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Abstract

Accuracy of dependency parsers is one of the
key factors limiting the quality of dependency-
based machine translation. This paper deals
with the influence of various dependency pars-
ing approaches (and also different training
data size) on the overall performance of an
English-to-Czech dependency-based statisti-
cal translation system implemented in the
Treex framework. We also study the relation-
ship between parsing accuracy in terms of un-
labeled attachment score and machine transla-
tion quality in terms of BLEU.

1 Introduction

In the last years, statistical n-gram models domi-
nated the field of Machine Translation (MT). How-
ever, their results are still far from perfect. Therefore
we believe it makes sense to investigate alternative
statistical approaches. This paper is focused on an
analysis-transfer-synthesis translation system called
TectoMT whose transfer representation has a shape
of a deep-syntactic dependency tree. The system has
been introduced by Žabokrtský et al. (2008). The
translation direction under consideration is English-
to-Czech.

It has been shown by Popel (2009) that the current
accuracy of the dependency parser employed in this
translation system is one of the limiting factors from
the viewpoint of its output quality. In other words,
the parsing phase is responsible for a large portion
of translation errors. The biggest source of trans-
lation errors in the referred study was (and prob-
ably still is) the transfer phase, however the pro-

portion has changed since and the relative impor-
tance of the parsing phase has grown, because the
tranfer phase errors have already been addressed by
improvements based on Hidden Markov Tree Mod-
els for lexical and syntactic choice as shown by
Žabokrtský and Popel (2009), and by context sensi-
tive translation models based on maximum entropy
as described by Mareček et al. (2010).

Our study proceeds along two directions. First,
we train two state-of-the-art dependency parsers on
training sets with varying size. Second, we use
five parsers based on different parsing techniques.
In both cases we document the relation between
parsing accuracy (in terms of Unlabeled Attachment
Score, UAS) and translation quality (estimated by
the well known BLEU metric).

The motivation behind the first set of experiments
is that we can extrapolate the learning curve and try
to predict how new advances in dependency parsing
can affect MT quality in the future.

The second experiment series is motivated by
the hypothesis that parsers based on different ap-
proaches are likely to have a different distribution
of errors, even if they can have competitive perfor-
mance in parsing accuracy. In dependency parsing
metrics, all types of incorrect edges typically have
the same weight,1 but some incorrect edges can be
more harmful than others from the MT viewpoint.
For instance, an incorrect attachment of an adverbial
node is usually harmless, while incorrect attachment
of a subject node might have several negative conse-

1This issue has been tackled already in the parsing literature;
for example, some authors disregard placement of punctuation
nodes within trees in the evaluation (Zeman, 2004).
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quences such as:

• unrecognized finiteness of the governing verb,
which can lead to a wrong syntactization on the
target side (an infinitive verb phrase instead of
a finite clause),

• wrong choice of the target-side verb form (be-
cause of unrecognized subject-predicate agree-
ment),

• missing punctuation (because of wrongly rec-
ognized finite clause boundaries),

• wrong placement of clitics (because of wrongly
recognized finite clause boundaries),

• wrong form of pronouns (personal and posses-
sive pronouns referring to the clause’s subject
should have reflexive forms in Czech).

Thus it is obvious that the parser choice is im-
portant and that it might not be enough to choose a
parser, for machine translation, only according to its
UAS.

Due to growing popularity of dependency syntax
in the last years, there are a number of dependency
parsers available. The present paper deals with
five parsers evaluated within the translation frame-
work: three genuine dependency parsers, namely the
parsers described in (McDonald et al., 2005), (Nivre
et al., 2007), and (Zhang and Nivre, 2011), and two
constituency parsers (Charniak and Johnson, 2005)
and (Klein and Manning, 2003), whose outputs were
converted to dependency structures by Penn Con-
verter (Johansson and Nugues, 2007).

As for the related literature, there is no published
study measuring the influence of dependency parsers
on dependency-based MT to our knowledge.2

The remainder of this paper is structured as fol-
lows. The overall translation pipeline, within which
the parsers are tested, is described in Section 2. Sec-
tion 3 lists the parsers under consideration and their
main features. Section 4 summarizes the influence
of the selected parsers on the MT quality in terms of
BLEU. Section 5 concludes.

