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Abstract

Statistical machine translation systems are
normally optimised for a chosen gain func-
tion (metric) by using MERT to find the best
model weights. This algorithm suffers from
stability problems and cannot scale beyond
20-30 features. We present an alternative al-
gorithm for discriminative training of phrase-
based MT systems, SampleRank, which scales
to hundreds of features, equals or beats MERT
on both small and medium sized systems, and
permits the use of sentence or document level
features. SampleRank proceeds by repeatedly
updating the model weights to ensure that the
ranking of output sentences induced by the
model is the same as that induced by the gain
function.

1 Introduction

In phrase-based machine translation (PBMT), the
standard approach is to express the probability dis-
tribution p(a, e|f) (where f is the source sentence
and (a, e) is the aligned target sentence) in terms of
a linear model based on a small set of feature func-
tions

p(a, e|f) ∝ exp

(
n∑

i=1

wihi(a, e, f)

)
(1)

The feature functions {hi} typically include log
probabilities of generative models such as trans-
lation, language and reordering, as well as non-
probabilistic features such as word, phrase and dis-
tortion penalties. The feature weights w = {wi}
are normally trained using MERT (minimum error
rate training) (Och, 2003), to maximise performance

as measured by an automated metric such as BLEU

(Papineni et al., 2002). MERT training uses a par-
allel data set (known as the tuning set) consisting of
about 1000-2000 sentences, distinct from the data
set used to build the generative models. Optimis-
ing the weights in Equation (1) is often referred to
as tuning the MT system, to differentiate it from the
process of training the generative models.

MERT’s inability to scale beyond 20-30 features,
as well as its instability (Foster and Kuhn, 2009)
have led to investigation into alternative ways of
tuning MT systems. The development of tuning
methods is complicated, however by, the use of
BLEU as an objective function. This objective in
its usual form is not differentiable, and has a highly
non-convex error surface (Och, 2003). Furthermore
BLEU is evaluated at the corpus level rather than at
the sentence level, so tuning methods either have to
consider the entire corpus, or resort to a sentence-
level approximation of BLEU. It is unlikely, how-
ever, that the difficulties in discriminative MT tun-
ing are due solely to the use of BLEU as a metric –
because evaluation of translation is so difficult, any
reasonable gain function is likely to have a complex
relationship with the model parameters.

Gradient-based tuning methods, such as mini-
mum risk training, have been investigated as pos-
sible alternatives to MERT. Expected BLEU is nor-
mally adopted as the objective since it is differen-
tiable and so can be optimised by a form of stochas-
tic gradient ascent. The feature expectations re-
quired for the gradient calculation can be obtained
from n-best lists or lattices (Smith and Eisner, 2006;
Li and Eisner, 2009), or using sampling (Arun et al.,
2010), both of which can be computationally expen-
sive.
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Margin-based techniques such as perceptron
training (Liang et al., 2006) and MIRA (Chiang et
al., 2008; Watanabe et al., 2007) have also been
shown to be able to tune MT systems and scale to
large numbers of features, but these generally in-
volve repeatedly decoding the tuning set (and so
are expensive) and require sentence-level approxi-
mations to the BLEU objective.

In this paper we present an alternative method of
tuning MT systems known as SampleRank, which
has certain advantages over other methods in use to-
day. SampleRank operates by repeatedly sampling
pairs of translation hypotheses (for a given source
sentence) and updating the feature weights if the
ranking induced by the MT model (1) is different
from the ranking induced by the gain function (i.e.
BLEU). By considering the translation hypotheses
in batches, it is possible to directly optimise corpus
level metrics like BLEU without resorting to sentence
level approximations.

Tuning using SampleRank does not limit the size
of the feature set in the same way as MERT does,
and indeed it will be shown that SampleRank can
successfully train a model with several hundred fea-
tures. Using just the core PBMT features and train-
ing using SampleRank will be shown to achieve
BLEU scores which equal or exceed those produced
by MERT trained models.

