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Abstract

RWTH participated in the System Combi-
nation task of the Fifth Workshop on Sta-
tistical Machine Translation (WMT 2010).
For 7 of the 8 language pairs, we com-
bine 5 to 13 systems into a single con-
sensus translation, using additional n-best
reranking techniques in two of these lan-
guage pairs. Depending on the language
pair, improvements versus the best sin-
gle system are in the range of +0.5 and
+1.7 on BLEU, and between −0.4 and
−2.3 on TER. Novel techniques compared
with RWTH’s submission to WMT 2009
include the utilization of n-best reranking
techniques, a consensus true casing ap-
proach, a different tuning algorithm, and
the separate selection of input systems
for CN construction, primary/skeleton hy-
potheses, HypLM, and true casing.

1 Introduction

The RWTH approach to MT system combination
is a refined version of the ROVER approach in
ASR (Fiscus, 1997), with additional steps to cope
with reordering between different hypotheses, and
to use true casing information from the input hy-
potheses. The basic concept of the approach has
been described by Matusov et al. (2006). Several
improvements have been added later (Matusov et
al., 2008). This approach includes an enhanced
alignment and reordering framework. In con-
trast to existing approaches (Jayaraman and Lavie,
2005; Rosti et al., 2007), the context of the whole
corpus rather than a single sentence is considered
in this iterative, unsupervised procedure, yielding
a more reliable alignment. Majority voting on the
generated lattice is performed using prior weights
for each system as well as other statistical mod-
els such as a special n-gram language model. In
addition to lattice rescoring, n-best list reranking
techniques can be applied to n best paths of this
lattice. True casing is considered a separate step
in RWTH’s approach, which also takes the input
hypotheses into account.

The pipeline, and consequently the description
of the pipeline given in this paper, is based on our
pipeline for WMT 2009 (Leusch et al., 2009), with
several extensions as described.

2 System Combination Algorithm

In this section we present the details of our system
combination method. Figure 1 gives an overview
of the system combination architecture described
in this section. After preprocessing the MT hy-
potheses, pairwise alignments between the hy-
potheses are calculated. The hypotheses are then
reordered to match the word order of a selected
primary or skeleton hypothesis. From this, we
create a lattice which we then rescore using sys-
tem prior weights and a language model (LM).
The single best path in this CN then constitutes
the consensus translation; alternatively the n best
paths are generated and reranked using additional
statistical models. The consensus translation is
then true cased and postprocessed.

2.1 Word Alignment
The proposed alignment approach is a statistical
one. It takes advantage of multiple translations for
a whole corpus to compute a consensus translation
for each sentence in this corpus. It also takes ad-
vantage of the fact that the sentences to be aligned
are in the same language.

For each of the K source sentences in the
test corpus, we select one of its translations
En, n = 1, . . . ,M, as the primary hypothesis.
Then we align the secondary hypotheses Em(m=
1, . . . ,M ; n 6= m) with En to match the word or-
der in En. Since it is not clear which hypothesis
should be primary, i. e. has the “best” word order,
we let several or all hypothesis play the role of the
primary translation, and align all pairs of hypothe-
ses (En, Em); n 6= m. In this paper, we denote
the number of possible primary hypotheses by N .

The word alignment is trained in analogy to
the alignment training procedure in statistical MT.
The difference is that the two sentences that have
to be aligned are in the same language. We use the
IBM Model 1 (Brown et al., 1993) and the Hid-
den Markov Model (HMM, (Vogel et al., 1996))
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Figure 1: The system combination architecture.

to estimate the alignment model.
The alignment training corpus is created from a

test corpus of effectively N ·(M−1)·K sentences
translated by the involved MT engines. Model pa-
rameters are trained iteratively using the GIZA++

toolkit (Och and Ney, 2003). The training is per-
formed in the directions Em → En and En →
Em. The final alignments are determined using
a cost matrix C for each sentence pair (Em, En).
Elements of this matrix are the local costs C(j, i)
of aligning a word em,j from Em to a word en,i

from En. Following Matusov et al. (2004), we
compute these local costs by interpolating the
negated logarithms of the state occupation proba-
bilities from the “source-to-target” and “target-to-
source” training of the HMM model.

2.2 Word Reordering and Confusion
Network Generation

After reordering each secondary hypothesis Em

and the rows of the corresponding alignment cost
matrix, we determine M−1 monotone one-to-one
alignments between En as the primary translation
and Em, m = 1, . . . ,M ; m 6= n. We then con-
struct the confusion network.

We consider words without a correspondence to
the primary translation (and vice versa) to have a
null alignment with the empty word ε, which will
be transformed to an ε-arc in the corresponding
confusion network.

The M−1 monotone one-to-one alignments can
then be transformed into a confusion network, as
described by Matusov et al. (2008).