2However, the parser bottleneck of the dependency-based
MT approach was observed also by other researchers (Robert
Moore, personal communication).

2 Dependency-based Translation in Treex

We have implemented our experiments in the Treex
software framework (formerly TectoMT, introduced
by Žabokrtský et al. (2008)), which already offers
tool chains for analysis and synthesis of Czech and
English sentences.

We use the tectogrammatical (deep-syntactic)
layer of language representation as the transfer layer
in the presented MT experiments. Tectogrammat-
ics was introduced by Sgall (1967) and further
elaborated within the Prague Dependency Treebank
project (Hajič et al., 2006). On this layer, each
sentence is represented as a tectogrammatical tree,
whose main properties (from the MT viewpoint) are
the following:

1. nodes represent autosemantic words,

2. edges represent semantic dependencies (a node
is an argument or a modifier of its parent),

3. there are no functional words (prepositions,
auxiliary words) in the tree, and the autose-
mantic words appear only in their base forms
(lemmas). Morphologically indispensable cat-
egories (such as number with nouns or tense
with verbs, but not number with verbs as it is
only imposed by agreement) are stored in sep-
arate node attributes (grammatemes).

The intuitions behind the decision to use tec-
togrammatics for MT are the following: we be-
lieve that (1) tectogrammatics largely abstracts from
language-specific means (inflection, agglutination,
functional words etc.) of expressing non-lexical
meanings and thus tectogrammatical trees are sup-
posed to be highly similar across languages, (2)
it enables a natural transfer factorization,3 (3) and
local tree contexts in tectogrammatical trees carry
more information (especially for lexical choice) than
local linear contexts in the original sentences.

The translation scenario is outlined in the rest of
this section.

3Morphological categories can be translated almost inde-
pendently from lemmas, which makes parallel training data
‘denser’, especially when translating from/to a language with
rich inflection such as Czech.
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2.1 Analysis

The input English text is segmented into sentences
and tokens. The tokens are lemmatized and tagged
with Penn Treebank tags using the Morce tagger
(Spoustová et al., 2007). Then one of the studied
dependency parsers is applied and a surface-syntax
dependency tree (analytical tree in the PDT termi-
nology) is created for each sentence.

This tree is converted to a tectogrammatical tree.
Each autosemantic word with its associated func-
tional words is collapsed into a single tectogram-
matical node, labeled with a lemma, formeme,4 and
semantically indispensable morphologically cate-
gories; coreference is also resolved.

2.2 Transfer

The transfer phase follows, whose most difficult part
consists especially in labeling the tree with target-
side lemmas and formemes. There are also other
types of changes, such as node addition and dele-
tion. However, as shown by Popel (2009), changes
of tree topology are required relatively infrequently
due to the language abstractions on the tectogram-
matical layer.

Currently, translation models based on Maxi-
mum Entropy classifiers are used both for lemmas
and formemes (Mareček et al., 2010). Tree label-
ing is optimized using Hidden Tree Markov Mod-
els (Žabokrtský and Popel, 2009), which makes
use of target-language dependency tree probabilistic
model.

All models used in the transfer phase are trained
using training sections of the Czech-English parallel
corpus CzEng 0.9 (Bojar and Žabokrtský, 2009).

2.3 Synthesis

Finally, surface sentence shape is synthesized from
the tectogrammatical tree, which is basically the
reverse operation of the tectogrammatical analy-
sis. It consists of adding punctuation and functional

4Formeme captures the morphosyntactic means which are
used for expressing the tectogrammatical node in the surface
sentence shape. Examples of formeme values: v:that+fin –
finite verb in a subordinated clause introduced with conjunction
that, n:sb – semantic noun in a subject position, n:for+X –
semantic noun in a prepositional group introduced with prepo-
sition for, adj:attr – semantic adjective in an attributive po-
sition.

words, spreading morphological categories accord-
ing to grammatical agreement, performing inflection
(using Czech morphology database (Hajič, 2004)),
arranging word order etc.

The difference from the analysis phase is that
there is not very much space for optimization in the
synthesis phase. In other words, final sentence shape
is determined almost uniquely by the tectogrammat-
ical tree (enriched with formemes) resulting from
the transfer phase. However, if there are not enough
constraints for a unique choice of a surface form of
a lemma, then a unigram language model is used for
the final decision. The model was trained using 500
million words from the Czech National Corpus.5

3 Involved Parsers

We performed experiments with parsers from
three families: graph-based parsers, transition-
based parsers, and phrase-structure parsers (with
constituency-to-dependency postprocessing).