Since SampleRank does not require repeated de-
coding of the tuning set, and is easily parallelisable,
it can run at an acceptable speed, and since it always
maintains a complete translation hypothesis, it opens
up the possibility of sentence or document level fea-
tures1.

2 Method

2.1 SampleRank Training
SampleRank (Culotta, 2008; Wick et al., 2009) is
an online training algorithm that was introduced for
parameter learning in weighted logics, and has been
applied to complex graphical models (Wick et al.,
2011). Assume a probabilistic model p(y|x) admit-
ting a log-linear parametrisation

p(y|x) ∝ exp
∑

i

(wiφi(x, y)) (2)

1As long as the batches described in Section 2.2.1 respect
document boundaries.

where {φi} are a set of feature functions and {wi}
are corresponding feature weights. SampleRank can
be used to optimise the feature weights to maximise
a given gain function.

SampleRank is a supervised training algorithm,
requiring a set of labelled training data D =
{(x1, y1}, . . . , (xn, yn)}, where the xi are the inputs
and the yi the outputs. The algorithm works by con-
sidering each training example (xi, yi) in turn, and
repeatedly sampling pairs of outputs from a neigh-
bourhood defined in the space of all possible out-
puts, updating the weights when the ranking of the
pair due to the model scores is different from the
ranking due to the gain function. So if the sampled
pair of outputs for xi is (y, y′), where p(y′|xi) >
p(y|xi), the weights are updated iff gain(y′, yi) <
gain(y, yi).

The sampled pairs are drawn from a chain which
can be constructed in a similar way to an MCMC
(Markov Chain Monte Carlo) chain.

In (Culotta, 2008) different strategies are explored
for building the chain, choosing the neighbourhood
and updating the weights.

2.2 SampleRank Training for Machine
Translation

We adapted SampleRank for the tuning of PBMT
systems, as summarised in Algorithm 1. The defi-
nitions of the functions in the algorithm (described
in the following subsections) draw inspiration from
work on MIRA training for MT (Watanabe et al.,
2007; Chiang et al., 2008). SampleRank is used to
optimise the parameter weights in (1) using the tun-
ing set.

2.2.1 Gain Function
The first thing that needs to be defined in Algo-

rithm 1 is the gain function. For this we use BLEU,
the most popular gain function for automated MT
evaluation, although the procedure described here
will work with any gain function that can be evalu-
ated quickly. Using BLEU, however, creates a prob-
lem, as BLEU is defined at the corpus level rather
than the sentence level, and in previous work on
SampleRank, the training data is processed one ex-
ample at a time. In other work on online train-
ing for SMT, (Liang et al., 2006; Chiang et al.,
2008), sentence-level approximations to BLEU were
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Algorithm 1 The SampleRank algorithm for tuning
phrase-based MT systems.
Require: Tuning data:

D = {(f1, e1), . . . , (fn, en)}
Require: gain(y, y′): A function which scores a

set of hypotheses (y′) against a set of references
(y).

Require: score(x, y): A function which computes
a model score for a set of hypotheses y and
source sentences x.

1: for epoch = 1 to number of epochs do
2: A← D
3: while A is non-empty do
4: Pick (x, y), a batch of sentence pairs, ran-

domly from A, and remove.
5: Initialise y0, a set of translation hypotheses

for x.
6: for s = 1 to number of samples do
7: N ← ChooseNeighbourhood(ys−1)
8: y′ ← ChooseSample(N)
9: y+ ← ChooseOracle(N)

10: if gain(y,y′)−gain(y,y+)
score(x,y′)−score(x,y+)

< 0 then
11: UpdateWeights()
12: end if
13: ys ← y′

14: end for
15: end while
16: end for

employed, however in this work we directly opti-
mise corpus BLEU by processing the data in small
batches. Using batches was found to work better
than processing the data sentence by sentence.

So the while loop in Algorithm 1 iterates through
the tuning data in batches of parallel sentences,
rather than single sentences. One complete pass
through the tuning data is known as an epoch, and
normally SampleRank training is run for several
epochs. The gain on a particular batch is calcu-
lated by scoring the current set of hypotheses for
the whole batch against the references for that batch.
When calculating BLEU, a smoothing constant of
0.01 is added to all counts in order to avoid zero
counts.

