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Abstract

This paper describes the German-English
translation system developed by the ARK re-
search group at Carnegie Mellon University
for the Sixth Workshop on Machine Trans-
lation (WMT11). We present the results of
several modeling and training improvements
to our core hierarchical phrase-based trans-
lation system, including: feature engineering
to improve modeling of the derivation struc-
ture of translations; better handing of OOVs;
and using development set translations into
other languages to create additional pseudo-
references for training.

1 Introduction

We describe the German-English translation system
submitted to the shared translation task in the Sixth
Workshop on Machine Translation (WMT11) by the
ARK research group at Carnegie Mellon Univer-
sity.1 The core translation system is a hierarchical
phrase-based machine translation system (Chiang,
2007) that has been extended in several ways de-
scribed in this paper.

Some of our innovations focus on modeling.
Since German and English word orders can diverge
considerably, particularly in non-matrix clauses,
we focused on feature engineering to improve the
modeling of long-distance relationships, which are
poorly captured in standard hierarchical phrase-
based translation models. To do so, we devel-
oped features that assess the goodness of the source

1http://www.ark.cs.cmu.edu

language parse tree under the translation grammar
(rather than of a “linguistic” grammar). To train the
feature weights, we made use of a novel two-phase
training algorithm that incorporates a probabilistic
training objective and standard minimum error train-
ing (Och, 2003). These segmentation features were
supplemented with a 7-gram class-based language
model, which more directly models long-distance
relationships. Together, these features provide a
modest improvement over the baseline and suggest
interesting directions for future work. While our
work on parse modeling was involved and required
substantial changes to the training pipeline, some
other modeling enhancements were quite simple: for
example, improving how out-of-vocabulary words
are handled. We propose a very simple change, and
show that it provides a small, consistent gain.

On the training side, we had two improvements
over our baseline system. First, we were inspired
by the work of Madnani (2010), who showed that
when training to optimize BLEU (Papineni et al.,
2002), overfitting is reduced by supplementing a sin-
gle human-generated reference translation with ad-
ditional computer-generated references. We gener-
ated supplementary pseudo-references for our de-
velopment set (which is translated into many lan-
guages, but once) by using MT output from a sec-
ondary Spanish-English translation system. Second,
following Foster and Kuhn (2009), we used a sec-
ondary development set to select from among many
optimization runs, which further improved general-
ization.

We largely sought techniques that did not require
language-specific resources (e.g., treebanks, POS

337



annotations, morphological analyzers). An excep-
tion is a compound segmentation model used for
preprocessing that was trained on a corpus of man-
ually segmented German. Aside from this, no fur-
ther manually annotated data was used, and we sus-
pect many of the improvements described here can
be had in other language pairs. Despite avoiding
language-specific resources and using only the train-
ing data provided by the workshop, an extensive
manual evaluation determined that the outputs pro-
duced were of significantly higher quality than both
statistical and rule-based systems that made use of
language-specific resources (Callison-Burch et al.,
2011).

2 Baseline system and data

Our translation system is based on a hierarchical
phrase-based translation model (Chiang, 2007), as
implemented in the cdec decoder (Dyer et al.,
2010). Since German is a language that makes
productive use of “closed” compounds (compound
words written as a single orthographic token), we
use a CRF segmentation model of to evaluate the
probability of all possible segmentations, encoding
the most probable ones compactly in a lattice (Dyer,
2009). For the purposes of grammar induction, the
single most probable segmentation of each word in
the source side of the parallel training data under the
model was inferred.

The parallel data were aligned using the
Giza++ implementation of IBM Model 4 run
in both directions and then symmetrized using
the grow-diag-final-and heuristic (Och and
Ney, 2002; Brown et al., 1993; Koehn et al., 2003).
The aligned corpus was encoded as a suffix array
(Lopez, 2008) and lattice-specific grammars (con-
taining just the rules that are capable of matching
spans in the input lattice) were extracted for each
sentence in the test and development sets, using the
heuristics recommended by Chiang (2007).

A 4-gram modified Kneser-Ney language model
(Chen and Goodman, 1996) was constructed using
the SRI language modeling toolkit (Stolcke, 2002)
from the English side of the parallel text, the mono-
lingual English data, and the English version 4 Giga-
word corpus (Parker et al., 2009). Since there were
many duplicate segments in the training data (much

of which was crawled from the web), duplicate seg-
ments and segments longer than 100 words were re-
moved. Inference was carried out using the language
modeling library described by Heafield (2011).

The newstest-2009 set (with the 500 longest
segments removed) was used for development,2 and
newstest-2010 was used as a development test
set. Results in this paper are reported on the dev-
test set using uncased BLEU4 with a single refer-
ence translation. Minimum error rate training (Och,
2003) was used to optimize the parameters of the
system to maximize BLEU on the development data,
and inference was performed over a pruned hyper-
graph representation of the translation hypothesis
space (Kumar et al., 2009).