3.1 Graph-based Parser

In graph-based parsing, we learn a model for scoring
graph edges, and we search for the highest-scoring
tree composed of the graph’s edges. We used Max-
imum Spanning Tree parser (Mcdonald and Pereira,
2006) which is capable of incorporating second or-
der features (MST for short).

3.2 Transition-based Parsers

Transition-based parsers utilize the shift-reduce al-
gorithm. Input words are put into a queue and
consumed by shift-reduce actions, while the out-
put parser is gradually built. Unlike graph-based
parsers, transition-based parsers have linear time
complexity and allow straightforward application of
non-local features.

We included two transition-based parsers into our
experiments:

• Malt – Malt parser introduced by Nivre et al.
(2007) 6

5http://ucnk.ff.cuni.cz
6We used stackeager algorithm, liblinear learner, and

the enriched feature set for English (the same configu-
ration as in pretrained English models downloadable at
http://maltparser.org.
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• ZPar – Zpar parser7 which is basically an al-
ternative implementation of the Malt parser,
employing a richer set of non-local features as
described by Zhang and Nivre (2011).

3.3 CFG-based Tree Parsers

Another option how to obtain dependency trees is
to apply a constituency parser, recognize heads in
the resulting phrase structures and apply a recur-
sive algorithm for converting phrase-structure trees
into constituency trees (the convertibility of the two
types of syntactic structures was studied already by
Gaifman (1965)).

We used two constituency parsers:

• Stanford – The Stanford parser (Klein and
Manning, 2003),8

• CJ – a MaxEnt-based parser combined with
discriminative reranking (Charniak and John-
son, 2005).9

Before applying the parsers on the text, the system
removes all spaces within tokens. For instance U. S.
becomes U.S. to restrict the parsers from creating
two new tokens. Tokenization built into both parsers
is bypassed and the default tokenization in Treex is
used.

After parsing, Penn Converter introduced by Jo-
hansson and Nugues (2007) is applied, with the
-conll2007 option, to change the constituent
structure output, of the two parsers, into CoNLL de-
pendency structure. This allows us to keep the for-
mats consistent with the output of both MST and
MaltParser within the Treex framework.

There is an implemented procedure for cre-
ating tectogrammatical trees from the English
phrase structure trees described by Kučerová and
Žabokrtský (2002). Using the procedure is more
straightforward, as it does not go through the
CoNLL-style trees; English CoNLL-style trees dif-
fer slightly from the PDT conventions (e.g. in at-
taching auxiliary verbs) and thus needs additional

7http://sourceforge.net/projects/zpar/ (version 0.4)
8Only the constituent, phrase based, parsed output is used in

these experiments.
9We are using the default settings from the August 2006 ver-

sion of the software.

postprocessing for our purposes. However, we de-
cided to stick to Penn Converter, so that the similar-
ity of the translation scenarios is maximized for all
parsers.

3.4 Common Preprocessing: Shallow Sentence
Chunking

According to our experience, many dependency
parsers have troubles with analyzing sentences that
contain parenthesed or quoted phrases, especially if
they are long.

We use the assumption that in most cases the con-
tent of parentheses or quotes should correspond to
a connected subgraph (subtree) of the syntactic tree.
We implemented a very shallow sentence chunker
(SentChunk) which recognizes parenthesed word
sequences. These sequences can be passed to a
parser first, and be parsed independently of the rest
of the sentence. This was shown to improve not only
parsing accuracy of the parenthesed word sequence
(which is forced to remain in one subtree), but also
the rest of the sentence.10

In our experiments, SentChunk is used only
in combination with the three genuine dependency
parsers.

4 Experiments and Evaluation

4.1 Data for Parsers’ Training and Evaluation

The dependency trees needed for training the parsers
and evaluating their UAS were created from the
Penn Treebank data (enriched first with internal
noun phrase structure applied via scripts provided
by Vadas and Curran (2007)) by Penn Converter (Jo-
hansson and Nugues, 2007) with the -conll2007
option (PennConv for short).

All the parsers were evaluated on the same data –
section 23.