2.2.2 Sample Generation

For each iteration of the while loop in Algo-
rithm 1, a new batch of parallel sentences is cho-
sen from the tuning set, and a corresponding new
set of translation hypotheses must be generated (the
y0 in line 5 of Algorithm 1). These initial hypothe-
ses are generated by glossing. For each word in the
source, the most likely translation option (according
to the weighted phrase-internal score) is selected,
and these translations are joined together monoton-
ically. This method of initialisation was chosen be-
cause it was simple and fast, and experiments with
an alternative method of initialisation (where the de-
coder was run with random scores assigned to hy-
potheses) showed very little difference in perfor-
mance.

Once the initial set of hypotheses for the new
batch is created, the SampleRank innermost loop
(lines 6-14 in Algorithm 1) proceeds by repeatedly
choosing a sample hypothesis set (y′) and an oracle
hypothesis set (y+), corresponding to the source side
of the batch (x).

Given the current hypothesis set ys−1 =
(e1, . . . , ek), the sample and oracle are chosen as
follows. Firstly, a hypothesis ej is selected randomly
from ys−1 , and a neighbourhood of alternate hy-
potheses N 3 ej generated using operators from
Arun et al. (2009) (explained shortly). Model scores
are calculated for all the hypotheses in N , converted
to probabilities using Equation (1), and a sample e′j
taken from N using these probabilities. The sam-
ple hypothesis set (y′) is then the current hypothesis
set (ys−1) with ej replaced by e′j . The oracle is cre-
ated, analogously Chiang et al. (2008), by choosing
e+
j ∈ N to maximise the sum of gain (calculated on

the batch) and model score. The oracle hypothesis
set (y+) is then ys−1 with ej replaced by e+

j .
We now describe how the neighbourhood is cho-

sen. Given a single hypothesis ej , a neighbourhood
is generated by first randomly choosing one of the
two operators MERGE-SPLIT or REORDER, then ran-
domly choosing a point of application for the op-
erator, then applying it to generate the neighbour-
hood. The MERGE-SPLIT operator can be applied
at any inter-word position, and generates its neigh-
bourhood by listing all hypotheses obtained by op-
tionally merging or splitting the phrases(s) touching
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that position, and retranslating them. The REORDER

operator applies at a pair of target phrases (subject
to distortion limits) and generates a neighbourhood
containing two hypotheses, one with the original or-
der and one with the chosen phrases swapped. The
distortion limits and translation option pruning used
by the operators matches those used in decoding, so
together they are able to explore the same hypothe-
sis space as the decoder. A fuller explanation of the
two operators is give in Arun et al. (2009).

2.2.3 Weight Updates
After choosing the sample and oracle hypothe-

sis set (y′ and y+), the weight update may be per-
formed. The weights of the model are updated if the
relative ranking of the sample hypothesis set and the
oracle hypothesis set provided by the model score is
different from that provided by the gain. The model
score function score(x, y) is defined for a hypothe-
sis set y = e1, . . . ek as follows:

score(x, y) =
k∑

j=1

(
n∑

i=1

wihi(aj , ej , fj)

)
(3)

where x = f1, . . . fk are the corresponding source
sentences. The weight update is performed iff
score(x, y′) 6= score(x, y+) and the following con-
dition is satisfied:

gain(y, y′)− gain(y, y+)
score(x, y′)− score(x, y+)

< 0 (4)

where the gain() function is just the BLEU score.
The weight update used in this work is a MIRA-

like update from ws−1 to ws defined as follows:

ws = arg min
w

(‖w −ws−1‖+ Cξ) (5)

subject to

scorew(x, y+)− scorew(x, y′) + ξ

≥M · (gain(y, y+)− gain(y, y′))
(6)

