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Abstract

A major weakness of extant statistical ma-
chine translation (SMT) systems is their lack
of a proper training procedure. Phrase extrac-
tion and scoring processes rely on a chain of
crude heuristics, a situation judged problem-
atic by many. In this paper, we recast the ma-
chine translation problem in the familiar terms
of a sequence labeling task, thereby enabling
the use of enriched feature sets and exact train-
ing and inference procedures. The tractabil-
ity of the whole enterprise is achieved through
an efficient implementation of the conditional
random fields (CRFs) model using a weighted
finite-state transducers library. This approach
is experimentally contrasted with several con-
ventional phrase-based systems.

1 Introduction

A weakness of existing phrase-based SMT systems,
that has been repeatedly highlighted, is their lack
of a proper training procedure. Attempts to de-
sign probabilistic models of phrase-to-phrase align-
ments (e.g. (Marcu and Wong, 2002)) have thus far
failed to overcome the related combinatorial prob-
lems (DeNero and Klein, 2008) and/or to yield im-
proved training heuristics (DeNero et al., 2006).

Phrase extraction and scoring thus rely on a chain
of heuristics see (Koehn et al., 2003), which evolve
phrase alignments from “symmetrized” word-to-
word alignments obtained with IBM models (Brown
et al., 1990) and the like (Liang et al., 2006b; Deng
and Byrne, 2006; Ganchev et al., 2008). Phrase
scoring is also mostly heuristic and relies on an op-

timized interpolation of several simple frequency-
based scores. Overall, the training procedure of
translation models within conventional phrase-based
(or hierarchical) systems is generally considered un-
satisfactory and the design of better estimation pro-
cedures remains an active research area (Wuebker et
al., 2010).

To overcome the NP-hard problems that derive
from the need to consider all possible permutations
of the source sentence, we make here a radical
simplification and consider training the translation
model given a fixed segmentation and reordering.
This idea is not new, and is one of the grounding
principle of n-gram-based approaches (Casacuberta
and Vidal, 2004; Mariño et al., 2006) in SMT. The
novelty here is that we will use this assumption to re-
cast machine translation (MT) in the familiar terms
of a sequence labeling task.

This reformulation allows us to make use of the
efficient training and inference tools that exists for
such tasks, most notably linear CRFs (Lafferty et
al., 2001; Sutton and McCallum, 2006). It also en-
ables to easily integrate linguistically informed (de-
scribing morphological or morpho-syntactical prop-
erties of phrases) and/or contextual features into the
translation model. In return, in addition to having
a better trained model, we also expect (i) to make
estimation less sensible to data sparsity issues and
(ii) to improve the ability of our system to make
the correct lexical choices based on the neighbor-
ing source words. As explained in Section 2, this
reformulation borrows much from the general ar-
chitecture of n-gram MT systems and implies to
solve several computational challenges. In our ap-
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proach, the tractability of the whole enterprise is
achieved through an efficient reimplementation of
CRFs using a public domain library for weighted
finite-state transducers (WFSTs) (see details in Sec-
tion 3). This approach is experimentally contrasted
with more conventional n-gram based and phrase-
based approaches on a standard benchmark in Sec-
tion 4, where we also evaluate the benefits of various
feature sets and training regimes. We finally relate
our new system with alternative proposals for train-
ing discriminatively SMT systems in Section 5, be-
fore drawing some lessons and discussing possible
extensions of this work.

The main contribution of this work are thus (i) a
detailed presentation of the CRF in translation in-
cluding all necessary implementation details and (ii)
an experimental study of various feature functions
and of various ways to integrate target side LM in-
formation.

2 MT as sequence labeling

In this section, we briefly review the n-gram based
approach to SMT, originally introduced in (Casacu-
berta and Vidal, 2004; Mariño et al., 2006), which
constitutes our starting point. We then describe our
new proposal, which, in essence, consists in replac-
ing the modeling of compound source-target trans-
lation units by a conditional model where the prob-
ability of each target side phrase is conditioned on
the source sentence.