All the parsers were trained on sections 02–21,
except for the Stanford parser which was trained
on sections 01–21. We were able to retrain the
parser models only for MST and Malt. For the
other parsers we used pretrained models available on
the Internet: CJ’s default model ec50spfinal,
Stanford’s wsjPCFG.ser.gz model, and

10Edge length is a common feature in dependency parsers, so
“deleting” parenthesed words may give higher scores to correct
dependency links that happened to span over the parentheses.
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ZPar’s english.tar.gz. The model of ZPar
is trained on data converted to dependencies using
Penn2Malt tool,11 which selects the last member of
a coordination as the head. To be able to compare
ZPar’s output with the other parsers, we postpro-
cessed it by a simple ConjAsHead code that con-
verts this style of coordinations to the one used in
CoNLL2007, where the conjuction is the head.

4.2 Reference Translations Used for Evaluation

Translation experiments were evaluated using refer-
ence translations from the new-dev2009 data set,
provided by the organizors of shared translation task
with the Workshop on Statistical Machine Transla-
tion.

4.3 Influence of Parser Training Data Size

We trained a sequence of parser models for MST and
Malt, using a roughly exponentially growing se-
quence of Penn Treebank subsets. The subsets are
contiguous and start from the beginning of section
02. The results are collected in Tables 1 and 2.12

#tokens UAS BLEU NIST
100 0.362 0.0579 3.6375
300 0.509 0.0859 4.3853

1000 0.591 0.0995 4.6548
3000 0.623 0.1054 4.7972

10000 0.680 0.1130 4.9695
30000 0.719 0.1215 5.0705

100000 0.749 0.1232 5.1193
300000 0.776 0.1257 5.1571
990180 0.793 0.1280 5.1915

Table 1: The effect of training data size on parsing accu-
racy and on translation performance with MST.

The trend of the relation between the training data
size and BLEU is visible also in Figure 1. It is ob-
vious that increasing the training data has a positive
effect on the translation quality. However, the pace
of growth of BLEU is sublogarithmic, and becomes
unconvincing above 100,000 training tokens. It in-
dicates that given one of the two parsers integrated

11http://w3.msi.vxu.se/˜nivre/research/
Penn2Malt.html

12To our knowledge, the best system participating in the
shared task reaches BLEU 17.8 for this translation direction.

#tokens UAS BLEU NIST
100 0.454 0.0763 4.0555
300 0.518 0.0932 4.4698

1000 0.591 0.1042 4.6769
3000 0.616 0.1068 4.7472

10000 0.665 0.1140 4.9100
30000 0.695 0.1176 4.9744

100000 0.723 0.1226 5.0504
300000 0.740 0.1238 5.1005
990180 0.759 0.1253 5.1296

Table 2: The effect of training data size on parsing accu-
racy and on translation performance with Malt.
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Figure 1: The effect of parser training data size of BLEU
with Malt and MST parsers.

into our translation framework, increasing the parser
training data alone would probably not lead to a sub-
stantial improvement of the translation performance.

4.4 Influence of Parser Choice

Table 3 summarizes our experiments with the five
parsers integrated into the tectogrammatical transla-
tion pipeline. Two configurations (with and without
SentChunk) are listed for the genuine dependency
parsers. The relationship between UAS and BLEU
for (the best configurations of) all five parsers is de-
picted also in Figure 2.

Additionally, we used paired bootstrap 95% con-
fidence interval testing (Zhang et al., 2004), to check
which BLEU differences are significant. For the
five compared parser (with SentChunk if appli-
cable), only four comparisons are not significant:
MST-CJ, MST-Stanford, Malt-Stanford,
and CJ-Stanford.
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Parser Training data Preprocessing Postprocessing UAS BLEU NIST TER
MST PennTB + PennConv SentChunk – 0.793 0.1280 5.192 0.735
MST PennTB + PennConv – – 0.794 0.1236 5.149 0.739
Malt PennTB + PennConv SentChunk – 0.760 0.1253 5.130 0.740
Malt PennTB + PennConv – – 0.761 0.1214 5.088 0.744
Zpar PennTB + Penn2Malt SentChunk ConjAsHead 0.793 0.1176 5.039 0.749
Zpar PennTB + Penn2Malt – ConjAsHead 0.792 0.1127 4.984 0.754
CJ PennTB – PennConv 0.904 0.1284 5.189 0.737
Stanford PennTB – PennConv 0.825 0.1277 5.137 0.740

Table 3: Dependency parsers tested in the translation pipeline.
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Figure 2: Unlabeled Attachment Score versus BLEU.