The margin scaling M is set to be gain(y, y+), so
that ranking violations of low BLEU solutions are as-
signed a lower importance than ranking violations of
high BLEU solutions. The ξ in (5) is a slack variable,
whose influence is controlled by C (set to 0.01), and

which has the effect of “clipping” the magnitude of
the weight updates. Since there is only one con-
straint, there is no need to use an iterative method
such as Hildreth’s, because it is straightforward to
solve the optimisation in (5) and (6) exactly using its
Lagrangian dual, following (Crammer et al., 2006).
The weight update is then given by

ws = ws−1 + min
(

b

‖a‖2
, C

)
a

where a = h(a+
j , e+

j , fj)− h(a′j , e
′
j , fj)

and b = M
(
gain(y, y+)− gain(y, y′)

)
−
(
score(x, y+)− gain(y, y′)

)
After updating the weights, the current hypothesis
set (ys) is updated to be the sample hypothesis set
(y′), as in line 13 of Algorithm 1, and then the next
sample is generated.

2.2.4 Implementation Considerations
After each iteration of the inner loop of Algorithm

1, the weights are collected, and the overall weights
output by the tuning algorithm are the average of all
these collected weights. When each new batch is
loaded at the start of the inner loop, a period of burn-
in is run, analogous to the burn-in used in MCMC
sampling, where no weight updates are performed
and weights are not collected.

In order to help the stability of the tuning algo-
rithm, and to enable it to process the tuning data
more quickly, several chains are run in parallel, each
with their own set of current weights, and each pro-
cessing a distinct subset of the tuning data. The
weights are mixed (averaged) after each epoch. The
same technique is frequently adopted for the aver-
aged perceptron (McDonald et al., 2010).

3 Experiments

3.1 Corpora and Baselines

The experiments in this section were conducted with
French-English and German-English sections of the
WMT20112 shared task data. In particular, we used
News-Commentary data (nc11), and Europarl data
(ep11) for training the generative models. Phrase
tables were built from lowercased versions of the

2http://www.statmt.org/wmt11/
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parallel texts using the standard Moses3 training
pipeline, with the target side of the texts used to
build Kneser-Ney smoothed language models using
the SRILM toolkit4. These data sets were used to
build two phrase-based translation systems: WMT-
SMALL and WMT-LARGE.

The WMT-SMALL translation system uses a trans-
lation model built from just the nc11 data (about
115,000 sentences), and a 3-gram language model
built from the target side of this data set. The fea-
tures used in the WMT-SMALL translation system
were the five Moses translation features, a language
model feature, a word penalty feature and a distor-
tion distance feature.

To build the WMT-LARGE translation system, both
the ep11 data set and the nc11 data set were con-
catenated together before building the translation
model out of the resulting corpus of about 2 mil-
lion sentences. Separate 5-gram language models
were built from the target side of the two data sets
and then they were interpolated using weights cho-
sen to minimise the perplexity on the tuning set
(Koehn and Schroeder, 2007). In the WMT-LARGE

system, the eight core features were supplemented
with the six features of the lexicalised reordering
model, which was trained on the same data as was
used to build the translation model. Whilst a train-
ing set size of 2 million sentences would not nor-
mally be sufficient to build a competitive system for
an MT shared task, it is sufficient to show that how
SampleRank training performs on a realistic sized
system, whilst still allowing for plenty of experime-
nation with the algorithm’s parameters.

For tuning, the nc-devtest2007 was used,
with the first half of nc-test2007 corpus
used for heldout testing and nc-test2008 and
newstest2010 reserved for final testing. The
tuning and heldout sets are about 1000 sentences in
size, whereas the final test sets are approximately
2000 sentences each.

In Table 1, the performance (in BLEU5) of
untrained and MERT-tuned models on the
heldout set is shown6. The untuned models

3http://www.statmt.org/moses/
4http://www-speech.sri.com/projects/

srilm/
5Calculated with multi-bleu.perl
6All BLEU scores and standard deviations are rounded to one

use the default weights output by the Moses
train-model.perl script, whereas the perfor-
mance of the tuned models is the mean across five
different MERT runs.

All decoding in this paper is with Moses, using
default settings.

