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Abstract

This paper describes our submissions,
cmu-heafield-combo, to the ten tracks
of the 2011 Workshop on Machine Transla-
tion’s system combination task. We show how
the combination scheme operates by flexibly
aligning system outputs then searching a
space constructed from the alignments.
Humans judged our combination the best on
eight of ten tracks.

1 Introduction

We participated in all ten tracks of the 2011 Work-
shop on Machine Translation system combination
task as cmu-heafield-combo. This uses a sys-
tem combination scheme that builds on our prior
work (Heafield and Lavie, 2010), especially with
respect to language modeling and handling non-
English languages. We present a summary of
the system, describe improvements, list the data
used (all of the constrained monolingual data), and
present automatic results in anticipation of human
evaluation by the workshop.

2 Our Combination Scheme

Given single-best outputs from each system, the
scheme aligns system outputs then searches a space
based on these alignments. The scheme is a contin-
uation of our previous system (Heafield and Lavie,
2010) so we describe unchanged parts of the sys-
tem in less detail, preferring instead to focus on new
components.

2.1 Alignment
We run the METEOR matcher (Denkowski and
Lavie, 2010) on every pair of system outputs for a
given sentence. It identifies exact matches, identi-
cal stems (Porter, 2001) except for Czech, WordNet
synonym matches for English (Fellbaum, 1998), and
automatically extracted matches for all five target
languages. The automatic matches come from piv-
oting (Bannard and Callison-Burch, 2005) on con-
strained data. An example METEOR alignment is
shown in Figure 1, though it need not be monotone.

Twice that produced by nuclear plants

Double that that produce nuclear power stations

Figure 1: Alignment generated by METEOR showing
exact (that–that and nuclear–nuclear), stem (produced–
produce), synonym (twice–double), and unigram para-
phrase (plants–stations) alignments.

2.2 Search
The search space is unchanged from Heafield and
Lavie (2010), so we give a summary here. The gen-
eral idea is to generate a combined sentence one
word at a time, going from left to right. As the
scheme creates an output, it also steps through the
system outputs from left to right. Stepping through
systems is synchronized with the partial output, so
that words to the left are already captured in the hy-
pothesis and the next word from any of the systems
represents a meaningful extension of the partial out-
put. All of these options are considered by hypothe-
sis branching.
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Thus far, we have assumed that system outputs are
monotone: they agree on word order, so it is possi-
ble to step through all of them simultaneously. On
the left are words captured in the partial output and
on the right are the words whose meaning remains
to be captured in the output. When systems disagree
on word order, the partial output corresponds to dis-
joint pieces of a system’s output. We still retain that
notion that a word is either captured in the partial
output or not captured, but do not have a single di-
viding line between them. In this case, we still pro-
ceed from left to right, considering the first uncap-
tured word for extension. Then, we skip over parts
of a system’s output that have already been captured.

Here, we have used the informal notion of words
whose meaning is “captured” or “uncaptured” by the
partial output. The system interprets words aligned
to the partial output as captured while those not
aligned to the hypothesis are considered uncaptured.
A heuristic also cleans up excess words in order
to keep the stepping process loosely synchronized
across system outputs.

2.3 Features

We use three feature categories to guide search:

Length The length of the hypothesis in tokens.

Language Model Log probability and OOV count
from an N -gram language model. Details are
in Section 4.1.

Match Counts Counts of n-gram matches between
systems outputs and the hypothesis.

The match count features report n-gram matches
between each system and the hypothesis. Specifi-
cally, feature ms,n reports n-gram overlap between
the hypothesis and system s. We track n-gram
counts up to length N , typically 2 or 3, finding that
tracking longer lengths adds little. An example is
shown in Figure 2.

These match counts may be exact, in which case
every word of the n-gram must be the same (up
to case) or approximate, in which case any aligned
word found by METEOR may be substituted. Be-
cause exact matches handle lexical choice and in-
exact matches collect more votes that better handle
word order, we use both sets of features. However,

the limit N may be different i.e. Ne = 2 counts
exact matches up to length 2 and Na = 3 counts
inexact matches up to length 3.

System 1: Supported Proposal of France

System 2: Support for the Proposal of France

Candidate: Support for Proposal of France

Unigram Bigram Trigram
System 1 4 2 1
System 2 5 3 1

Figure 2: Example match feature values with two systems
and matches up to length three. Here, “Supported” counts
because it aligns with “Support”.