Even if BLEU grows relatively smoothly with
UAS for different parsing models of the same parser,
one can see that there is no obvious relation be-
tween UAS and BLEU accross all parsers. MST and
Zpar have the same UAS but quite different BLEU,
whereas MST and CJ have very similar BLEU but
distant UAS. It confirms the original hypothesis that
it is not only the overall UAS, but also the parser-
specific distribution of errors what matters.

4.5 Influence of Shallow Sentence Chunking

Table 3 confirms that parsing the contents paren-
theses separately from the rest of the sentence
(SentChunk) has a positive effect with all three
dependency parsers. Surprisingly, even if the effect
on UAS is negligible, the improvement is almost
half of BLEU point which is significant for all the
three parsers.

4.6 Discussion on Result Comparability

We tried to isolate the effects of the properties of
selected parsers, however, the separation from other
influencing factors is not perfect due to several tech-
nical issues:

• So far, we were not able to retrain the models
for all parsers ourselves and therefore their pre-
trained models (one of them based on slightly
different Penn Treebank division) must have
been used.

• Some parsers make their own choice of POS
tags within the parsed sentences, while other
parsers require the sentences to be tagged al-
ready on their input.

• The trees in the CzEng 0.9 parallel treebank
were created using MST. CzEng 0.9 was used
for training translation models used in the
transfer phase of the translation scenario; thus
these translation models might compensate for
some MST’s errors, which might handicap other
parsers. So far we were not able to reparse 8
million sentence pairs in CzEng 0.9 by all stud-
ied parsers.

5 Conclusions

This paper is a study of how the choice of a de-
pendency parsing technique influences the quality of
English-Czech dependency-based translation. Our
main observations are the following. First, BLEU
grows with the increasing amount of training depen-
dency trees, but only in a sublogarithmic pace. Sec-
ond, what seems to be quite effective for translation
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is to facilitate the parsers’ task by dividing the sen-
tences into smaller chunks using parenthesis bound-
aries. Third, if the parsers are based on different
approaches, their UAS does not correlate well with
their effect on the translation quality.
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0.9, Building a Large Czech-English Automatic Par-
allel Treebank. The Prague Bulletin of Mathematical
Linguistics, 92:63–83.

Eugene Charniak and Mark Johnson. 2005. Coarse-to-
fine n-best parsing and maxent discriminative rerank-
ing. In Proceedings of the 43rd Annual Meeting of
Association for Computational Linguistics, ACL ’05,
pages 173–180, Stroudsburg, PA, USA. Association
for Computational Linguistics.

Haim Gaifman. 1965. Dependency systems and phrase-
structure systems. Information and Control, pages
304–337.
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2010. Maximum entropy translation model in
dependency-based MT framework. In Proceedings of

the Joint Fifth Workshop on Statistical Machine Trans-
lation and MetricsMATR, pages 201–201, Uppsala,
Sweden. Association for Computational Linguistics.

Ryan Mcdonald and Fernando Pereira. 2006. On-
line learning of approximate dependency parsing al-
gorithms. In Proceedings of EACL, pages 81–88.

Ryan McDonald, Fernando Pereira, Kiril Ribarov, and
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Zdeněk Žabokrtský, Jan Ptáček, and Petr Pajas. 2008.
TectoMT: Highly Modular MT System with Tec-
togrammatics Used as Transfer Layer. In Proceedings
of the 3rd Workshop on Statistical Machine Transla-
tion, ACL, pages 167–170.

Daniel Zeman. 2004. Parsing with a Statistical Depen-
dency Model. Ph.D. thesis, Faculty of Mathematics
and Physics, Charles University in Prague.

Yue Zhang and Joakim Nivre. 2011. Transition-based
dependency parsing with rich non-local features. In To
appear in the Proceedings of the 49th Annual Meeting
of the Association of Computational Linguistics.

Ying Zhang, Stephan Vogel, and Alex Waibel. 2004. In-
terpreting bleu/nist scores: How much improvement
do we need to have a better system. In Proceedings of
LREC, volume 4, pages 2051–2054.

439