2.1 The n-gram based approach in SMT
The n-gram based approach of (Mariño et al., 2006)
is a variation of the standard phrase-based model,
characterized by the peculiar form of the translation
model. In this approach, the translation model is
based on bilingual units called tuples. Tuples are
the analogous of phrase pairs, as they represent a
matching u = (e, f) between a source f and a tar-
get e word sequence. The probability of a sequence
of tuples is computed using a conventional n-gram
model as:

p(u1 . . . uI) =
I∏
i=1

p(ul|ui−1 . . . ui−n+1).

The probability of a sentence pair (f , e) is then ei-
ther recovered by marginalization, or approximated

by maximization, over all possible joint segmenta-
tions of f and e into tuples.

As for any n-gram model, the parameters are es-
timated using statistics collected in a training corpus
made of sequences of tuples derived from the par-
allel sentences in a two step process. First, a word
alignment is computed using a standard alignment
pipeline1 based on the IBM models. Source words
are then reordered so as to disentangle the align-
ment links and to synchronize the source and tar-
get texts. Special care has to be paid to non-aligned
source words, which have to be collapsed with their
neighbor words. A byproduct of this process is a de-
terministic joint segmentation of parallel sentences
into minimal bilingual units, the tuples, that consti-
tute the basic elements in the model. This process is
illustrated on Figure 1, where the unfolding process
enables the extraction of tuples such as: (demanda,
said ) or (de nouveau, again).

f : demanda de nouveau la femme voilée

e: the veiled dame said again

f̃ : la voilée femme demanda de nouveau

Figure 1: The tuple extraction process
The original (top) and reordered (bottom) French

sentence aligned with its translation.

At test time, the source text is reordered so as
to match the reordering implied by the disentangle-
ment procedure. Various proposals has been made
to perform such source side reordering (Collins et
al., 2005; Xia and McCord, 2004), or even learn-
ing reordering rules based on syntactic or morpho-
syntactic information (Crego and Mariño, 2007).
The latter approach amounts to accumulate reorder-
ing patterns during the training; test source sen-
tences are then non-deterministically reordered in
all possible ways yielding a word graph. This graph
is then monotonously decoded, where the score of
a translation hypothesis combines information from
the translation models as well as from other infor-
mation sources (lexicalized reordering model, target

1Here, using the MGIZA++ package (Gao and Vogel, 2008).
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side language model (LM), word and phrase penal-
ties, etc).

2.2 Translating with CRFs

A discriminative version of the n-gram approach
consists in modeling P (e|f) instead of P (e, f),
which can be efficiently performed with CRFs (Laf-
ferty et al., 2001; Sutton and McCallum, 2006). As-
suming matched sequences of observations (x =
xL1 ) and labels (y = yL1 ), CRFs express the con-
ditional probability of labels as:

P (yL1 |xL1 ) =
1

Z(xL1 ; θ)
exp(θTG(xL1 , y

L
1 )),

where θ is a parameter vector and G denotes a vec-
tor of feature functions testing various properties of
x and y. In the linear-chain CRF, each compo-
nent Gk(xI1, y

I
1) of G is decomposed as a sum of

local features: Gk(xI1, y
I
1) =

∑
i gk(x

I
1, yi−1, yi)2.

CRFs are trained by maximizing the (penalized) log-
likelihood of a corpus containing observations and
their labels.

In principle, the data used to train n-gram trans-
lation models provide all the necessary information
required to train a CRF3. It suffices to consider that
the alphabet of possible observations ranges over all
possible source side fragments, and that each tar-
get side of a tuple is a potential label. The model
thus defines the probability of a segmented target
ẽ = ẽI1 given the segmented and reordered source
sentence f̃ = f̃ I1 . To complete the model, one just
needs to define a distribution over source segmen-
tations P (f̃ |f). Given the deterministic relationship
between e and ẽ expressed by the “unsegmentation”
function φ which maps ẽ with e = φ(ẽ), we then
have:

P (e|f) =
∑

f̃ ,ee|φ(ee)=e

P (ẽ, f̃ |f)

=
∑

f̃ ,ee|φ(ee)=e

P (ẽ, |f̃ , f)P (f̃ |f)

=
∑

f̃ ,ee|φ(ee)=e

P (ẽ, |f̃)P (f̃ |f)

2Assuming first order dependencies.
3This is a significant difference with (Blunsom et al., 2008),

as we do not need to introduce latent variables during training.

