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Valencia, Spain

mcastro@dsic.upv.es

Abstract

This paper describes the system presented for
the English-Spanish translation task by the
collaboration between CEU-UCH and UPV
for 2011 WMT. A comparison of indepen-
dent phrase-based translation models interpo-
lation for each available training corpora were
tested, giving an improvement of 0.4 BLEU
points over the baseline. Output N -best lists
were rescored via a target Neural Network
Language Model. An improvement of one
BLEU point over the baseline was obtained
adding the two features, giving 31.5 BLEU
and 57.9 TER for the primary system, com-
puted over lowercased and detokenized out-
puts. The system was positioned second in the
final ranking.

1 Introduction

The goal of Statistical Machine Translation (SMT)
is to translate a sentence between two languages.
Giving the source language sentence f , it would be
translated to an equivalent target language sentence
e. The most extended formalization is done via log-
linear models (Papineni et al., 1998; Och and Ney,
2002) as follows:

ê = arg max
e

K∑
k=1

λkhk(f , e) (1)

where hk(f , e) is a score function representing an
important feature for the translation of f into e, K
is the number of models (or features) and λk are
the weights of the log-linear combination. Typically,

the weights λk are optimized during the tuning stage
with the use of a development set.

SMT systems rely on a bilingual sentence aligned
training corpus. These sentences are aligned at the
word level (Brown et al., 1993), and after that, dif-
ferent hk feature functions are trained. In some prac-
tical cases, the out-of-domain training data is larger
than the in-domain training data. In these cases the
target Language Model (LM) is composed of a lin-
ear interpolation of independent LMs, one for each
available training domain or corpus. Nevertheless,
the training of phrase-based translation models is an
open problem in these cases.

Some recent works (Resnik and Smith, 2003; Ya-
suda et al., ; Koehn and Schroeder, 2007; Matsoukas
et al., 2009; Foster et al., 2010; Sanchis-Trilles
and Casacuberta, 2010) related to corpus weight-
ing, make use of data selection, data weighting,
and translation model adaptation to overcome this
problem. In this work, we explore a simple cor-
pus weighting technique to interpolate any number
of different phrase tables. Two different approaches
are tested, obtaining similar performance. On the
one hand, a count-based smoothing technique that
applies a weight to the counting of phrases and lexi-
cal links depending on the relevance of each corpus.
On the other hand, a linear interpolation of indepen-
dent trained phrase tables.

Another important feature of this work is
the use of Neural Network Language Models
(NN LMs) (Bengio, 2008). This kind of LMs has
been successfully applied in some connectionist ap-
proaches to language modeling (Bengio et al., 2003;
Castro-Bleda and Prat, 2003; Schwenk et al., 2006;
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Schwenk, 2010). The advantage of these NN LMs is
the projection of words on a continuous space were
the probabilities of n-grams are learned. A Neural
Network (NN) is proposed to learn both the word
projections and the n-gram probabilities.

The presented system combines a standard, state-
of-the-art SMT system with a NN LM via log-linear
combination and N -best output re-scoring. We
chose to participate in the English-Spanish direction.

2 Translation models

A standard phrase-based translation model is com-
posed of the following five hk features:

• inverse phrase translation probability p(f |e)

• inverse lexical weighting l(f |e)

• direct phrase translation probability p(e|f)

• direct lexical weighting l(e|f)

• phrase penalty (always e = 2.718).

We rely only on the first four features. They
are computed from word alignments at the sentence
level, by counting over the alignments, and using the
inverse and direct lexical dictionaries. Given a pair
of phrases, f on the source language and e in the tar-
get language, the phrase translation probabilities are
computed by relative frequency as:

p(f |e) =
count(f, e)∑
e′ count(f, e′)

p(e|f) =
count(f, e)∑
f ′ count(f

′
, e)

Given a word f on the source language, and a
word e in the target language, the lexical translation
distribution is computed again by relative frequency
as:

w(f |e) =
count(f, e)∑
e′ count(f, e′)

w(e|f) =
count(f, e)∑
f ′ count(f ′, e)

Given the previous lexical translation distribution,
two phrase pairs f and e, and a, the word alignment
between the source word positions i = 1, . . . , n and
the target word positions j = 1, . . . ,m, the inverse
lexical weighting is computed as:

l(f |e) =

n∏
i=1

1

|{j|(i, j) ∈ a}|
∑

(i,j)∈a

w(fi|ej)

and the direct lexical weighting is computed as:

l(e|f) =

m∏
j=1

1

|{i|(i, j) ∈ a}|
∑

(i,j)∈a

w(ej |fi)

3 Weighting different translation models

The proposed modifications of the phrase-based
translation models are similar to (Foster et al., 2010;
Matsoukas et al., 2009), but in this case the weight-
ing is simpler and focused at the corpus level. If
we have T different training sets, we could define
βt as the weight of the set t, for 1 ≤ t ≤ T . The
word alignments are computed via Giza++ (Och and
Ney, 2003) over the concatenation of all the training
material available for the translation models (in this
case, Europarl, News-Commentary, and United Na-
tions). After that, we could recompute the lexical
translation distribution using the weights informa-
tion, and compute the phrase-based translation mod-
els taking into account these weights. The count
function will be redefined to take into account only
information of the corresponding training set.

