
Proceedings of the Joint 5th Workshop on Statistical Machine Translation and MetricsMATR, pages 384–391,
Uppsala, Sweden, 15-16 July 2010. c©2010 Association for Computational Linguistics

Taming Structured Perceptrons on Wild Feature Vectors

Ralf D. Brown
Carnegie Mellon University Language Technologies Institute

5000 Forbes Avenue, Pittsburgh PA 15213 USA
ralf+@cs.cmu.edu

Abstract

Structured perceptrons are attractive due
to their simplicity and speed, and have
been used successfully for tuning the
weights of binary features in a machine
translation system. In attempting to apply
them to tuning the weights of real-valued
features with highly skewed distributions,
we found that they did not work well. This
paper describes a modification to the up-
date step and compares the performance
of the resulting algorithm to standard min-
imum error-rate training (MERT). In ad-
dition, preliminary results for combining
MERT or structured-perceptron tuning of
the log-linear feature weights with coordi-
nate ascent of other translation system pa-
rameters are presented.

1 Introduction

Structured perceptrons are a relatively recent
(Collins, 2002) update of the classic perceptron
algorithm which permit the prediction of vec-
tors of values. Initially developed for part of
speech taggers, they have been applied to tuning
the weights of the features in the log-linear mod-
els used by statistical machine translation (Arun
and Koehn, 2007), and found to have performance
similar to the Margin-Infused Relaxed Algorithm
(MIRA) by Crammer and Singer (2003; 2006) and
Minimum-Error Rate Training (MERT) by Och
(2003). Parameter tuning is an important aspect of
current data-driven machine translation systems,
as an improper selection of feature weights can
dramatically reduce scores on evaluation metrics
such as BLEU (Papineni et al., 2002) or METEOR
(Banerjee and Lavie, 2005).

When we recently added new features to the
CMU-EBMT translation system (Brown, 1996;

Brown, 2008)1, in addition to splitting a number of
composite features into their components, our pre-
vious method of parameter tuning via coordinate
ascent2 became impractical. With now more than
50 features partaking in the scoring model, MERT
no longer seemed a good choice, as the common
wisdom is that it is not able to reliably optimize
more than about 20 features (Chiang et al., 2008).

We had been using coordinate ascent because of
a need to tune a substantial number of parameters
which are not directly part of the log-linear model
which can be tuned by MERT or similar methods.
Our system generates a translation lattice by run-
time lookup in the training corpus rather than us-
ing a precomputed phrase table, so important pa-
rameters include

• the size of the sample of retrieved training
instances for a given input phrase which are
aligned,
• the weight of source features for ranking

training instances during sampling, and
• the minimum alignment score to accept a

translation instance

Decoder parameters which are important to tune,
but which are generally not mentioned in the liter-
ature include

• how many alternative translations of a phrase
to consider during decoding,
• the size of the reordering window, and
• the rank of the language model (4-gram, 5-

gram, etc.)

In addition, it is desirable to tune parameters such
as beam width to minimize translation time with-
out degrading performance.

1Source code for CMU-EBMT is available from
http://cmu-ebmt.sourceforge.net.

2Coordinate ascent is described in more detail in Sec-
tion 7.

384

As a result of the non-model parameters, a full
system tuning will involve multiple runs of the
tuning algorithm for the feature weights, since the
other parameters will affect the optimal weights.
Thus, speed is an important consideration for any
method to be used in this setting. The structured
perceptron algorithm is ideally suited due to its
speed, provided that it can produce competitive re-
sults.

2 Related Work

The perceptron algorithm (Rosenblatt, 1958) itself
is over 50 years old, but variations such as voted
and averaged perceptrons have gained popularity
in the past ten years. In particular, Collins (2002)
adapted the perceptron algorithm to structured
prediction tasks such as part of speech tagging and
noun phrase chunking. Arun and Koehn (2007)
subsequently applied Collins’ structured percep-
tron algorithm to the task of tuning feature weights
in a statistical machine translation system, demon-
strating the extreme scalability of the algorithm by
applying it to vectors containing four to six mil-
lion binary features. However, their work left open
the question of how well structured perceptrons
would deal with continuous-valued features. They
were unable to apply a language model due to the
lack of continuous-valued features and hence had
to compare performance against a standard statis-
tical machine translation (SMT) system which had
been stripped of its language model, with a conse-
quent loss of several BLEU points in performance.