In practice, we will only consider a restricted
number of possible segmentation/reorderings of the
source, denoted L(f), and compute the best transla-
tion e∗ as φ(ẽ∗), where:

ẽ∗ = arg maxee P (ẽ|f)

≈ arg max
f̃∈L(f),ee P (ẽ, |f̃ , f)P (f̃ |f) (1)

Even with these simplifying assumptions, this
approach raises several challenging computational
problems. First, training a CRF is quadratic in the
number of labels, of which we will have plenty (typ-
ically hundreds of thousands). A second issue is de-
coding: as we need to consider at test time a combi-
natorial number of possible source reorderings and
segmentations, we can no longer dispense with the
computation of the normalizer Z(f̃ ; θ) which is re-
quired to compute P (ẽ, f̃ |f) as P (f̃ |f)P (ẽ|f̃) and to
compare hypotheses associated with different values
of f̃ . We discuss our solutions to these problems in
the next section.

3 Implementation issues

3.1 Training

Basic training The main difficulties in training are
caused by the unusually large number of labels, each
of which corresponds to a (small) sequence of target
words. Hopefully, each observation (source side tu-
ple) occurs with a very small number of different
labels. A first simplification is thus to consider that
the set of possible “labels” ẽ for a source sequence
f̃ is limited to those that are seen in training: all
the other associations (f̃ , ẽ) are deemed impossible,
which amounts to setting the corresponding param-
eter value to −∞.

A second speed-up is to enforce sparsity in the
model, through the use of a `1 regularization term
(Tibshirani, 1996): on the one hand, this greatly re-
duces the memory usage; furthermore, sparse mod-
els are also prone to various optimization of the
forward-backward computations (Lavergne et al.,
2010). As discussed in (Ng, 2004; Turian et al.,
2007), this feature selection strategy is well suited
to the task at hand, where the number of possible
features is extremely large. Optimization is per-
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formed using the Rprop algorithm4 (Riedmiller and
Braun, 1993), which provides the memory efficiency
needed to cope with the very large feature sets con-
sidered here.

Training with a target language model One of
the main strength of the phrase-based “log-linear”
models is their ability to make use of powerful
target side language models trained on very large
amounts of monolingual texts. This ability is crucial
to achieve good performance and has to be preserved
no matter the difficulties that occur when one moves
away from conventional phrase-based systems (Chi-
ang, 2005; Huang and Chiang, 2007; Blunsom and
Osborne, 2008; Kääriäinen, 2009). It thus seems
appropriate to include a LM feature function in our
model or alternatively to define:

P (ẽ|f̃) =
1

Z(f̃ ; θ)
PLM (ẽ) exp(θTG(f̃ , ẽ)),

where PLM is the target language model and
Z(f̃ ; θ) =

∑ee PLM (ẽ) exp(θTG(f̃ , ẽ)). Imple-
menting this approach implies to deal with the lack
of synchronization between the units of the trans-
lation models, which are variable-length (possibly
empty) tuples, and the units of the language models,
which are plain words.

In practice, this extension is implemented by per-
forming training and inference over a graph whose
nodes are not only indexed by their position and the
left target context, but also by the required n-gram
(target) history. In most cases, for small values of
n such as considered in this study, the n-gram his-
tory can be deduced from the left target tuple. The
most problematic case is when the left target tuple
is NULL, which require to copy the history from the
previous states. As a consequence, for the values of
n considered here, the impact of this extension on
the total training time is limited.

Reference reachability A recurring problem for
discriminative training approaches is reference un-
reachability (Liang et al., 2006a): this happens when
the model cannot predict the reference translation,
which means in our case that the probability of the
reference cannot be computed. In our implementa-
tion, this only happens when the reference involves

4Adapted to handle a locally non-differentiable objective.

a tuple (f̃ ,ẽ) that is too rare to be included in the
model. As a practical workaround, when this hap-
pens for a given training sentence, we make sure
to “locally” augment the tuple dictionary with the
missing part of the reference, which is then removed
for processing the rest of the training corpus.