For the experiments reported in this paper, Viterbi
(max-derivation) decoding was used. The system
submitted for manual evaluation used segment-level
MBR decoding with 1 − BLEU as the loss function,
approximated over a 500-best list for each sentence.
This reliably results in a small but consistent im-
provement in translation quality, but is much more
time consuming to compute (Kumar and Byrne,
2004).

3 Source parse structure modeling

Improving phrase-based translation systems is chal-
lenging in part because our intuitions about what
makes a “good” phrase or translation derivation are
often poor. For example, restricting phrases and
rules to be consistent with syntactic constituents
consistently harms performance (Chiang, 2007; Gal-
ley et al., 2006; Koehn et al., 2003), although our
intuitions might suggest this is a reasonable thing
to do. On the other hand, it has been shown that
incorporating syntactic information in the form of
features can lead to improved performance (Chiang,
2010; Gimpel and Smith, 2009; Marton and Resnik,
2008). Syntactic features that are computed by as-
sessing the overlap of the translation parse with a
linguistic parse can be understood to improve trans-
lation because they lead to a better model of what a
“correct” parse of the source sentence is under the
translation grammar.

Like the “soft syntactic features” used in pre-

2Removing long segments substantially reduces training
time and does not appear to negatively affect performance.
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vious work (Marton and Resnik, 2008; Chiang et
al., 2008), we propose features to assess the tree
structure induced during translation. However, un-
like that work, we do not rely on linguistic source
parses, but instead only make use of features that
are directly computable from the source sentence
and the parse structure being considered in the de-
coder. In particular, we take inspiration from the
model of Klein and Manning (2002), which mod-
els constituency in terms of the contexts that rule
productions occur in. Additionally, we make use of
salient aspects of the spans being dominated by a
nonterminal, such as the words at the beginning and
end of the span, and the length of the span. Impor-
tantly, the features do not rely on the target words
being predicted, but only look at the structure of the
translation derivation. As such, they can be under-
stood as monolingual parse features.3

Table 1 lists the feature templates that were used.

Template Description
CTX:fi−1, fj context bigram
CTX:fi−1, fj , x context bigram + NT
CTX:fi−1, fj , x, (j − i) context bigram + NT + len
LU:fi−1 left unigram
LB:fi−1, fi left bigram (overlapping)
RU:fj right unigram
RB:fj−1, fj right bigram (overlapping)

Table 1: Context feature templates for features extracted
from every translation rule used; i and j indicate hypothe-
sized constituent span, x is its nonterminal category label
(in our grammar, X or S), and fk is the kth word of the
source sentence, with f<1 = 〈s〉 and f>|f| = 〈/s〉. If a
word fk is not among the 1000 most frequent words in
the training corpus, it is replaced by a special unknown
token. The SMALLCAPS prefixes prevent accidental fea-
ture collisions.

3.1 Two-phase discriminative learning

The parse features just introduced are numerous and
sparse, which means that MERT can not be used
to infer their weights. Instead, we require a learn-
ing algorithm that can cope with millions of fea-
tures and avoid overfitting, perhaps by eliminating
most of the features and keeping only the most valu-
able (which would also keep the model compact).

3Similar features have been proposed for use in discrimina-
tive monolingual parsing models (Taskar et al., 2004).

Furthermore, we would like to be able to still tar-
get the BLEU measure of translation quality during
learning. While large-scale discriminative training
for machine translation is a widely studied problem
(Hopkins and May, 2011; Li and Eisner, 2009; De-
vlin, 2009; Blunsom et al., 2008; Watanabe et al.,
2007; Arun and Koehn, 2007; Liang et al., 2006), no
tractable algorithm exists for learning a large num-
ber of feature weights while directly optimizing a
corpus-level metric like BLEU. Rather than resorting
to a decomposable approximation, we have explored
a new two-phase training algorithm in development
of this system.

The two-phase algorithm works as follows. In
phase 1, we use a non-BLEU objective to train a
translation model that includes the large feature set.
Then, we use this model to compute a small num-
ber of coarse “summary features,” which summa-
rize the “opinion” of the first model about a trans-
lation hypothesis in a low dimensional space. Then,
in the second training pass, MERT is used to deter-
mine how much weight to give these summary fea-
tures together with the other standard coarse trans-
lation features. At test time, translation becomes a
multi-step process as well. The hypothesis space is
first scored using the phase-1 model, then summary
features are computed, then the hypothesis space is
rescored with the phase-2 model. As long as the fea-
tures used factor with the edges in the translation
space (which ours do), this can be carried out in lin-
ear time in the size of the translation forest.