3 Related Work

Hypothesis selection (Hildebrand and Vogel, 2009)
selects an entire sentence at a time instead of picking
and merging words. This makes the approach less
flexible, in that it cannot synthesize new sentences,
but also less risky by avoiding matching and related
problems entirely.

While our alignment is based on METEOR, other
techniques are based on TER (Snover et al., 2006),
Inversion Transduction Grammars (Narsale, 2010),
and other alignment methods. These use exact
alignments and positional information to infer align-
ments, ignoring the content-based method used by
METEOR. This means they might align content
words to function words, while we never do. In prac-
tice, using both signals would likely work better.

Confusion networks (Rosti et al., 2010; Narsale,
2010) are the dominant method for system combi-
nation. These base their word order on one system,
dubbed the backbone, and have all systems vote on
editing the backbone. Word order is largely fixed to
that of one system; by contrast, ours can piece to-
gether word orders taken from multiple systems. In
a loose sense, our approach is a confusion network
where the backbone is permitted to switch after each
word.

Interestingly, BBN (Rosti et al., 2010) this year
added a novel-bigram penalty that penalizes bigrams
in the output if they do not appear in one of the sys-
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tem outputs. This is the complement of our bigram
match count features (and, since, we have a length
feature, the same up to rearranging weights). How-
ever, they threshold it to indicate whether the bigram
appears at all instead of how many systems support
the bigram.

4 Resources

The resources we use are constrained to those pro-
vided for the shared task.

For the paraphrase matches described in Sec-
tion 2.1, METEOR (Denkowski and Lavie, 2010)
trains its paraphrase tables via pivoting (Bannard
and Callison-Burch, 2005). The phrase tables are
trained using parallel data from Europarl v6 (Koehn,
2005) (fr-en, es-en, de-en, and es-de), news com-
mentary (fr-en, es-en, de-en, and cz-en), United Na-
tions (fr-en and es-en), and CzEng (cz-en) (Bojar
and Žabokrtský, 2009) sections 0–8.

4.1 Language Modeling

As with previous versions of the system, we use
language model log probability as a feature to bias
translations towards fluency. We add a second fea-
ture per language model that counts OOVs, allow-
ing MERT to independently tune the OOV penalty.
Language models often have poor OOV estimates
for translation because they come not from new text
in the same language but from new text in a differ-
ent language. The distribution is even more biased
in system combination, where most systems have al-
ready applied a language model. The new OOV fea-
ture replaces a previous feature that reported the av-
erage n-gram length matched by the model.

We added support for multiple language mod-
els so that their probabilities, OOV penalties, and
all other features are dynamically interpolated using
MERT. This we use for the Haitian Creole-English
tasks, where the first language model is a large
model built on the monolingual data except SMS
messages and the second small language model is
built on the SMS messages. The OOV features play
an important role here because frequent anonymiza-
tion markers such as “[firstname]” do not appear in
the large language model.

To scale to larger language models, we use

BigFatLM1, an open-source builder of large un-
pruned models with modified Kneser-Ney smooth-
ing. Then, we filter the models to the system out-
puts. In order for an n-gram to be queried, all of the
words must appear in system outputs for the same
sentence. This enables a filtering constraint stronger
than normal vocabulary filtering, which permits n-
grams supported only by words in different sen-
tences. Finally, we use KenLM (Heafield, 2011) for
inference at runtime.

Our primary use of data is for language model-
ing. We used essientially every constrained resource
available and appended them together to build one
large model. For every language, we used the pro-
vided Europarl v6 (Koehn, 2005), News Crawl, and
News Commentary corpora. In addition, we used:

English Gigaword Fourth Edition (Parker et al.,
2009) and the English parts of United Na-
tions documents, Giga-FrEn, and CzEng (Bojar
and Žabokrtský, 2009) sections 0–7. For the
Haitian Creole-English tasks, we built a sepa-
rate language model on the SMS messages and
used it alongside the large English model.

Czech CzEng (Bojar and Žabokrtský, 2009) sec-
tions 0–7

French Gigaword Second Edition (Mendonça et
al., 2009a) and the French parts of Giga-FrEn
and United Nations documents.