3.2 Inference
Our decoder is implemented as a cascade of
weighted finite-state transducers (WFSTs) using the
functionalities of the OpenFst library (Allauzen et
al., 2007). This library provides many basic opera-
tion for WFSTs, notably the left (π1) and right (π2)
projections as well as the composition operation (◦).
The related notions and algorithms are presented in
detail in (Mohri, 2009), to which we refer the reader.

In essence, our decoder is implemented of a finite-
state cascade involoving the following steps: (i)
source reordering and segmentation (ii) application
of the translation model and (optionally) (iii) com-
position with a target side language model, an ar-
chitecture that is closely related to the proposal of
(Kumar et al., 2006). A more precise account of
these various steps is given below, where we de-
scribe the main finite-state transducers involved in
our decoder:

• S, the acceptor for the source sentence f ;

• R, which implements segmentation and re-
ordering rules;

• T , the tuple dictionary, associating source side
sequences with possible translations based on
the inventory of tuples;

• F , the feature matcher, mapping each feature
with the corresponding parameter value;

Source reordering The computation of R mainly
follows the approach of (Crego and Mariño, 2007)
and uses a part-of-speech tagged version of the re-
ordered training data. Each reordering pattern seen
in training is generalized as a non-deterministic re-
ordering rule which expresses a possible rearrange-
ment of some subpart of the source sentence. Each
rule is implemented as an elementary finite-state
transducer, and the set of possible word reorderings
is computed as the composition of these transducers.
R is finally obtained by composing the result with a
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transducer computing all the possible segmentations
of its input into sequences of source side tuples5.

The output of S ◦ R are sequences of source side
tuples f̃ ; each path in this transducer is addition-
ally weighted with a simplistic n-tuple segmentation
model, estimated using the source side of the paral-
lel training corpus. Note that these scores are nor-
malized, so that the weight of each path labelled f̃ in
S ◦R is logP (f̃ |f).

The feature matcher F The feature matcher is
also implemented as a series of elementary weighted
transducers, each transducer being responsible for a
given class of feature functions. The simplest trans-
ducer in this family deals with the class of unigram
feature functions, ie. feature functions that only test
the current observation and label. It is represented
on the left part of Figure 3.2, where for the sake of
readability we only display one example for each
test pattern (here: an unconditional feature that al-
ways returns true for a given label, a test on the
source word, and a test on the source POS label).
As long as dependencies between source and/or tar-
get symbols remain local, they can be captured by
finite-state transducers such as the ones on the mid
and right part of Figure 3.2, which respectively com-
pute bigram target features, and joint bigram source
and target features.

The feature matcher F is computed as the com-
position of these elementary transducers, where we
only include source and target labels that can occur
given the current input sentence. Weights in F are
interpreted in the tropical semiring. exp(F ) is ob-
tained by replacing weights w in F with exp(w) in
the real semiring.

Decoding a word graph If the input segmentation
and reordering were deterministically set, meaning
that the automaton I = π1(S ◦ R ◦ T ) would only
contain one path, decoding would amount to finding
the best path in S ◦R ◦ T ◦F . However, we need to
compute:

arg maxee P (ẽ|f) = arg maxee
∑
f̃

P (ẽ, f̃ |f)

= arg maxee
∑
f̃

P (ẽ|f̃)P (f̃ |f).

5When none is found, we also consider a maximal segmen-
tation into isolated words.

This requires to compare model scores for mul-
tiple source segmentations and reorderings f̃ , hence
to compute P (f̃ |f) and P (ẽ|f̃), rather than just the
non-normalized value that is usually used in CRFs.

Computing the normalizer Z(f̃ ; θ) for all se-
quences in S ◦R is performed efficiently using stan-
dard finite-state operations as :

D = det(π1(π2(S ◦R) ◦ T ◦ exp(F ))).

In fact, determinization (in the real semiring) has the
effect of accumulating for each f̃ the corresponding
normalizer Z(f̃ ; θ). Replacing each weight w in D
by − log(w) and using the log semiring enables to
compute− log(Z(f̃ ; θ)). The best translation is then
obtained as: bestpath(π2(S◦R)◦−log(D)◦T ◦F )
in the tropical semiring.