Pair System untuned MERT-tuned
fr-en WMT-SMALL 28.0 29.2 (0.2)

WMT-LARGE 29.4 32.5 (0.1)
de-en WMT-SMALL 25.0 25.3 (0.1)

WMT-LARGE 26.6 26.8 (0.2)

Table 1: Untrained and MERT-trained performance
on heldout. MERT training is repeated five times,
with the table showing the mean BLEU, and standard
deviation in brackets.

3.2 SampleRank Training For Small Models

First we look at how SampleRank training compares
to MERT training using the WMT-SMALL models.
Using the smaller models allows reasonably quick
experimentation with a large range of different pa-
rameter settings.

For these experiments, the epoch size is set at
1024, and we vary both the number of cores and the
number of samples used in training. The number of
cores n is set to either 1,2,4,8 or 16, meaning that
each epoch we split the tuning data into n different,
non-overlapping shards, passing a different shard to
each process, so the shard size k is set to 1024/n. In
each process, a burn of 100 ∗k samples is run (with-
out updating the weights), followed by either 100∗k
or 500∗k samples with weight updates, using the al-
gorithm described in Section 2.2. After an epoch is
completed, the current weights are averaged across
all processes to give the new current weights in each
process. At intervals of 50000 samples in each core,
weights are averaged across all samples so far, and
across all cores, and used to decode the heldout set
to measure performance.

In Figure 1, learning curves are shown for the
100 sample-per-sentence case, for 1, 4 and 16 cores,
for French-English. The training is repeated five
times and the error bars in the graph indicate the

decimal place.
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Figure 1: SampleRank learning curves for the WMT-SMALL French-English system, for 1, 4 and 16 cores.
The dashed line shows the mean MERT performance, which has a standard deviation of 0.2.

spread across the different training runs. Increasing
the number of cores makes a clear difference to the
training, with the single core training run failing to
reach the the level of MERT, and the 16 core train-
ing run exceeding the mean MERT performance by
more than 0.5 BLEU. Using a single core also results
in a much bigger training variance, which makes
sense as using more cores and averaging weights
reduces the adverse effect of a single chain going
astray. The higher BLEU score achieved when us-
ing the larger number of cores is probably because
a larger portion of the parameter space is being ex-
plored.

In one sense, the x axes of the graphs in Figure 1
are not comparable, since increasing the number of
cores and keeping the number of samples per core
increases the total computing time. However even if
the single core training was run for much longer, it
did not reach the level of performance obtained by
multi-core training. Limited experimentation with
increasing the core count to 32 did not show any ap-
preciable gain, despite greatly increasing the com-
puting resources required.

The training runs shown in Figure 1 take between
21 hours (for 16 cores) and 35 hours (for a single
core)7. In the 16 core runs each core is doing the
same amount of work as in the single core runs, so
the difference in time is due to the extra effort in-
volved in dealing with larger batches. These times
are for the 100 samples-per-sentence condition, and

7The processors are Intel Xeon 5450 (3GHz)

increasing to 500 samples-per-sentence provides a
speed-up of about 25%, since proportionally less
time is spent on burn-in. Most of the time is spent
in BLEU evaluation, so improved memoisation and
incremental evaluation would reduce training time.

In Table 2 the mean maximum BLEU achieved on
the heldout set at each parameter setting is shown.
By this it is meant that for each of the five training
runs at each (samples,cores) setting, the maximum
BLEU on heldout data is observed, and these max-
ima are averaged across the five runs. It can be seen
that changing the samples-per-sentence makes little
difference, but there is a definite effect of increasing
the core count.

Cores 100 Samples 500 Samples
1 29.1 (0.2) 29.2 (0.1)
2 29.3 (0.1) 29.3 (0.1)
4 29.6 (0.1) 29.5 (0.1)
8 30.0 (0.0) 29.9 (0.1)
16 30.0 (0.1) 29.8 (0.1)

Table 2: Mean maximum heldout performance for
SampleRank training of the French-English WMT-
SMALL model. Standard deviations are shown in
brackets.