During the same period, Crammer et al (2003;
2006) developed a number of “ultraconservative”
learning algorithms, including MIRA, the Margin-
Infused Relaxed Algorithm (which was also ap-
plied to large binary feature vectors by Arun and
Koehn) and variations of what they referred to as
Passive-Aggressive algorithms including PA-I and
PA-II. These algorithms have in common the no-
tion of updating a weight vector “just enough” to
account for a new training instance which is in-
correctly predicted by the existing weight vector.
In contrast, the perceptron algorithm aggressively
updates the weight vector and relies on averaging
effects over the whole of the training set.

3 Structured Perceptrons

The structured perceptron algorithm can be ap-
plied to tasks where the goal is to select the best
among competing hypotheses, where each hypoth-

esis has an associated vector of feature values and
the score for a hypothesis is a linear combination
of its feature values.

Beginning with a zero vector for the feature
weights, the structured perceptron algorithm it-
erates through each element of the training set,
updating the weight vector after processing each
training instance. The training set is processed re-
peatedly (each pass is known as a training epoch)
until convergence. The update step is very sim-
ple: if the best hypothesis according to the prod-
uct of feature vector and weight vector is not the
correct answer, add the difference between the fea-
ture vectors of the correct answer and the model’s
selected answer to the weight vector.

Thus, the entire algorithm may be summarized
with just two equations:

~w ← 0 (1)

~w ← ~w + (Φoracle − Φtop1) (2)

where Φx is the feature vector (φ1, φ2, ..., φn) for
hypothesis x.

Repeated application of Equation 2 results in
a weight vector which reflects the relative impor-
tance (on average) of each feature to making the
correct selection. Since selecting the best hypoth-
esis is an arg max operation, the absolute mag-
nitudes of the weights are not important.

4 More Conservative Updates for
Structured Perceptrons

One issue which arises in using learning algo-
rithms for machine translation is that there is no
one correct answer. In addition, it may not even
be possible for the MT system to generate the
reference translation at all. This is commonly
addressed by using the highest-scoring (by some
metric such as BLEU) translation which the sys-
tem can generate as a pseudo-oracle.

Our initial implementation closely followed the
description in (Arun and Koehn, 2007), includ-
ing the refinement of using the objective-function
score of the pseudo-oracle translation from the n-
best list to modulate the learning rate of the update
step, i.e.

~w ← ~w + SΦoracle
× (Φoracle − Φtop1) (3)

As can be seen, the difference between Equa-
tions 2 and 3 is simply the additional factor of
SΦoracle

.

385

While we initially used sentence-level
smoothed BLEU as the objective function,
we found it to perform very poorly (the full BLEU
scores on the Haitian Creole tuning set were well
below 0.10), and instead adopted the Rouge-S
(skip bigrams) metric by Lin and Och (2004a)
with a maximum skip distance of four words,
which was found to best correlate with human
quality judgements (Lin and Och, 2004b).

In early testing, we found that both the feature
weights and performance as measured by the av-
erage objective score over the tuning set oscillated
wildly. Analyzing the results, it became appar-
ent that the update function was overly aggres-
sive. Unlike the binary features used in (Arun
and Koehn, 2007), our continuous-valued features
have different operating ranges for each feature,
e.g. the total distance moved as a result of reorder-
ing could reach 100 on a long sentence, while the
proportion of training instances with at least six
words of adjacent context in the bilingual corpus
is unlikely to exceed 0.05, even where sampling
is biased toward training instances with adjacent
context.

The first attempt to address the disparity in op-
erating ranges was to perform feature-wise nor-
malization on the update. Instead of taking the
simple difference in feature vectors between the
n-best entry with the highest log-linear score and
the one with the highest objective score, we con-
struct Φdiff such that

φi(diff)← (φi(oracle)− φi(top1))
r2

(4)

where

r ← max(0.01,maxj |φi(j)|) (5)

i.e. we estimate the operating range by finding the
n-best entry with the highest magnitude value of
the feature, and then divide by the square of that
magnitude since large feature values also magnify
the effects of weight changes. Normalization is
limited by clipping the normalization factor to be
at least 0.01 so that features whose values are al-
ways very near zero do not dominate the overall
score.

While the feature-wise normalization did
largely control the wild swings in feature weights,
it did not curb the oscillations in the objective
scores and produced only a minor improvement in
tuning results.