Decoding and Rescoring with a target language
model An alternative manner of using a (large)
target side language model is to use it for rescoring
purposes. The consistent use of finite-state machines
and operations makes it fairly easy to include one
during decoding : it suffices to perform the search in
π2(S◦R)◦− log(D)◦T ◦F ◦L, where L represents
a n-gram language model. When combining several
models, notably a source segmentation model and/or
a target language model for rescoring, we have made
sure to rescale the (log)probabilities so as to balance
the language model scores with the CRF scores, and
to use a fixed word bonus to make hypotheses of dif-
ferent length more comparable. All these parameters
are tuned as part of the decoder development pro-
cess. It is finally noteworthy that, in our architecture,
alternative decoding strategies, such as MBR (Ku-
mar and Byrne, 2004) are also readily implemented.

4 Experiments

4.1 Corpora and metrics
For these experiments, we have used a medium size
training corpus, extracted from the datasets made
available for WMT 20116 evaluation campaign, and
have focused on one translation direction, from
French to English7.

Translation model training uses the entire News-
Commentary subpart of the WMT’2011 training

6statmt.org/wmt11
7Results in the other direction suggest similar conclusions.

546



0

le : the/θle,the

DET : the/θDET,the

∗ : the/θthe 0 1

∗ : the/0

∗ : cat/θthe,cat

0 1

∗ : the/0

chat : cat/θchat,cat

Figure 2: Feature matchers. The star symbol (*) matches any possible observation.

French English
sent˙ token types token types

train 115 K 3 339 K 60 K 2 816 K 58 K
test 2008 2.0 K 55 K 9 K 49 K 8 K
test 2009 2.5 K 72 K 11 K 65 K 10 K
test 2010 2.5 K 69 K 10 K 61 K 9 K

Table 1: Corpora used for the experiments

data; for language models, we have considered two
approaches (i) a “large” bigram model highly opti-
mized using all the available monolingual data and
(ii) a “small” trigram language model trained on
just the English side of the NewsCommentary cor-
pus. The regularization parameters used in training
are tuned using the WMT 2009 test set; the various
parameters implied in the decoding are tuned (for
BLEU) on WMT 2008 test set; the internal tests re-
ported below are performed on the 2010 test lines
(see Table 1) using the best parameters found during
tuning. Various statistics regarding these corpora are
reproduced on Table 1.

All the training corpora were aligned using
MGIZA++ with standard parameters8, and pro-
cessed in the standard tuple extraction pipeline. The
development and test corpora were also processed
analogously. For the sake of comparison, we also
trained a standard n-gram-based and a Moses sys-
tem (Koehn et al., 2007) with default parameters
and a 3-gram target LM trained using only the tar-
get side of our parallel corpus. The development set
(test 2009) was used to tune these two systems. All
performance are measured using BLEU (Papineni et
al., 2002).

8As part of a much larger batch of texts.

4.2 Features
The baseline system is composed only of transla-
tion features [trs] and target bigram features [t2g].
The former correspond to functions of the form
gus,t(f̃ , ẽ, i) = I(f̃i = s ∧ ẽi = t), where s
and t respectively denote source and target phrases
and I() is the indicator function. These are also
generalized to part-of-speech and also to any pos-
sible source phrase, giving rise to features such as
gu∗,t = (f̃ , ẽ, i) = I(ẽi = t). Target bigram features
correspond to functions of the form gbt,t′(f̃ , ẽ, i) =
I(ẽi−1 = t∧ ẽi = t′). The last baseline feature is the
copy feature, which fires whenever the source and
target segments are identical.

Supplementary groups of features are considered
in further stages:

• suffix/prefix features [ix]. These features allow
to generalize baseline features on the source
side to fixed length prefixes and suffixes, thus
smoothing the parameters.

• context features [ctx]. These features are sim-
ilar to unigram features, but also test the left
source tuple and the corresponding part-of-
speech.