The learning curves for the equivalent German-
English model are shown in Figure 2 and show a
fairly different behaviour to their French-English
counterparts. Again, using more cores helps to im-
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prove and stabilise the performance, but there is lit-
tle if any improvement throughout training. As with
MERT training, SampleRank training of the model
weights makes little difference to the BLEU score,
suggesting a fairly flat error surface.

Table 3 shows the mean maximum BLEU score
on heldout data, the equivalent of Table 2, but for
German-English. The results show very little varia-
tion as the samples-per-sentence and core counts are
changed.

Cores 100 Samples 500 Samples
1 25.2 (0.0) 25.3 (0.1)
2 25.4 (0.1) 25.4 (0.1)
4 25.4 (0.1) 25.4 (0.1)
8 25.4 (0.1) 25.4 (0.1)
16 25.3 (0.1) 25.4 (0.1)

Table 3: Mean maximum heldout performance for
SampleRank training of the German-English WMT-
SMALL model. Standard deviations are shown in
brackets

3.3 SampleRank Training for Larger Models

For the training of the WMT-LARGE systems with
SampleRank, similar experiments to those in Sec-
tion 3.2 were run, although only for 8 and 16 cores.
The learning curves for the two language pairs (Fig-
ure 3) show roughly similar patterns to those in
the previous section, in that the French-English sys-
tem gradually increases performance through train-
ing to reach a maximum, as opposed to the German-
English system with its fairly flat learning curve.
Training times are around 27 hours for the 500 sam-
ple curve shown in Figure 3, increasing to 64 hours
for 100 samples-per-sentence.

In Table 4, the mean maximum BLEU scores are
shown for each configuration. of each language pair,
calculated in the manner described in the previous
section. For the larger system, SampleRank shows
a smaller advantage over MERT for French-English,
and little if any gain for German-English. For both
large and small German-English models, neither of
the parameter tuning algorithms are able to lift BLEU

scores very far above the scores obtained from the
untuned weights set by the Moses training script.

Pair Cores 100 Samples 500 Samples
fr-en 8 32.6 (0.1) 32.7 (0.1)

16 32.8 (0.1) 32.9 (0.1)
de-en 8 26.9 (0.0) 27.0 (0.1)

16 26.8 (0.1) 26.9 (0.1)

Table 4: Mean (and standard deviation) of maximum
heldout performance for SampleRank training of the
WMT-LARGE model.

3.4 SampleRank Training for Larger Feature
Sets

The final set of experiments are concerned with us-
ing SampleRank training for larger feature sets than
the 10-20 typically used in MERT-trained models.
The models considered in this section are based on
the WMT-SMALL systems, but also include a fam-
ily of part-of-speech tag based phrase boundary fea-
tures.

The phrase boundary features are defined by con-
sidering the target-side part-of-speech tag bigrams
spanning each phrase boundary in the hypothesis,
and allowing a separate feature to fire for each bi-
gram. Dummy phrases with parts-of-speech <S>
and </S> are inserted at the start and end of the
sentence, and also used to construct phrase bound-
ary features. The example in Figure 4 shows the
phrase-boundary features from a typical hypothe-
sis. The idea is similar to a part-of-speech language
model, but discriminatively trained, and targeted at
how phrases are joined together in the hypothesis.

The target-side part-of-speech tags are added us-
ing the Brill tagger, and incorporated into the phrase
table using the factored translation modelling capa-
bilities of Moses (Koehn and Hoang, 2007).

Adding the phrase boundary features to the WMT-
SMALL system increased the feature count from 8
to around 800. Training experiments were run for
both the French-English and German-English mod-
els, using the same configuration as in Section 3.2,
varying the number of cores (8 or 16) and the num-
ber of samples per sentence (100 or 500). Train-
ing times were similar to those for the WMT-SMALL

system. The mean maximum scores on heldout are
shown in Table 5. We suspect that these features are
fixing some short range reordering problems which
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Figure 2: SampleRank learning curves for the WMT-SMALL German-English system, for 1, 4 and 16 cores.
The dashed line shows the mean MERT performance, which has a standard deviation of 0.1.
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Figure 3: SampleRank learning curves for the WMT-LARGE French-English and German-English systems,
using 8 cores and 500 samples per sentence. The dashed line shows the mean MERT performance, which
has a standard deviation of 0.07 (fr-en) and 0.2 (de-en).

occur in the former language pair, but since the re-
ordering problems in the latter language pair tend to
be longer range, adding these extra features just tend
to add extra noise to the model.