2.3 Voting in the Confusion Network

Instead of choosing a fixed sentence to define the
word order for the consensus translation, we gen-
erate confusion networks for N possible hypothe-
ses as primary, and unite them into a single lattice.
In our experience, this approach is advantageous
in terms of translation quality compared to a min-
imum Bayes risk primary (Rosti et al., 2007).

Weighted majority voting on a single confu-
sion network is straightforward and analogous to
ROVER (Fiscus, 1997). We sum up the probabil-
ities of the arcs which are labeled with the same
word and have the same start state and the same
end state. This can also be regarded as having a
binary system feature in a log-linear model.

2.4 Language Models
The lattice representing a union of several confu-
sion networks can then be directly rescored with
an n-gram language model (LM). A transforma-
tion of the lattice is required, since LM history has
to be memorized.

We train a trigram LM on the outputs of the sys-
tems involved in system combination. For LM
training, we take the system hypotheses for the
same test corpus for which the consensus transla-
tions are to be produced. Using this “adapted” LM
for lattice rescoring thus gives bonus to n-grams
from the original system hypotheses, in most cases
from the original phrases. Presumably, many of
these phrases have a correct word order. Previous
experimental results show that using this LM in
rescoring together with a word penalty notably im-
proves translation quality. This even results in bet-
ter translations than using a “classical” LM trained
on a monolingual training corpus. We attribute
this to the fact that most of the systems we com-
bine already include such general LMs.

2.5 Extracting Consensus Translations
To generate our consensus translation, we extract
the single-best path from the rescored lattice, us-
ing “classical” decoding as in MT. Alternatively,
we can extract the n best paths for n-best list
rescoring.

2.6 n-best-List Reranking
If n-best lists were generated in the previous steps,
additional sentence-based features can be calcu-
lated on these sentences, and combined in a log-
linear way. These scores can then be used to re-
rank the sentences.

For the WMT 2010 FR–EN and the DE–EN
task, we generated 200-best lists, and calculated
the following features:

1. Total score from the lattice rescoring
2. NGram posterior weights on those (Zens and

Ney, 2006)
3. Word Penalty
4. HypLM trained on a different set of hypothe-

ses (FR–EN only)
5. Large fourgram model trained on Gigaword

(DE–EN) or Europarl (FR–EN)
6. IBM1 scores and deletion counts based on a

word lexicon trained on WMT training data
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7. Discriminative word lexicon score (Mauser et
al., 2009)

8. Triplet lexicon score (Hasan et al., 2008)

Other features were also calculated, but did not
seem to give an improvement on the DEV set.

2.7 Consensus True Casing
Previous approaches to achieve true cased output
in system combination operated on true-cased lat-
tices, used a separate input-independent true caser,
or used a general true-cased LM to differenti-
ate between alternative arcs in the lattice, as in
(Leusch et al., 2009). For WMT 2010, we use
per-sentence information from the input systems
to determine the consensus case of each output
word. Lattice generation, rescoring, and rerank-
ing are performed on lower-cased input, with a
lower-cased consensus hypothesis as their result.
For each word in this hypothesis, we count how
often each casing variant occurs in the input hy-
potheses for this sentence. We then use the vari-
ant with the highest support for the final consen-
sus output. One advantage is that the set of sys-
tems used to determine the consensus case does
not have to be identical to those used for building
the lattice: Assuming that each word from the con-
sensus hypothesis also occurs in one or several of
the true casing input hypotheses, we can focus on
systems that show a good true casing performance.

3 Tuning

3.1 Tuning Weights for Lattice and n-best
Rescoring

For lattice rescoring, we need to tune system
weights, LM factor, and word penalty to produce
good consensus translations. The same holds for
the log-linear weights in n-best reranking.

For the WMT 2010 Workshop, we selected
a linear combination of BLEU (Papineni et al.,
2002) and TER (Snover et al., 2006) as optimiza-
tion criterion, Θ̂ := argmaxΘ {BLEU − TER},
based on previous experience (Mauser et al.,
2008). For more stable results, we use the case-
insensitive variants for both measures, despite the
explicit use of case information in the pipeline.

System weights were tuned to this criterion us-
ing the Downhill Simplex method. Because we
considered the number of segments in the tuning
set to be too small to allow for a further split into
an actual tuning and a control (dev) part, we went
for a method closely related to 5-fold cross valida-
tion: We randomly split the tuning set into 5 equal-
sized parts, and tune parameters on four fifth of
the set, measuring progress on the remaining fifth.
This was repeated for the other four choices for the
“dev” part. Only settings which reliably showed
progress on these five different versions were used

later on the test set. For the actual weights and
numerical parameters to be used on the test set,
we calculate the median of the five variants, which
lowered the risk of outliers and overfitting.