German There were no additional corpora avail-
able.

Spanish Gigaword Second Edition (Mendonça et
al., 2009b) and the Spanish parts of United Na-
tions documents.

4.2 Preprocessing

Many corpora contained excessive duplicate text.
We wrote a deduplicator that removes all but the
first instance of each line. Clean corpora generally
reduced line count by 10-25% when deduplicated,
resulting from naturally-occuring duplicates such as
“yes .” We left the duplicate lines in these corpora.
The News Crawl corpus showed a 72.6% reduction
in line count due mainly to boilerplace, such as the

1https://github.com/jhclark/bigfatlm

147



Reuters comment section header and Fark headlines
that appear in a box on many pages. We dedupli-
cated the News Crawl corpus, United Nations docu-
ments, and New York Times and LA Times portions
of English Gigaword.

The Giga-FrEn corpus is noisy. We removed lines
from Giga-FrEn if any of the following conditions
held:

• Invalid UTF8 or control characters.

• Less than 90% of characters are in the Latin
alphabet (including diacritics) or punctuation.
We did not count “<” and “>” as punctuation
to limit the amount of HTML code.

• Less than half the characters are Latin letters.

System outputs and language model training data
were normalized using the provided punctuation
normalization script, Unicode codepoint collaps-
ing, the provided Moses (Koehn et al., 2007) to-
kenizer, and several custom rules. These remove
formatting-related tokens from Gigaword, rejoin
some French words with internal apostrophes, and
threshold repetitive punctuation. In addition, Ger-
man words were segmented as explained in Section
4.3. Text normalization is more difficult for system
combination because the system outputs, while theo-
retically detokenized, contain errors that result from
different preprocessing at each site.

4.3 German Segmentation
German makes extensive use of compounding, cre-
ating words that do not cleanly align to English and
have less reliable statistics. German-English trans-
lation systems therefore typically segment German
compounds as a preprocessing step. In our case,
we are concerned with combining translations into
German that may be segmented differently. These
can be due to stylistic choices; for example both
“jahrzehnte lang” and “jahrzehntelang” appear with
approximately equal frequency as shown in Table 1.
Translation systems add additional biases due to the
various preprocessing approaches taken by individ-
ual sites and inherent biases in models such as word
alignment.

In order to properly align differently segmented
words, we normalize by segmenting all system out-
puts and our language model training data using

Words Separate Compounded
jahrzehnte lang 554 542

klar gemacht 840 802
unter anderem 49538 4

wieder herzustellen 513 1532

Table 1: Counts of separate or compounded versions of
select words in the lowercased German monolingual data.
Compounding can be optional or biased in either way.

the single-best segmentation from cdec (Dyer et
al., 2010). Running our system therefore produces
segmented German output. Internally, we tuned
towards segmented references but for final output
it is desirable to rejoin compound words. Since
the cdec segmentation was designed for German-
English translation, no corresponding desegmenter
was provided.

We created a German desegmenter in the natural
way: segment German words then invert the map-
ping to identify words that should be rejoined. To do
so, we ran every word from the German monolingual
data and system outputs through the cdec segmenter,
counted both the compounded and segmented ver-
sions in the monolingual data, and removed those
that appear segmented more often. Desegmenting is
a mildly ambiguous process because n-grams to re-
join may overlap. When an n-gram compounded to
one word, we gave that a score of n2. The total score
is a sum of these squares, favoring compounds that
cover more words. Maximizing the score is a fast
and exact dynamic programming algorithm. Casing
of unchanged words comes from equally-weighted
system votes at the character level while casing of
rejoined words is based on the majority appearance
in the corpus; this is almost always initial capital.
We ran our desegmenter followed by the workshop’s
provided detokenizer to produce the submitted out-
put.

5 Results

We tried many variations on the scheme, such as se-
lecting different systems, tuning to BLEU (Papineni
et al., 2002) or METEOR (Denkowski and Lavie,
2010), and changing the structure of the match count
features from Section 2.3. To try these, we ran
MERT 242 times, or about 24 times for each of the
ten tasks in which we participated. Then we selected
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the best performing systems on the tuning set and
submitted them, with the secondary system chosen
to meaningfully differ from the primary while still
scoring well. Once the evaluation released refer-
ences, we scored against them to generate Table 2.