3.1.1 Phase 1 training
For the first model, which includes the sparse parse
features, we learn weights in order to optimize pe-
nalized conditional log likelihood (Blunsom et al.,
2008). We are specifically interested in modeling
an unobserved variable (i.e., the parse tree underly-
ing a translation derivation), this objective is quite
natural, since probabilistic models offer a principled
account of unobserved data. Furthermore, because
our features factor according to edges in the trans-
lation forest (they are “stateless” in standard MT
terminology), there are efficient dynamic program-
ming algorithms that can be used to exactly compute
the expected values of the features (Lari and Young,
1990), which are necessary for computing the gradi-
ents used in optimization.
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We are therefore optimizing the following objec-
tive, given a set T of parallel training sentences:

L = λR(θ)−
∑

〈f,e〉∈T

log
∑

d

pθ(e,d | f)

where pθ(e,d | f) =
exp θ>h(f, e,d)

Z(f)
,

where d is a variable representing the unobserved
synchronous parses giving rise to the pair of sen-
tences 〈f, e〉, and where R(θ) is a penalty that favors
less complex models. Since we not only want to pre-
vent over fitting but also want a small model, we use
R(θ) =

∑
k |θk|, the `1 norm, which forces many

parameters to be exactly 0.
Although L is not convex in θ (on account of the

latent derivation variable), we make use of an on-
line stochastic gradient descent algorithm that im-
poses an `1 penalty on the objective (Tsuruoka et
al., 2009). Online algorithms are often effective for
non-convex objectives (Liang and Klein, 2009).

We selected 12,500 sentences randomly from the
news-commentary portion of the training data to use
to train the latent variable model. Using the stan-
dard rule extraction heuristics (Chiang, 2007), 9,967
of the sentence pairs could be derived.4 In addition
to the parse features describe above, the standard
phrase features (relative frequency and lexical trans-
lation probabilities), and a rule count feature were
included. Training was run for 48 hours on a sin-
gle machine, which resulted in 8 passes through the
training data, instantiating over 8M unique features.
The regularization strength λ was chosen so that ap-
proximately 10, 000 (of the 8M) features would be
non-zero.5

3.1.2 Summary features
As outlined above, the phase 1 model will be incor-
porated into the final translation model using a low
dimensional “summary” of its opinion. Because we
are using a probabilistic model, posterior probabili-
ties (given the source sentence f) under the parsing

4When optimizing conditional log likeligood, it is necessary
to be able to exactly derive the training pair. See Blunsom et al.
(2008) for more information.

5Ideally, λ would have been tuned to optimize held-out like-
lihood or BLEU; however, the evaluation deadline prevented us
from doing this.

model are easily defined and straightforward to com-
pute with dynamic programming. We made use of
four summary features: the posterior log probability
log pθ(e,d|f); for every rule r ∈ d, the probability of
its span being a constituent under the parse model;
the probabilities that some span starts at the r’s start-
ing index, or that some rule ends at r’s ending index.

Once these summary features have been com-
puted, the sparse features are discarded, and the
summary features are reweighted using coefficients
learned by MERT, together with the standard MT
features (language model, word penalty, etc.). This
provides a small improvement over our already very
strong baseline, as the first two rows in Table 2 show.

Condition BLEU

baseline 25.0
+ parse features 25.2
+ parse features + 7-gram LM 25.4

Table 2: Additional features designed to improve model
of long-range reordering.

3.2 7-gram class-based LM
The parsing features above were intended to im-
prove long range reordering quality. To further sup-
port the modeling of larger spans, we incorporated
a 7-gram class-based language model. Automatic
word clusters are attractive because they can be
learned for any language without supervised data,
and, unlike part-of-speech annotations, each word
is in only a single class, which simplifies inference.
We performed Brown clustering (Brown et al., 1992)
on 900k sentences from our language modeling data
(including the news commentary corpus and a sub-
set of Gigaword). We obtained 1,000 clusters us-
ing an implementation provided by Liang (2005),6

as Turian et al. (2010) found that relatively large
numbers clusters gave better performance for infor-
mation extraction tasks. We then replaced words
with their clusters in our language modeling data
and built a 7-gram LM with Witten-Bell smoothing
(Witten and Bell, 1991).7 The last two rows of Ta-

6http://www.cs.berkeley.edu/˜pliang/
software

7The distributional assumptions made by the more com-
monly used Kneser-Ney estimator do not hold in the word-
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ble 2 shows that in conjunction with the source parse
features, a slight improvement comes from includ-
ing the 7-gram LM.