• segmentation features [seg]. These features are
meant to express a preference for longer tuples
and to regulate the number of target words per
source word. We consider the following feature
functions (|e| denotes the length of e):

– target length features :
gl∗,l(f̃ , ẽ, i) = I(|ẽi| = l)

– source-target length features :
gll,l′(f̃ , ẽ, i) = I(|f̃i| = l ∧ |ẽi| = l′)

– source-target length ratio :

gll(f̃ , ẽ, i) = I(round( |
efi|
|eei|) = l)
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Note that all these features are further condi-
tioned on the target label.

• reordering features [ord]. These features are
meant to model preferences for specific lo-
cal reordering patterns and take into account
neighbor source fragments in ẽ together with
the current label. Each source side segment
f̃i is made of some source words that, prior
to source reordering, were located at indices
i1 . . . il, so that f̃i = fi1 . . . fil . The high-
est (resp. lowest) index in this sequence is df̃ie
(resp. bf̃ic). The leftmost (resp. rightmost) in-
dex is [f̃i[ (resp. ]f̃i]).

Using these notations, our model includes the
following patterns:

– distortion features, measuring the gaps be-
tween consecutive source fragments :
gol,t(f̃ , ẽ, i)=I(∆(f̃i, ẽi)= l ∧ ẽi= t),
where ∆(f̃i, ẽi) ={
bf̃ic − df̃i−1e if (df̃i−1e ≤ bf̃ic)
df̃ie − bf̃i−1c otherwise .

– lexicalized reordering, identifying mono-
tone, swap and discontinuous configura-
tions (Tillman, 2004). The monotonous
test is defined as: gom(f̃ , ẽ, i) =
I(]ei−1] = [ei[); the swap and discon-
tinuous configurations are defined analo-
gously.

– ”gappiness” test : this feature is activated
whenever the source indices i1...il contain
one or several gaps.

4.3 Experiments and lessons learned
Training time The first lesson learned is that
training can be performed efficiently. Our baseline
system, which only contains trs and trg contains ap-
proximately 87 million features, out of which a lit-
tle bit more than 600K are selected. Adding up all
supplementary features raises the number of param-
eters to about 130M features, out of which 1.5M are
found useful. All these systems require between 3
and 5 hours to train9. These numbers are obtained
with a `1 penalty term ≈ 1, which offers a good bal-
ance between accuracy and sparsity.

9All experiments run on a server with 64G of memory and
two Xeon processors with 4 cores at 2.27 Ghz.

Test conditions In order to better assess the
strengths and weaknesses of our approach, we com-
pare several test settings: the most favorable con-
siders only one possible segmentation/reordering f̃
for each f , obtained through forced alignment with
the reference; we then consider the more challeng-
ing case where the reordering is fixed, but several
segmentations are considered; then the regular de-
coding task, where both segmentation and reorder-
ing are unknown and where the entire space of all
segmentations and reordering is searched. For each
condition, we also vary (i) the set of features used
and (ii) the target language model used, if any.
Wherever applicable, we also report contrasts with
n-gram-based systems subject to the same input and
comparable resources, varying the order of the tuple
language model, as well as with Moses. Results are
in Table 2.

dev test # feat.
decoding with optimal segmentation/reordering
CRF (trs,trg) 23.8 25.1 660K
CRF +ctx 24.1 25.4 1.5M
CRF +ix,ord,seg 24.3 25.6 1.5M
decoding with optimal reordering
n-gram (2g,3g) 20.6 24.1 755K
n-gram (3g,3g) 21.5 25.2 755K
CRF trs,trg - 22.8 660K
CRF +ctx - 23.1 1.5M
CRF +ix,ord,seg - 23.5 1.5M
regular decoding
Moses (3g) 21.2 20.5
n-gram (2g,3g) 20.6 20.2 755K
n-gram (3g,3g) 21.5 21.2 755K
CRF (trs,trg) - 18.3 660K
CRF +ctx - 18.8 1.5M
CRF +ix,ord,seg - 19.1 1.5M
CRF +ix,ord,seg+3g - 19.1 1.5M

Table 2: Translation performance

Extending the feature set As expected, the use
of increasingly complex feature sets seems benefi-
cial in all experimented conditions. It is noteworthy
that throwing in reordering and contextual features
is helping, even when decoding one single segmen-
tation and reordering. This is because these features
do not help to select the best input reordering, but
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help choose the best target phrase.