On the featured Haitian Creole task, we show no
and sometimes even negative improvement. This we
attribute to the gap between the top system, bm-i2r,
and the second place system. For htraw-en, where
training data is noisy, the bm-i2r is 3.65 BLEU
higher than the second place system at 28.53 BLEU.
On htclean-en, the gap is 4.44 points to the second
place cmu-denkowski-contrastive.

The main tasks were quite competitive and many
systems were within a BLEU point of the top. This
is an ideal scenario for system combination, and we
show corresponding improvements. The English-
Czech task is difficult for our scheme because we do
not properly handle Czech morpology in alignment.
On Czech-English, online-B beat other systems by
a substantial (6.21 BLEU) margin, so we see little
gain. On English-German, the gain is small but this
is consistent with a general observation that more
improvement is seen on higher-quality systems. Fur-
ther, strength in this year’s submission comes from
language modeling, but only limited German data
was available; segmenting German improved our
scores. Translations into Spanish and French show
the impact of Gigaword in those languages.

The evaluation’s official metric is human rank-
ing judgments. On this metric, our submissions
score highest on eight of ten tracks: Czech-English,
German-English, English-Czech, English-German,
English-Spanish, English-French, the clean Haitian
Creole-English task, and the raw Haitian Creole-
English task. For Spanish-English, humans pre-
ferred RWTH’s submission. For French-English,
humans preferred RWTH and BBN. However, sys-
tem combinations were ranked against other system
combinations, but not against underlying systems,
so we suspect that the bm-i2r submission still per-
forms better than combinations on the Haitian Cre-
ole tasks. The human judges also preferred our
translations more than BLEU (where we lead on
three language pairs: English to German, Span-
ish, and French). We attribute this to the tendency
of confusion networks to drop words supported by
many systems due to position-based alignment er-

Track Entry BLEU TER MET

htraw-en
primary 32.30 56.57 61.05
contrast 31.76 56.69 60.81
bm-i2r 32.18 57.01 60.85

htclean-en
primary 36.39 51.16 63.72
contrast 36.49 51.15 63.78
bm-i2r 36.97 51.06 64.01

cz-en
primary 29.85 53.20 62.50
contrast 29.88 53.19 62.40

online-B 29.59 52.15 61.77

de-en
primary 26.21 56.19 60.56
contrast 26.11 56.42 60.54

online-B 24.30 57.95 59.63

es-en
primary 33.90 48.88 65.72
contrast 33.47 49.41 66.41

online-A 30.26 51.56 63.83

fr-en
primary 32.41 48.93 65.72
contrast 32.15 49.12 65.71

kit 30.36 50.74 64.32

en-cz
primary 20.80 61.17 41.68
contrast 20.74 61.29 41.69

online-B 20.37 61.38 41.40

en-de
primary 18.45 64.15 22.91
contrast 18.27 64.48 22.75

online-B 17.92 64.01 22.95

en-es
primary 36.47 47.08 34.96
contrast 35.82 47.52 34.64

online-B 33.85 50.09 33.96

en-fr
primary 36.42 48.28 24.29
contrast 36.31 48.56 24.12

online-B 35.34 48.68 23.53

Table 2: Automatic scores for our submissions. For com-
parison, the top individual system by BLEU is shown
in the third row of each track. Test data and references
were preprocessed prior to scoring. Metrics are uncased
and METEOR 1.0 uses adequacy-fluency parameters. We
show improvement on all tasks except Haitian Creole-
English.
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rors; our content-based alignment method avoids
many of these errors. BLEU penalizes the missing
word the same as missing punctuation while human
judges will penalize heavily for missing content. For
full results, we refer to the simultaneously published
Workshop on Machine Translation findings paper.

6 Conclusion

We participated in the all ten tracks of the sys-
tem combination, prioritizing participation and lan-
guage support over optimizing for one particular
language pair. Nonetheless, we show improvement
on several tasks, including wins by BLEU on three
tracks. The Haitian Creole and Czech-English tasks
proved challenging due to the gap between top sys-
tems. However, other tracks show a variety of
high-performing systems that make our scheme per-
form well. Unlike most other system combination
schemes, our code is open source2 so that these re-
sults may be replicated and brought to bear on simi-
lar problems.
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