We next looked at MIRA and related work
on so-called Passive-Aggressive algorithms, and
in particular at the update functions described in
(Crammer et al., 2006). We decided on their PA-
II update rule (PA-II being akin to 1-best MIRA),
with which the learning step becomes

~w ← ~w + δ × (Φoracle − Φtop1) (6)

where
loss← SΦoracle

− SΦtop1 (7)

δ ← loss

||Φoracle − Φtop1||2 + 1
2C

(8)

with C an “aggressiveness” parameter.
This version of the update function produced

the desired smooth changes in feature weights
from iteration to iteration, though objective scores
still do not converge. Allowing multiple passes
through the tuning set before re-decoding with up-
dated feature weights now frequently results in
weights where the pseudo-oracle is the top-ranked
translation in 80 to 90 percent of all sentences.
None of our previous experiments had achieved
even a fraction of this level due to the erratic be-
havior of the feature weights. However, as the ex-
treme overfitting necessary to achieve such high
rankings of the oracle translation results in poor
BLEU scores, we have since used only one pass
over the tuning set before re-decoding with up-
dated weights.

5 The Final Algorithm

After the various attempts at taming the behav-
ior of the structured perceptron approach just de-
scribed, the final algorithm used for the experi-
ments described below was

1. Structured perceptron, with
2. passive-aggressive updates,
3. run in semi-batch mode,
4. using sentence-level modified Rouge-S4 as

the objective function

Semi-batch mode here means that while the per-
ceptron algorithm updates the weight vector af-
ter each sentence, those updates are not commu-
nicated to the decoder until the end of a complete
pass through the tuning set. An exception is made
for the very first iteration, as it starts with uniform
weights of 10−9 (rather than the conventional zero,
which would cause problems with decoding). This

386

permits the exact determination of the overall ob-
jective score for the weight vector which is even-
tually returned as the tuned optimal weights, and
permits parallelization of the decoding (though the
latter has not yet been implemented).

We slightly modified the Rouge-S scoring func-
tion to use the generalized F-measure

Fβ =
(1 + β2)× precision× recall
β2 × precision+ recall

(9)

instead of the standard F1, allowing us to give
more weight to recall over precision by increas-
ing β above 1.0. This change was prompted by
the observation that the tuning process strongly
favored shorter outputs, resulting in substantial
brevity penalties from BLEU.

6 Experiments

We present the results of experiments on three
data sets in the next section. The data sets
are English-to-Haitian, French-to-English, and
Czech-to-English.

The English-to-Haitian system was built using
the data released by Carnegie Mellon University
(2010). It consists of a medical phrasebook, a
glossary, and a modest amount of newswire text,
each available as a set of sentence pairs in En-
glish and Haitian Creole. For training, we used
all of the glossary, all but the last 300 phrase pairs
of the medical phrasebook (these had previously
been used for development and testing of a “toy”
system), and the first 12,500 sentence pairs of the
newswire text. Tuning was performed using the
next 217 sentence pairs of the newswire text, and
the test set consisted of the final 800 sentence pairs
of the newswire text. The target language model
was built solely from the target half of the training
corpus, as we did not have any additional Haitian
Creole text.

The French-to-English system was built using
the Europarl (Koehn, 2005) version 3 data for
French and English. As is usual practice, text from
the fourth quarter of 2000 was omitted from the
training set. Tuning was performed using 200 sen-
tences from the “devtest2006” file and all 2000
sentences of “test2007” were used as the final test
set. Two target language models were built and
interpolated during decoding; the first was trained
on the target half of the bilingal corpus, and the
second was built using the Canadian Hansards text
released by ISI (Natural Language Group, 2001).

The Czech-to-English system was built us-
ing the parallel data made available for the
2010 Workshop on Statistical Machine Transla-
tion (WMT10). The target language model was
built from the target half of the bilingual training
corpus. Tuning was performed on a 200-sentence
subset of the “news-2008-test” data, and all 2525
sentences of the “news-2009-test” data were used
as unseen test data. As these experiments were
the very first time that the CMU-EBMT system
was applied to Czech, there are undoubtedly nu-
merous pre-processing and training improvements
which will increase scores above the values pre-
sented here.