Searching a larger space Going from the sim-
pler to the more difficult conditions yields signif-
icant degradations in the model, as our best score
drops down from 25.6 to 23.5 (with known reorder-
ing) then to 19.1 (regular decoding). This is a clear
indication that our current segmentation/reordering
model is not delivering very useful scores. A similar
loss is incurred by the n-gram system, which loses
4 bleu points between the two conditions.

LM rescoring Our results to date with target side
language models have proven inconclusive, which
might explain why our best results remain between
one and two BLEU points behind the n-gram based
system using comparable information. Note also
that preliminary experiments with incorporating a
large bigram during training have also failed to date
to provide us with improvements over the baseline.

Summary In sum, the results accumulated during
this first round of experiments tend to show that our
CRF model is still underperforming the more es-
tablished baseline by approximately 1 to 1.5 BLEU
point, when provided with comparable resources.
Sources of improvements that have been clearly
identified is the scoring of reordering and segmen-
tations, and the use of a target language model in
training and/or decoding.

5 Related work

Discriminative learning approaches have proven
successful for many NLP tasks, notably thanks to
their ability to cope with flexible linguistic repre-
sentations and to accommodate potentially redun-
dant descriptions. This is especially appealing for
machine translation, where the mapping between
a source word or phrase and its target correlate(s)
seems to involve an large array of factors, such as its
morphology, its syntactic role, its meaning, its lexi-
cal context, etc. (see eg. (Och et al., 2004; Gimpel
and Smith, 2008; Chiang et al., 2009), for inspira-
tion regarding potentially useful features in SMT).

Discriminative learning requires (i) a parameter-
ized scoring function and (ii) a training objective.
The scoring function is usually assumed to be linear
and ranks candidate outputs y for input x accord-
ing to θTG(x, y), where θ is the parameter vector. θ

andG deterministically imply the input/output map-
ping as x → arg maxy θTG(x, y). Given a set of
training pairs {xi, yi, i = 1 . . . N}, parameters are
learned by optimizing some regularized loss func-
tion of θ, so as to make the inferred input/output
mapping faithfully replicate the observed instances.

Machine translation, like most NLP tasks, does
not easily lend itself to that approach, due to the
complexity of the input/output objects (word or la-
bel strings, parse trees, dependency structures, etc).
This complexity makes inference and learning in-
tractable, as both steps imply the resolution of
the arg max problem over a combinatorially large
space of candidates y. Structured learning tech-
niques (Bakir et al., 2007), developed over the last
decade, rely on decompositions of these objects into
sub-parts as part of a derivation process, and use
conditional independence assumptions between sub-
parts to render the learning and inference problem
tractable. For machine translation, this only pro-
vides part of the solution, as the training data only
contain pairs of word aligned sentences (f , e), but
lack the explicit derivation h from f to e that is re-
quired to train the model in a fully supervised way.

The approach of (Liang et al., 2006a) circumvents
the issue by assuming that the hidden derivation h
can be approximated through forced decoding. As-
suming that h is in fact observed as the optimal
(Viterbi) derivation h∗ from f to e given the cur-
rent parameter value10, it is straightforward to re-
cast the training of a phrase-based system as a stan-
dard structured learning problem, thus amenable to
training algorithms such as the averaged perceptron
of (Collins, 2002). This approximation is however
not genuine, and the choice of the most appropriate
derivation seems to raises intriguing issues (Watan-
abe et al., 2007; Chiang et al., 2008).

The authors of (Blunsom et al., 2008; Blunsom
and Osborne, 2008) consider models for which it is
computationally possible to marginalize out all pos-
sible derivations of a given translation. As demon-
strated in these papers, this approach is tractable
even when the derivation process is a based on syn-
chronous context-free grammars, rather that finite-
state devices. However, the computational cost as-

10If one actually exists in the model, thus raising the issue of
reference reachability, see discussion in Section 3.
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sociated with training and inference remains very
high, especially when using a target side language
model, which seems to preclude the application to
large-scale translation tasks11. The recent work of
(Dyer and Resnik, 2010) proceeds from a similar
vein: translation is however modeled as a two step
process, where a set of possible source reorderings,
represented as a parse forest, are associated with
possible target sentences, using, as we do, a finite-
state translation model. This translation model is
trained discriminatively by marginalizing out the
(unobserved) reordering variables; inference can be
performed effectively by intersecting the input parse
forest with a transducer representing translation op-
tions.