4 Non-translating tokens

When two languages share a common alphabet (as
German and English largely do), it is often appro-
priate to leave some tokens untranslated when trans-
lating. Named entities, numbers, and graphical el-
ements such as emoticons are a few common ex-
amples of such “non-translating” elements. To en-
sure that such elements are well-modeled, we aug-
ment our translation grammar so that every token
in the input can translate as itself and add a feature
that counts the number of times such self-translation
rules are used in a translation hypothesis. This is in
contrast to the behavior of most other decoders, such
as Moses, which only permit a token to translate as
itself if it is learned from the training data, or if there
is no translation in the phrase table at all.

Since many non-translating tokens are out-of-
vocabulary (OOV) in the target LM, we also add
a feature that fires each time the LM encounters a
word that is OOV.8 This behavior be understood as
discriminatively learning the unknown word penalty
that is part of the LM. Again, this is in contrast to
the behavior of other decoders, which typically add
a fixed (and very large) cost to the LM feature for
every OOV. Our multi-feature parameterization per-
mits the training algorithm to decide that, e.g., some
OOVs are acceptable if they occur in a “good” con-
text rather than forcing the decoder to avoid them
at all costs. Table 3 shows that always providing
a non-translating translation option together with a
discriminative learned OOV feature improves the
quality of German-English translation.9

Condition BLEU

−OOV (baseline) 24.6
+OOV and non-translating rules 25.0

Table 3: Effect of discriminatively learned penalties for
OOV words.

classified corpus.
8When multiple LMs are used, there is an extra OOV feature

for each LM.
9Both systems were trained using the human+ES-EN refer-

ence set described below (§5).

5 Computer-generated references

Madnani (2010) shows that models learned by op-
timizing BLEU are liable to overfit if only a sin-
gle reference is used, but that this overfitting can
be mitigated by supplementing the single reference
with supplemental computer-generated references
produced by paraphrasing the human reference us-
ing a whole-sentence statistical paraphrase system.
These computer-generated paraphrases are just used
to compute “better” BLEU scores, but not directly as
examples of target translations.

Although we did not have access to a paraphrase
generator, we took advantage of the fact that our de-
velopment set (newstest-2009) was translated
into several languages other than English. By trans-
lating these back into English, we hypothesized we
would get suitable pseudo-references that could be
used in place of computer-generated paraphrases.
Table 4 shows the results obtained on our held-out
test set simply by altering the reference translations
used to score the development data. These systems
all contain the OOV features described above.

Condition BLEU

1 human 24.7
1 human + ES-EN 25.0
1 human + FR-EN 24.0
1 human + ES-EN + FR-EN 24.2

Table 4: Effect of different sets of reference translations
used during tuning.

While the effect is somewhat smaller than Mad-
nani (2010) reports using a sentential paraphraser,
the extremely simple technique of adding the output
of a Spanish-English (ES-EN) system was found to
consistently improve the quality of the translations
of the held-out data. However, a comparable effect
was not found when using references generated from
a French-English (FR-EN) translation system, indi-
cating that the utility of this technique must be as-
sessed empirically and depends on several factors.

6 Case restoration

Our translation system generates lowercased out-
put, so we must restore case as a post-processing
step. We do so using a probabilistic transducer as
implemented in SRILM’s disambig tool. Each
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lowercase token in the input can be mapped to a
cased variant that was observed in the target lan-
guage training data. Ambiguities are resolved us-
ing a language model that predicts true-cased sen-
tences.10 We used the same data sources to con-
struct this model as were used above. During devel-
opment, it was observed that many named entities
that did not require translation required some case
change, from simple uppercasing of the first letter,
to more idiosyncratic casings (e.g., iPod). To ensure
that these were properly restored, even when they
did not occur in the target language training data, we
supplement the true-cased LM training data and case
transducer training data with the German source test
set.

Condition BLEU (Cased)
English-only 24.1
English+test-set 24.3

Table 5: Effect of supplementing recasing model training
data with the test set source.

7 Model selection

Minimum error rate training (Och, 2003) is a
stochastic optimization algorithm that typically finds
a different weight vector each time it is run. Foster
and Kuhn (2009) showed that while the variance on
the development set objective may be narrow, the
held-out test set variance is typically much greater,
but that a secondary development set can be used to
select a system that will have better generalization.
We therefore replicated MERT 6 times and selected
the output that performed best on NEWSTEST-2010.
Since we had no additional blind test set, we can-
not measure what the impact is. However, the BLEU

scores we selected on varied from 25.4 to 26.1.

8 Summary

We have presented a summary of the enhancements
made to a hierarchical phrase-based translation sys-
tem for the WMT11 shared translation task. Some
of our results are still preliminary (the source parse

10The model used is p(y | x)p(y). While this model is some-
what unusual (the conditional probability is backwards from a
noisy channel model), it is a standard and effective technique
for case restoration.

model), but a number of changes we made were
quite simple (OOV handling, using MT output to
provide additional references for training) and also
led to improved results.
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