Parameter tuning was performed using CMERT
0.5, the reimplemented MERT program included
with recent releases of the MOSES translation
system (specifically, the version included with
the 2010-04-01 release), the annealing-based op-
timizer included with Cunei (Phillips and Brown,
2009; Phillips, 2010), and the Structured Percep-
tron optimizer. Feature weights were initialized
to a uniform value of 1.0 for MERT and 10−9

for annealing and Perceptron (since the usual zero
causes problems for the decoder). Both versions
of MERT were permitted to run for 15 iterations
or until features weights converged and remained
(nearly) unchanged from one iteration to the next,
using merged n-best lists from the current and the
three most recent prior iterations. Annealing was
run with gamma values from 0.25 to 4.0, skipping
the entropy phase. The Structured Perceptron was
allowed to run for 18 iterations and to choose the
weights from the iteration which resulted in the
highest average Rouge-S score for the top trans-
lation in the n-best list. For French-English, this
proved to be the sixth iteration, while for English-
Haitian it was the twelfth. We have found that the
objective score increases for the first six to eight
iterations of SP, after which it fluctuates with no
trend up or down (but occasionally setting a new
high, which is why we decided to run 18 itera-
tions).

For French-English, we determined the best
value of β for the Rouge-S scoring to be 1.5,
and the best value of the aggressiveness parame-
ter C to be 0.1, using a 40-sentence subset of the
French-English tuning set, and then applied those
value for the full tuning set. For English-Haitian,
we used β = 1.2 and C = 0.01 (lower values
of C provide more smoothing and overall smaller

387

updates, which is necessary for sparse or noisy
data). Due to limited time prior to submission, the
English-Haitian values for β and C were re-used
for Czech, with no attempt at tuning.

7 Combining Log-Linear Tuning with
Coordinate Ascent

As noted in the introduction, translation systems
using SMT-style decoders incorporate various fea-
tures that affect performance (and/or speed), but
which do not contribute directly to the log-linear
scoring model. Thus, neither MERT nor the struc-
tured perceptron training presented in this paper is
a complete solution for parameter tuning.

The CMU-EBMT system has long used a coor-
dinate ascent approach to parameter tuning. Each
parameter is varied in turn, with the MT system
performing a translation for each setting, and the
value which produces the best score is retained
while the next parameter is varied. If the best
scoring value is the highest or lowest in the list of
values to be checked, the range is extended; like-
wise, unless the interval between adjacent values
is already very small, the intervals on each side
of the highest-scoring value (which is not one of
the extremes) is divided in half and the two addi-
tional points are evaluated. This process continues
until convergence (cycling through all parameters
without changing any of them) or until a pre-set
maximum number of parameter combinations is
scored. Naturally, the approach becomes slower
as the number of parameters increases, but it was
still (barely) practical with 20 to 25 parameters.

A recent change in the internals of CMU-EBMT
led to a decomposition of multiple composite
scores and the addition of numerous others, bal-
looning the total number of tunable parameters to
more than 60. Fortunately, most of the tunable
parameters are feature weights, which can all be
treated as a unit, leaving only about a dozen fea-
tures for coordinate ascent.

The tuning program operates by calling an eval-
uation script which in turn invokes the machine
translation on a modified configuration file pro-
vided by the tuner and returns the score corre-
sponding to the given parameter settings. When
given an optional flag, the evaluation script first
invokes either MERT or SP to further adjust the
parameters before performing the actual evalua-
tion, and modifies the given configuration file ac-
cordingly. The tuner reads the modified parame-

ters from the configuration file and stores then for
further use.

Both MERT and SP can produce settings which
actually decrease the resulting BLEU score, since
they are optimizing toward a surrogate metric. If
the evaluation score after an invocation of MERT
or SP is less than 0.98 times the previous best
score, the parameter settings are rolled back; oth-
erwise, the best score is set to the evaluation score.
This permits MERT/SP to move the parameters
to a different space if necessary, without allowing
them to substantially degrade overall scores.

There was time for only one experiment involv-
ing complete tuning, as summarized in Table 4.
Starting with the Haitian-Creole feature weights
found for the results in Table 1, the tuner ran-
domly perturbed the non-feature-weight parame-
ters by a small amount (up to 2% relative) twenty
times, then started coordinate ascent from the best-
scoring of those 20 trials. The tuner requested a
MERT/SP run before ascending on the first pa-
rameter, and after every fourth parameter was pro-
cessed thereafter. Because both MERT and SP
started from previously-tuned feature weights, the
number of iterations was reduced from 15 to 4 for
MERT and from 18 to 5 for SP. The maximum
number of parameter combinations for coordinate
ascent was set to 750, which is approximately four
cycles through all parameters (the exact number of
combinations per cycle varies, as the tuner can add
new combinations by extended the range which is
searched or adding intermediate points around a
maximum).