3.5 Comparison of MERT and SampleRank on
Test Data

Final testing was performed on the nc-test2008
and newstest2010 data sets. The former is quite
similar to the tuning and heldout data, whilst the lat-
ter can be considered to be “out-of-domain”, so pro-
vides a check to see whether the model weights are
being tuned too heavily towards the domain.

For the SampleRank experiments on the test set,

the best training configurations were chosen from
the results in Tables 2, 3, 4 and 5, and the best per-
forming weight sets for each of the five runs for this
configuration. For the MERT trained models, the
same five models from Table 1 were used. The test
set results are shown in Table 6.

The patterns observed on the heldout data carry
over, to a large extent, to the test data. This is
especially true for the WMT-SMALL system, where
similar improvements (for French-English) over the
MERT trained system are observed on the SampleR-
ank trained system. For the WMT-LARGE system,
the slightly improved performance that SampleRank
offered on the in-domain data is no longer there, al-
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Hypothesis [europe ’s] [after] [racial] [house divided against itself]
Tags <S> NNP POS IN JJ NN VBN IN PRP </S>

This produces five phrase boundary features: <S>:NNP, POS:IN, IN:JJ, JJ:NN and PRP:</S>.

Figure 4: The definition of the phrase boundary feature from part-of-speech tags

fr-en de-en
Training System nc-test2008 newstest2010 nc-test2008 newstest2010

MERT WMT-SMALL 28.1 (0.1) 19.6 (0.1) 25.9 (0.1) 16.4 (0.2)
SampleRank WMT-SMALL 28.7 (0.0) 20.1 (0.1) 25.9 (0.1) 16.6 (0.1)
SampleRank WMT-SMALL+pb 28.8 (0.1) 19.8 (0.1) 25.9 (0.1) 16.7 (0.1)
MERT WMT-LARGE 30.1 (0.1) 22.9 (0.1) 28.0 (0.2) 19.1 (0.2)
SampleRank WMT-LARGE 30.0 (0.1) 23.6 (0.3) 28.1 (0.1) 19.5 (0.2)

Table 6: Comparison of MERT trained and SampleRank trained models on the test sets. The WMT-
SMALL+pb model is the model with phrase boundary features, as described in Section 3.4

Pair Cores 100 Samples 500 Samples
fr-en 8 30.2 (0.0) 30.2 (0.0)

16 30.3 (0.0) 30.3 (0.00)
de-en 8 25.1 (0.1) 25.1 (0.0)

16 25.0 (0.1) 25.0 (0.0)

Table 5: Mean (and standard deviation) of maximum
heldout performance for SampleRank training of the
WMT-SMALL model, with the phrase boundary fea-
ture.

though interestingly there is a reasonable improve-
ment on out-of-domain, over the MERT trained
model, similar to the effect observed in (Arun et
al., 2010). Finally, the improvements offered by the
phrase boundary feature are reduced, perhaps an in-
dication of some over-fitting.

4 Related Work

Whilst MERT (Och, 2003) is still the dominant al-
gorithm used for discriminative training (tuning) of
SMT systems, research into improving on MERT’s
line search has tended to focus either on gradient-
based or margin-based techniques.

Gradient-based techniques require a differentiable
objective, and expected sentence BLEU is the most
popular choice, beginning with Smith and Eisner
(2006). They used n-best lists to calculate the fea-

ture expectations required for the gradient, optimis-
ing a second order Taylor approximation of expected
sentence BLEU. They also introduced the idea of de-
terministic annealing to the SMT community, where
an entropy term is added to the objective in train-
ing, and has its temperature progressively lowered
in order to sharpen the model probability distribu-
tion. The work of Smith and Eisner was extended
by Li and Eisner (2009) who were able to obtain
much better estimates of feature expectations by us-
ing a packed chart instead of an n-best list. They
also demonstrated that their method could extend to
large feature sets, although their experiments were
only run on small data sets.