A third strategy is to consider a simpler class of
derivation process, which only partly describe the
mapping between f and e. This is, for instance,
the approach of (Bangalore et al., 2007), where a
simple bag-of-word representation of the target sen-
tence is computed using a battery of boolean clas-
sifiers (one for each target word). In this approach,
discriminative training is readily applicable, as the
required supervision is overtly present in example
source-target pairs (f , e); however, a complemen-
tary reshaping/reordering step is necessary to turn
the bag-of-word into a full-fledged translation. This
work was recently revisited in (Mauser et al., 2009),
where a conditional model predicting the presence
of each target phrase provides a supplementary score
for the standard “log-linear” model.

This line of research has been continued notably
in (Kääriäinen, 2009), which introduces an exponen-
tial model of bag of phrases (allowing some over-
lap), that enables to capture localized dependencies
between target words, while preserving (to some ex-
tend) the efficiency of training and inference. Su-
pervision is here indirectly provided by word align-
ment and correlated phrase extraction processes
implemented in conventional phrase-based systems
(Koehn et al., 2003). If this model seems to deliver
state-of-the-art performance on large-scale tasks, it
does so at a very high computational cost. More-
over, for lack of an internal modeling of reordering
processes, this approach, like the bag-of-word ap-

11For instance, the experiments reported in (Blunsom and Os-
borne, 2008) use the English-Chinese BTEC, where the average
sentence length is lesser than 10.

proach, seems only appropriate for language pairs
with similar or related word ordering.

The approach developed in this paper fills a gap
between the hierarchical model of (Blunsom et
al., 2008) and the phrase-based model (Kääriäinen,
2009), with whom we share several important as-
sumptions, such as the use of alignment information
to provide supervision, and the resort to a an “ex-
ternal”, albeit a more powerful, reordering compo-
nent. Using a finite-state model enables to process
reasonably large corpora, and gives some hopes as to
the scalability of the whole enterprise; it also makes
the integration of a target side language model much
easier than in hierarchical models.

6 Discussion and future work

In this paper, we have given detailed description of
an original phrase-based system implementing a dis-
criminative version of the n-gram model, where the
translation model probabilities are computed with
conditional random fields. We have showed how
to implement this approach using a memory effi-
cient implementation of the optimization algorithms
needed for training: in our approach, training a mid-
scale translation system with hundred of thousands
sentence pairs and millions of features only takes a
couple of hours on a standalone desktop machine.
Using `1 regularization has enabled to assess the
usefulness of various families of features.

We have also detailed a complete decoder im-
plemented as a pipeline of finite-state transducers,
which allows to efficiently combine several models,
to produce n-best lists and word lattices.

The results obtained in a series of preliminary ex-
periments show that our system is already deliver-
ing competitive translations, as acknowledged by a
comparison with two strong phrase-based baselines.
We have already started to implement various opti-
mizations and to experiment with somewhat larger
datasets (up to 500K sentence pairs) and larger fea-
ture sets, notably incorporating word sense disam-
biguation features: this work needs to be contin-
ued. In addition, we intend to explore a number
of extensions of this architecture, such as imple-
menting MBR decoding (Kumar and Byrne, 2004)
or adapting the translation model to new domains
and conditions, using, for instance, the proposal of
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(Daume III, 2007)12.
One positive side effect of experimenting with

new translation models is that they help reevalu-
ate the performance of the whole translation system
pipeline: in particular, discriminative training seems
to be more sensible to alignments errors than the cor-
responding n-gram system, which suggests to pay
more attention to possible errors in the training data;
we have also seen that the current reordering model
defines a too narrow search space and delivers in-
sufficiently discriminant scores: we will investigate
various ways to further improve the computation and
scoring of hypothetical source reorderings.
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