In Table 4, the three different Perceptron en-
tries refer to the results starting from the pre-
vious experiment’s feature weights (“Perceptron
1”), starting from the results of the complete tun-
ing (“Perceptron 2”), and starting from uniform
feature weights (“Perceptron 3”). The third run
was stopped before convergence due to the loom-
ing submission deadline.

8 Results

Tables 1, 2, and 3 present the results of running the
tuning methods on the English-Haitian, French-
English, and Czech-English data sets, respectively.
Performance is shown both in terms of the time re-
quired to perform a tuning run as well as the BLEU
score achieved using the resulting feature weights.

Structured perceptrons are the clear winner for
speed, thanks to the simplicity of the algorithm.

388

Method Run-Time Iter BLEU (dev) BLEU (test) #words / ratio
CMERT 0.5 73m 5 0.0993 –
new MERT 58m 3 0.0964 –
CMERT 0.51 138m 15 0.1073 0.0966 22298 / 1.213x
new MERT1 187m 15 0.1516 0.1347 17375 / 0.945x
Perceptron 22m 18 0.1619 0.1534 15565 / 0.847x

1 omitting several unused features, as noted in the text

Table 1: English-to-Haitian tuning performance

Method Run-Time Iter BLEU (dev) BLEU (test) #words / ratio
CMERT 0.5 3h53m 15 0.12952 0.13927 100875 / 1.709x
new MERT 5h52m 15 0.22533 0.23315 60354 / 1.023x
Annealing 6h46m - 0.25017 0.25943 58518 / 0.992x
Perceptron 1h23m 18 0.24214 0.26048 57408 / 0.973x

Table 2: French-to-English tuning performance

While MERT takes two to three times as long to
process ten random starting points as it does to
decode the test set, SP is three orders of magni-
tude faster than decoding. As a result, SP tuning
requires one-third or less of the time that MERT
does, even though we used 18 iterations of SP
compared to 15 for MERT. Note that the time dif-
ference between the two versions of MERT is in
part due to different amounts of time spent decod-
ing as a result of the different feature weights.

MERT unexpectedly has considerable difficulty
with our new feature set, as can be seen by
its much lower BLEU scores, particularly in the
case of CMERT. An analysis of the actual fea-
ture weights produced by MERT shows that it
places nearly all of the mass on a single feature,
and that the feature receiving the bulk of the mass
changes from iteration to iteration. In contrast, SP
produces BLEU scores consistent with those pro-
duced by pure coordinate ascent prior to the pro-
liferation of features.

We believe that the difference in performance
between the two versions of MERT is due pri-
marily to the simple difference in output format:
CMERT 0.5 prints its tuned weights using a fixed-
point format having six digits after the decimal
point, while the new MERT program prints us-
ing scientific notation. Because the tuned weight
vector is highly skewed, most features have low
weights after L1 normalization, and thus CMERT
truncated many weights to zero (and indeed, loses
significant digits for any features assigned weights
less than 0.1), including such critical weights as

length features and language model scores. We
suspect that this preservation of significant digits
contributes substantially to the improved BLEU
scores Bertoldi et al (2009) reported for the new
implementation compared to CMERT.

The features which, at one time or another, re-
ceive the bulk of the mass have one thing in com-
mon: for most translations, they have a default
value, and in a small proportion of cases they have
a value which varies from the default by only a
small amount. Initially, most such features had
a default value of zero in CMU-EBMT, but this
meant that the line optimization in MERT had ab-
solutely no constraint on raising the weight of the
feature, and thus obtaining feature vectors where
one feature has 1018 or even 1020 times the weight
of any other feature. The same problem occurs
with features that are unused but have a small jit-
ter in their values due to rounding errors, for ex-
ample, if there are no document boundaries (as is
the case for the Haitian data described previously),
the document-similarity score may be 1.000000
for 99% of the arcs in the translation lattices and
0.999999 for the remainder. Offsetting the mostly-
zero features so that their default value is 1 or -1
(depending on the sense of the feature) and elim-
inating unused features mitigated but did not en-
tirely solve the problem. In Table 1, two results are
shown for both CMERT and new MERT; the first
includes all 52 features while the second excludes
five features which are not used in a baseline-
trained CMU-EBMT system. In the former case,
both programs placed all the mass on a single fea-