An alternative method of calculating the feature
expectations for expected BLEU training is Monte-
Carlo Markov Chain (MCMC) approximation, and
this was explored in (Arun et al., 2009) and (Arun et
al., 2010). The sampling methods introduced in this
earlier work form the basis of the current work, al-
though in using the sampler for expected BLEU train-
ing, many samples must be collected before making
a parameter weight update, as opposed to the cur-
rent work where weights may be updated after ev-
ery sample. One novel feature of Arun et al. (2010)
is that they were able to train to directly maximise
corpus BLEU, instead of its sentence-based approx-
imation, although this only made a small difference
to the results. The training methods in (Arun et al.,

269



2010) are very resource intensive, with the experi-
ments running for 48 hours on around 40 cores, on
a pruned phrase table derived from Europarl, and a
3-gram language model.

Instead of using expected BLEU as a training ob-
jective, Blunsom et al. (2008) trained their model to
directly maximise the log-likelihood of the discrim-
inative model, estimating feature expectations from
a packed chart. Their model treats derivations as
a latent variable, directly modelling the translation
probability.

Margin-based techniques have the advantage that
they do not have to employ expensive and com-
plex algorithms to calculate the feature expectations.
Typically, either perceptron ((Liang et al., 2006),
(Arun and Koehn, 2007)) or MIRA ((Watanabe et
al., 2007), (Chiang et al., 2008)) is employed, but
in both cases the idea is to repeatedly decode sen-
tences from the tuning set, and update the parame-
ter weights if the best hypothesis according to the
model differs from some “oracle” sentence. The ap-
proaches differ in the way they compute the oracle
sentence, as well as the way the weights are updated.
Normally sentences are processed one-by-one, with
a weight update after considering each sentence, and
sentence BLEU is used as the objective. However
Chiang et al. (2008) introduced an approximation to
corpus BLEU by using a rolling history. Both papers
on MIRA demonstrated its ability to extend to large
numbers of features.

In the only known application of SampleRank to
SMT, Roth et al. (2010) deploys quite a different
translation model to the usual phrase-based model,
allowing overlapping phrases and implemented as a
factor graph. Decoding is with a rather slow stochas-
tic search and performance is quite poor, but this
model, in common with the training algorithm pre-
sented in the current work, permits features which
depend on the whole sentence.

5 Discussion and Conclusions

The results presented in Table 6 show that Sam-
pleRank is a viable method of parameter tuning for
phrase-based MT systems, beating MERT in many
cases, and equalling it in others. It is also able to
do what MERT cannot do, and scale to a large num-
ber of features, with the phrase boundary feature of

Section 3.4 providing a “proof-of-concept”.
A further potential advantage of SampleRank is

that it allows training with features which depend
on the whole sentence, or even the whole document,
since a full set of hypotheses is retained through-
out training. Of course adding these features pre-
cludes decoding with the usual dynamic program-
ming based decoders, and would require an alterna-
tive method, such as MCMC (Arun et al., 2009).

As with the other alternatives to MERT men-
tioned in this paper, SampleRank training presents
the problem of determining convergence. With
MERT this is straightforward, since training (nor-
mally) comes to a halt when the estimated tuning
BLEU stops increasing and the weights stop chang-
ing. With methods such as minimum risk training,
MIRA and SampleRank, some kind of early stop-
ping criterion is usually employed, which lengthens
training unnecessarily, and adds costly decodes to
the training process. Building up sufficient practical
experience with each of these methods will offset
these problems somewhat.

Another important item for future work is to com-
pare SampleRank training with MIRA training, in
terms of performance, speed and ability to handle
large feature sets.

The code used for the experiments in this paper is
available under an open source license8.
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