3.2 System Selection
With the large numbers of input systems – e.g., 17
for DE–EN – and their large spread in translation
quality – e.g. 10% abs. in BLEU – not all sys-
tems should participate in the system combination
process. For the generation of lattices, we con-
sidered several variants of systems, often starting
from the top, and either replacing some of the sys-
tems very similar to others with systems further
down the list, or not considering those as primary,
adding further systems as additional secondaries.

For true casing, and the additional HypLM for
FR–EN, we selected a set of 8 to 12 promising
systems, and ran an exhaustive search on all com-
binations of those to optimize the LM perplexity
on the dev set (LM) or the true case BLEU/TER
score on a consensus translation (TC). Further re-
search may include a weighted combination here,
followed by an optimization of the weights as de-
scribed in the previous paragraph.

4 Experimental Results
Each language pair and each direction in
WMT 2010 had its own set of systems, so we se-
lected and tuned for each direction separately. Af-
ter submission of our system combination output
to WMT 2010, we also calculated scores on the
test set (TEST), to validate our results, and as a
preparation for this report. Note that the scores re-
ported for DEV are calculated on the full DEV set,
but not on any combination of the one-fifth “cross
validation” subcorpora.

4.1 FR–EN and EN–FR
For French–English, we selected a set of eight
systems for the primary submission, and eleven
systems for the contrastive system, of which six
served as skeleton. Six different systems were
used for an additional HypLM, five for consen-
sus true casing. Table 1 shows the distribution of
these systems. We see the results of system com-
bination on DEV and TEST (the latter calculated
after submission) in Table 2. System combination
itself turns out to have the largest improvement,
+0.5 in BLEU and -0.7 in TER on TEST over the
best single system. n-best reranking improves this
result even more, by +0.3/-0.3. The influence of
tuning and of TC selection is measurable on DEV,
but rather small on TEST.

For English–French, 13 systems were used to
construct the lattice, 5 serving as skeleton. Five
different systems were used for true casing. No
n-best list reranking was performed here, as pre-
liminary experiments did not show any significant
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Table 1: Overview of systems used for FR/EN.

System FR–EN EN–FR
A B A B

cambridge P L C p P p
cu-zeman S
cmu-statxfer L s
dfki S
eu S
geneva S
huicong s
jhu P L p S p
koc S
lig s
limsi P C p S C p
lium P L C s P C p
nrc P C s S p
rali P L p P C p
rwth P p P C p
uedin P L C p P C p

“A” is the primary, “B” the contrastive submission.
“P” denotes a system that served as skeleton.
“S” a system that was only aligned to others.
“L” denotes a system used for a larger HypLM-n-best-
rescoring.
”C” is a system used for consensus true casing.

Table 2: Results for FR–EN.

TUNE TEST
BLEU TER BLEU TER

Best single 27.9 55.4 28.5 54.0
Lattice SC 28.4 55.0 29.0 53.3
+ tuning 28.8 54.5 29.1 53.3
+ CV tuning 28.6 54.7 29.1 53.3
+ nbest rerank. 29.0 54.4 29.4 53.0
+ sel. for TC 29.1 54.3 29.3 53.0
Contrast. SC 28.9 54.3 28.8 53.4

“SC” stands for System Combination output.
“CV” denotes the split into five different tuning and valida-
tion parts.
“sel. TC” is the separate selection for consensus true casing.
Systems in bold were submitted for WMT 2010.

Table 3: Results for EN–FR.

TUNE TEST
BLEU TER BLEU TER

Best single 27.1 55.7 26.5 56.1
Primary SC 28.3 55.2 28.2 54.7
Contrast. SC 28.5 54.7 28.1 54.6

Table 4: Overview of systems used for DE/EN.

System DE–EN EN–DE
A B A B

cu-zeman S
cmu C P
dfki S p
fbk P C p P
jhu p
kit P C p P C p
koc S C p
limsi P p P C p
liu C S C p
rwth P p P C p
sfu S
uedin P C p P C p
umd P p
uppsala p S

For abbreviations see Table 1.

Table 5: Results for DE–EN.

TUNE TEST
BLEU TER BLEU TER

Best single 23.8 59.7 23.5 59.7
Lattice SC 24.7 58.5 25.0 57.9
+ tuning 25.1 57.6 25.0 57.6
+ CV tuning 24.8 58.0 24.9 57.8
+ nbest rerank. 25.3 57.6 24.9 57.6
+ sel. for TC 25.5 57.5 24.9 57.6
Contrast. SC 25.2 57.7 24.8 57.7

For abbreviations see Table 2.

gain in this direction. As a contrastive submission,
we submitted the consensus of 8 systems. These
are also listed in Table 1. The results can be found
in Table 3. Note that the contrastive system was
not tuned using the “cross validation” approach;
as a result, we expected it to be sensitive to over-
fitting. We see improvements around +1.7/-1.4 on
TEST.