389

Method Run-Time Iter BLEU (dev) BLEU (test)
new MERT 56m 15 0.0584 0.0743
Perceptron 14m 18 0.0830 0.1163

Table 3: Czech-to-English tuning performance

Method Run-Time BLEU (dev) BLEU (test) length ratio
new MERT 48h 0.1821 0.1633 0.942
Perceptron 1 25h 0.1675 0.1547 0.833
Perceptron 2 38h 0.1738 0.1597 0.837
Perceptron 3 12h∗ 0.1705 0.1647 0.939

∗ truncated run (see text)

Table 4: English-to-Haitian tuning performance (including coordinate ascent)

ture and left all the others at 10−14 or less (dis-
played as 0.000000 in the case of CMERT).

The full tuning runs summarized in Table 4
show that SP is often competitive with MERT
while running more quickly, but still requires fur-
ther analysis to determine the causes of variability
in its performance. One initial conclusion from
examining the logs of the SP runs is that weight
updates are perhaps too conservative when ap-
plied in conjunction with coordinate ascent. While
MERT frequently shifted settings in response to
changes in the non-feature parameters, SP rarely
does so, typically preferring to retain the exist-
ing feature weights as the best setting encountered
during the five iterations performed at each invo-
cation. The “Perceptron 3” run starting with small
uniform feature weights resulted from the obser-
vation that a first, buggy attempt at integration
reached tuning-set BLEU scores in excess of 0.18
before early termination. The bug in question was
that many of the feature weights were initially read
in from the configuration file as zero rather than
the correct value.

As shown in the rightmost column of Tables 1,
2 and 4, the Perceptron algorithm tends toward
short output, yielding translations which are about
97% as long as the reference translation in French-
English, a mere 85% as long for English-Haitian,
and even shorter than that in two of three Czech
runs. This tendency towards short translations
prompted the inclusion of the β parameter –
the French-English output was originally much
shorter, but β has little effect on Haitian given the
sparse training data. The extremely long output
for CMERT on French-English is due to a large
number of zero weights, including those for length

features.

9 Conclusion and Future Work

Structured perceptrons with passive-aggressive
updates are a viable alternative to the usual MERT
feature-weight tuning, particularly where the num-
ber of features exceeds that which MERT can
reliably handle, or when some of the features
have characteristics which confuse MERT. Struc-
tured perceptrons are also a good alternative where
speed is important, such as in a hybrid tuning
scheme which alternates between (re-)tuning the
log-linear model and performing coordinate ascent
on parameters which do not directly contribute
weight to the log-linear model.

We have thus far implemented two objective
functions which operate on individual sentences
without regard for choices made on other sen-
tences. When the final evaluation metric incorpo-
rates global statistics, however, an objective func-
tion which takes them into account is desirable.
For example, when using BLEU, it makes a big
difference whether individual sentences are both
longer and shorter than the reference or system-
atically shorter than the reference, but these two
cases can not be distinguished by single-sentence
objective functions. Our plan is to implement a
windowed or moving-average version of BLEU as
in (Chiang et al., 2008).

We also plan to further speed up the tuning pro-
cess by parallelizing the decoding of the sentences
in the tuning set. As we have used a semi-batch
update method which leaves the decoder’s weights
unchanged for an entire pass through the tuning
set, there is no data dependency between individ-
ual sentences, allowing them to be decoded in par-

390

allel. The perceptron algorithm itself remains se-
quential, but as it is three orders of magnitude
faster than the decoding, this will have negligible
impact on overall speedup factors until hundreds
of CPUs are used for simultaneous decoding.

References
Abhishek Arun and Phillip Koehn. 2007. Online

Learning Methods for Discriminative Training of
Phrase Based Statistical Machine Translation. In
Proceedings of the Eleventh Machine Translation
Summit (MT Summit XI).