3.1 Count smoothing

The weight βt is applied to the count function, in
order to modify the corpus effect on the probability
of each phrase pair alignment, and each word pair
alignment. First, we modify the lexical translation
distribution in this way:

w(f |e) =

∑
t βtcountt(f, e)∑

t βt
∑

e′ countt(f, e′)

w(e|f) =

∑
t βtcountt(f, e)∑

t βt
∑

f ′ countt(f ′, e)
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having a global lexical translation distribution for
the alignment between words. Second, we mod-
ify the phrase translation probabilities for each di-
rection, remaining without modification the lexical
weightings:

p(f |e) =

∑
t βtcountt(f, e)∑

t βt
∑

e′ countt(f, e′)

p(e|f) =

∑
t βtcountt(f, e)∑

t βt
∑

f
′ countt(f

′
, e)

When some phrase/word count is not found, count
is set to zero.

3.2 Linear interpolation
In this case, we compute independently the transla-
tion models for each training set. We have T mod-
els, one for each set. The final translation models are
obtained by means of a linear interpolation of each
independent translation model. If some phrase pair
is not found, the translation model is set to have zero
probability.

First, we redefine the lexical translation distribu-
tion. In this case we have w1, w2, . . . , wT lexical
dictionaries:

wt(f |e) =
countt(f, e)∑
e′ countt(f, e′)

wt(e|f) =
countt(f, e)∑
f ′ countt(f ′, e)

.

Then, we could compute the linear interpolation
of phrase translation probabilities as follows:

p(f |e) =
∑

t

βt
countt(f, e)∑
e′ countt(f, e′)

p(e|f) =
∑

t

βt
countt(f, e)∑
f

′ countt(f
′
, e)

And finally, the inverse lexical weighting is ob-
tained as:

l(f |e) =
∑

t

βt

n∏
i=1

1

|{j|(i, j) ∈ a}|
∑

(i,j)∈a

wt(fi|ej)

and the direct lexical weighting:

l(e|f) =
∑

t

βt

m∏
j=1

1

|{i|(i, j) ∈ a}|
∑

(i,j)∈a

wt(ej |fi).

4 Neural Network Language Models

In SMT the most useful language models are
n-grams (Bahl et al., 1983; Jelinek, 1997; Bahl et al.,
1983). They compute the probability of each word
given the context of the n− 1 previous words:

p(s1 . . . s|S|) ≈
|S|∏
i=1

p(si|si−n+1 . . . si−1) (2)

where S is the sequence of words for which we want
compute the probability, and si ∈ S, from a vocab-
ulary Ω.

A NN LM is a statistical LM which follows equa-
tion (2) as n-grams do, but where the probabilities
that appear in that expression are estimated with a
NN (Bengio et al., 2003; Castro-Bleda and Prat,
2003; Schwenk, 2007; Bengio, 2008). The model
naturally fits under the probabilistic interpretation
of the outputs of the NNs: if a NN, in this case a
MLP, is trained as a classifier, the outputs associated
to each class are estimations of the posterior proba-
bilities of the defined classes (Bishop, 1995).

The training set for a LM is a sequence
s1s2 . . . s|S| of words from a vocabulary Ω. In order
to train a NN to predict the next word given a history
of length n−1, each input word must be encoded. A
natural representation is a local encoding following
a “1-of-|Ω|” scheme. The problem of this encoding
for tasks with large vocabularies (as is typically the
case) is the huge size of the resulting NN. We have
solved this problem following the ideas of (Bengio
et al., 2003; Schwenk, 2007), learning a distributed
representation for each word. Figure 1 illustrates the
architecture of the feed-forward NN used to estimate
the NN LM.

This n-gram NN LM predicts the posterior proba-
bility of each word of the vocabulary given the n−1
previous words. A single forward pass of the MLP
gives p(ω|si−n+1 . . . si−1) for every word ω ∈ Ω.
After training the projection layer is replaced by a
table look-up.
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Figure 1: Architecture of the continuous space NN LM
during training. The input words are si−n+1, . . . , si−1

(in this example, the input words are si−3, si−2, and si−1

for a 4-gram). I , P , H , and O are the input, projection,
hidden, and output layer, respectively, of the MLP.

The major advantage of the connectionist ap-
proach is the automatic smoothing performed by
the neural network estimators. This smoothing is
done via a continuous space representation of the
input words. Learning the probability of n-grams,
together with their representation in a continuous
space (Bengio et al., 2003), is an appropriate ap-
proximation for large vocabulary tasks. However,
one of the drawbacks of such approach is the high
computational cost entailed whenever the NN LM
is computed directly, with no simplification what-
soever. For this reason, the vocabulary size will be
restricted in the experiments presented in this work.

