of the system out-
puts and combined these in a singleN -best file per
language pair. We also segment sentences using
some of the punctuation for managing the feature
set better. We use these N -best lists for TRegMT
reranking to select the best translation model. Fea-
ture mappers used are 3-spectrum counting word
kernels, which consider all n-grams up to order 3
weighted by the number of tokens in the feature.

5.2 Experiments

We rerank N -best lists by using combinations of
the following scoring functions:

1. TRegMT: Transductive regression based ma-
chine translation scores as found by Equa-
tion 3.

2. TM’: Translation model scores are obtained
by measuring the average BLEU perfor-
mance of each translation relative to the other
translations in the N -best list.

3. LM: We calculate 5-gram language model
scores for each translation using the language
model trained over the target corpus provided
in the translation task.

Since we do not have access to the reference
translations nor to the translation model scores
each system obtained for each sentence, we es-
timate translation model performance (TM’) by

measuring the average BLEU performance of each
translation relative to the other translations in the
N -best list. Thus, each possible translation in the
N -best list is BLEU scored against other transla-
tions and the average of these scores is selected
as the TM score for the sentence. Sentence level
BLEU score calculation avoids singularities in n-
gram precisions by taking the maximum of the
match count and 1

2|si| for |si| denoting the length
of the source sentence si as used in (Macherey and
Och, 2007).

Table 3 presents reranking results on all of the
language pairs we considered, using TRegMT,
TM, and LM scores with the same combination
weights as above. Random model score lists the
random model performance selected among the
competing translations randomly and it is used as
a baseline. Best model score lists the performance
of the best model performance. We are able to
achieve better BLEU and NIST scores in all of the
listed systems except for the de-en language pair
when compared with the performance of the best
competing translation system. The lower perfor-
mance in the de-en language pair may be due to
having a single best translation system that outper-
forms others significantly. The difference between
the best model performance and the mean as well
as the variance of the scores in the de-en language
pair is about twice their counterparts in en-de lan-
guage pair.

Due to computational reasons, we do not use
the same number of instances to train different
models. In our experiments, we used n = 4 for
L2, n = 1.5 for FSR, and n = 1.2 for QP and
LP solutions to select the number of instances in
Equation 9. The average number of instances used
per sentence in training corresponding to these
choices are approximately 189, 78, and 64.
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6 Contributions

We use transductive regression to learn mappings
between source and target features of given paral-
lel corpora and use these mappings to rerank trans-
lation outputs. We compare the effectiveness ofL1

regularization techniques for regression. TRegMT
score has a tendency to select shorter transla-
tions when the coverage is low. We incorporate a
brevity penalty to the squared loss and optimize λ
parameter of QP to tackle this problem and further
improve the performance of the system.

The results show the effectiveness of using L1

regularization versus L2 used in ridge regression.
Proper selection of training instances plays an im-
portant role to learn correct feature mappings with
limited computational resources accurately. We
plan to investigate better instance selection meth-
ods for improving the translation performance.
TRegMT score has a tendency to select shorter
translations when the coverage is low. We incor-
porate a brevity penalty to the score and optimize
the λ parameter of QP to tackle this problem.
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