Satanjeev Banerjee and Alon Lavie. 2005. METEOR:
An Automatic Metric for MT Evaluation with Im-
proved Correlation with Human Judgements. In
Proceedings of the Workshop on Intrinsic and Ex-
trinsic Evaluation Measures for MT and/or Summa-
rization at the 43rd Annual Meeting of the Asso-
ciation for Computational Linguistics (ACL-2005),
June.

Nicola Bertoldi, Barry Haddow, and Jean-Baptiste
Fouet. 2009. Improved Minimum Error Rate Train-
ing in Moses. The Prague Bulletin of Mathematical
Linguistics, pages 1–11, February.

Ralf D. Brown. 1996. Example-Based Machine
Translation in the PANGLOSS System. In Proceed-
ings of the Sixteenth International Conference on
Computational Linguistics, pages 169–174, Copen-
hagen, Denmark. http://www.cs.cmu.edu-
/˜ralf/papers.html.

Ralf D. Brown. 2008. Exploiting Document-
Level Context for Data-Driven Machine Trans-
lation. In Proceedings of the Eighth Con-
ference of the Association for Machine Trans-
lation in the Americas (AMTA-2008), Octo-
ber. http://www.amtaweb.org/papers/-
2.02 Brown.pdf.

Carnegie Mellon University. 2010. Public release of
haitian-creole language data, January. http://-
www.speech.cs.cmu.edu/haitian/text.

David Chiang, Yuval Marton, and Philis Resnik. 2008.
Online Large-Margin Training of Syntactic and
Structural Translation Features. In Proceedings of
the Conference on Empirical Methods in Natural
Langauge Processing (EMNLP-2008), pages 224–
233, October.

Michael Collins. 2002. Discriminative Training
Methods for Hidden Markov Models: Theory and
Experiments with Perceptron Algorithms. In Pro-
ceedings of EMNLP-2002. http://people.-
csail.mit.edu/mcollins/papers/-
tagperc.pdf.

Koby Crammer, Ofer Deke, Joseph Keshet, Shai
Shalev-Shwartz, and Yoram Singer. 2006. Online

Passive-Aggressive Algorithms. The Journal of Ma-
chine Learning Research, 7:551–585, December.

Koby Cranmer and Yoram Singer. 2003. Ultraconser-
vative Online Algorithms for Multiclass Problems.
The Journal of Machine Learning Research, 3:951–
991, March.

Philipp Koehn. 2005. Europarl: A Parallel Corpus for
Statistical Machine Translation. In Proceedings of
the Tenth Machine Translation Summit (MT Summix
X), pages 79–86.

Chin-Yew Lin and Franz Joseph Och. 2004a. Au-
tomatic Evaluation of Machine Translation Qual-
ity using Longest Common Subsequence and Skip-
Bigram Statistics. In Proceedings of ACL-2004.

Chin-Yew Lin and Franz Joseph Och. 2004b. OR-
ANGE: A Method for Evaluating Automatic Evalu-
ation Metrics for Machine Translation. In Proceed-
ings of the 20th International Conference on Com-
putational Linguistics (COLING 2004).

USC Information Sciences Institute Natural Language
Group. 2001. Aligned Hansards of the 36th Par-
liament of Canada, Release 2001-1a. http://-
www.isi.edu/natural-language/-
download/hansard/.

Franz Josef Och. 2003. Minimum Error Rate Training
in Statistical Machine Translation. In Proceedings
of the 41st Meeting of the Association for Computa-
tional Linguistics (ACL-2003), Sapporo, Japan, July
6–7.

Kishore Papineni, Salim Roukos, Todd Ward, and
Wei-Jing Zhu. 2002. BLEU: a Method for Au-
tomatic Evaluation of Machine Translation. In
Proceedings of the 40th Annual Meeting of the
Association for Computational Linguistics, July.
http://acl.ldc.upenn.edu/P/P02/.

Aaron B. Phillips and Ralf D. Brown. 2009. Cunei
Machine Translation Platform: System Descrip-
tion. In Proceedings of the Third Workshop on
Example-Based Machine Translation, Dublin, Ire-
land, November.

Aaron B. Phillips. 2010. The Cunei Machine Trans-
lation Platform for WMT’10. In Proceedings of the
ACL 2010 Joint Fifth Workshop on Statistical Ma-
chine Translation and Metrics MATR, July.

F. Rosenblatt. 1958. The Perceptron: A Probabilistic
Model for Information Storage and Organization in
the Brain. Psychological Review, 65:386–408.

391