4.2 DE–EN and EN–DE
In the German–English language pair, 17 systems
were available, but incorporating only six of them
turned out to deliver optimal results on DEV. As
shown in Table 4, we used a combination of seven
systems in the contrastive submission. While a

Table 6: Results for EN–DE.

TUNE TEST
BLEU TER BLEU TER

Best single 16.1 66.3 16.4 65.7
Primary SC 16.4 64.9 17.0 63.7
Contrast. SC 16.4 64.9 17.3 63.4
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Table 7: Overview of systems used for CZ/EN.

System CZ–EN EN–CZ
aalto P
cmu P C
cu-bojar P P
cu-tecto S
cu-zeman P S C
dcu P
eurotrans S
google P C P C
koc P C
pc-trans S
potsdam P C
sfu S
uedin P C P C

For abbreviations see Table 1.
No contrastive systems were built for this language pair.

Table 8: Results for CZ–EN and EN–CZ.
TUNE TEST

BLEU TER BLEU TER
CZ–EN

Best single 21.8 58.4 22.9 57.5
Primary SC 22.4 59.1 23.4 57.9

EN–CZ
Best single 17.0 67.1 16.6 66.4
Primary SC 16.7 65.4 17.4 63.6

different set of five systems was used for consen-
sus true casing, it turned out that using the same
six systems for the “additional” HypLM as for
the lattice seemed to be optimal in our approach.
Table 5 shows the outcome of our experiments:
Again, we see that the largest effect on TEST re-
sults from system combination as such (+1.5/-1.8).
The other steps, in particular tuning and selection
for TC, seem to help on DEV, but make hardly
a difference on TEST. n-best reranking brings an
improvement of -0.2 in TER, but at a minor dete-
rioration (-0.1) in BLEU.

In the opposite direction, English–German, we
combined all twelve systems, five of them serv-
ing as skeleton. The contrastive submission con-
sists of a combination of eight systems. Six sys-
tems were used for true casing. Again, n-best
list rescoring did not result in any improvement
in preliminary experiments, and was skipped. Re-
sults are shown in Table 6: We see that even
though both versions perform equally well on
DEV (+0.4/-1.4), the contrastive system performs
better by +0.3/-0.3 on TEST (+0.9/-2.3).

4.3 CZ–EN and EN–CZ
In both directions involving Czech, the number of
systems was rather limited, so no additional se-

Table 9: Overview of systems used for ES/EN.

System EN–ES
A B

cambridge P C p
dcu P p
dfki P C p
jhu P C p
sfu P C p
uedin P C p
upv p
upv-nnlm P p

Table 10: Results for EN–ES.

TUNE TEST
BLEU TER BLEU TER

ES–EN
Best single 28.7 53.6 – –
SC 29.0 53.3 – –

EN–ES
Best single 27.8 55.2 28.7 54.0
Primary SC 29.5 52.9 30.0 51.4
Contrast. SC 29.6 52.8 30.1 51.7

lection turned out to be necessary, and we did not
build a contrastive system. For Czech–English, all
six systems were used; three of them for true cas-
ing. For English–Czech, all eleven systems were
used in building the lattice, six of them also as
skeleton. Five systems were used in the true cas-
ing step. Table 7 lists these systems. From the
results in Table 8, we see that for CZ–EN, system
combination gains around +0.5 in BLEU, but at
costs of +0.4 to +0.7 in TER. For EN–CZ, the re-
sults look more positive: While we see only -0.3/-
1.7 on DEV, there is a significant improvement of
+1.2/-2.8 on TEST.

4.4 ES–EN and EN–ES
In the Spanish–English language pair, we did not
see any improvement at all on the direction with
English as target in preliminary experiments. Con-
sequently, and given the time constraints, we did
not further investigate on this language pair. Post-
eval experiments revealed that improvements of
+0.3/-0.3 are possible, with far off-center weights
favoring the top three systems.

On English–Spanish, where these preliminary
experiments showed a gain, we used seven out of
the available ten systems in building the lattice
for the primary system, eight for the contrastive.
Five of those were uses for consensus true cas-
ing. Table 9 lists these systems. Table 10 shows
the results on this language pair: For both the pri-
mary and the contrastive systems we see improve-
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ments of around +1.7/-2.3 on DEV, and +1.3/-2.6
on TEST. Except for the TER on TEST, these two
submissions differ only by ±0.1 from each other.

5 Conclusions
We have shown that our system combination sys-
tem can lead to significant improvements over sin-
gle best MT output where a significant number of
comparably good translations is available on a sin-
gle language pair. n-best reranking can further
improve the quality of the consensus translation;
results vary though. While consensus true casing
turned out to be very useful despite of its simplic-
ity, we were unable to find significant improve-
ments on TEST from the selection of a separate
set of true casing input systems.
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