5 Experiments

The baseline SMT system is built with the open-
source SMT toolkit Moses (Koehn et al., 2007), in
its standard setup. The decoder includes a log-linear
model comprising a phrase-based translation model,
a language model, a lexicalized distortion model
and word and phrase penalties. The weights of the
log-linear interpolation were optimized by means of
MERT (Och, 2003), using the News-Commentary
test set of the 2008 shared task as a development set.
The phrase-based translation model uses the con-

Table 1: Spanish corpora statistics. NC stands for
News-Commentary and UN for United Nations, while
|Ω| stands for vocabulary size, and M /K for mil-
lions/thousands of elements. All numbers are computed
with tokenized and lowercased data.

Set # Lines # Words |Ω|
NC v6 159K 4.44M 80K
News-Shuffled 9.17M 269M 596K
Europarl v6 1.94M 55M 177K
UN 6.22M 214M 579K

Total 21.93M 678M 1.03M

Table 2: Weights of different combination of phrase-
based translation models.

System Europarl NC UN
Smooth1 0.35 0.35 0.30
Smooth2 0.40 0.40 0.20
Smooth3 0.15 0.80 0.05
Linear 0.35 0.35 0.30

catenation of News-Commentary, United Nations,
and Europarl corpora, to estimate the four transla-
tion model features.

The baseline LM was a regular n-gram LM with
Kneser-Ney smoothing (Kneser and Ney, 1995) and
interpolation by means of the SRILM toolkit (Stol-
cke, 2002). Specifically, we trained a 6-gram LM
on United Nations, a 5-gram on Europarl and News-
Shuffled, and a 4-gram on News-Commentary. Once
these LMs had been built, they were interpolated
so as to maximize the perplexity of the News-
Commentary test set of the 2009 shared task. The fi-
nal model was pruned out using a threshold of 10−8.
This was done so according to preliminary research.

Three different weights for the count smooth-
ing technique described in section 3.1 were tested.
For the interpolation model of section 3.2, we se-
lect the weights minimizing the perplexity of the
corresponding three LMs (Europarl, NC, and UN)
over the News2008 set. Table 2 summarizes these
weights.

NN LM was trained with all the corpora described
in Table 1, using a weighted replacement algorithm
to modify the impact of each corpus in the training
algorithm. The weights were the same that for the
standard LM. In order to reduce the complexity of
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the model, the input vocabulary of the NN LM was
restricted using only words that appears more than
10 times in the corpora. The vocabulary is formed
by the 107 607 more frequent words, with two addi-
tional inputs: one to represent the words out of this
vocabulary, and another for the begin-of-sentence
cue. The output of the NN LM was restricted much
more, using only a shortlist (Schwenk, 2007) of the
10K more frequent words, plus the end-of-sentence
cue. The rest of words are collected by an additional
output in the neural network. When the probability
of an out-of-shortlist word is required, its probability
is computed multiplying this additional output acti-
vation by the unigram probability distribution of ev-
ery out-of-shortlist word. This implies that 10.7% of
the running words of the News2009 set, and 11.1%
of the running words of the News2011 official test
set, will be considered as out-of-shortlist words for
the NN LM.

A 6-gram NN LM was trained for this task, based
in previous works (Zamora-Martı́nez and Sanchis-
Trilles, 2010). Four NN LMs with different values
for the projection of each word (128, 192, 256, 320)
were linearly combined for the final NN LM. Each
NN LM had 320 units in the hidden layer. The com-
bination weights were computed maximizing the
perplexity over the News2009 set. The training pro-
cedure was conducted by means of the stochastic
back-propagation algorithm with weight decay, with
a replacement of 300K training samples and 200K
validation samples in each training epoch, select-
ing the random sample using a different distribution
weight for each corpus. The validation set was the
News2009 set. The networks were stopped after 99,
70, 53, and 42 epochs respectively (unfortunately,
without achieving convergence, due to the compe-
tition timings). This resulted in very few training
samples compared with the size of the training set:
29M in the best case, versus more than 500M of
the full set. The training of the NN LMs was ac-
complished with the April toolkit (España-Boquera
et al., 2007; Zamora-Martı́nez et al., 2009). The per-
plexity achieved by the 6-gram NN LM in the Span-
ish News2009 set was 281, versus 145 obtained with
the standard 6-gram language model with interpola-
tion and Kneser-Ney smoothing (Kneser and Ney,
1995).

The number of sentences in the N -best list was

Table 3: Main results of the experimentation

News2010 News2011
System BLEU TER BLEU TER
Baseline 29.2 60.0 30.5 58.9

Smooth1 29.3 59.9 − −
Smooth2 29.2 59.9 − −
Smooth3 29.5 59.6 30.9 58.5
+ NN LM 29.9 59.2 31.4 58.0

Linear 29.5 59.5 30.9 58.7
+ NN LM 30.2 58.8 31.5 57.9

set to 2 000 unique output sentences. Results can
be seen in Table 3. In order to assess the reliability
of such results, we computed pairwise improvement
intervals as described in (Koehn, 2004), by means
of bootstrapping with 1 000 bootstrap iterations and
at a 95% confidence level. Such confidence test re-
ported the improvements to be statistically signifi-
cant. A difference of more than 0.3 points of BLEU
is considered significant in the pairwise comparison.
The final results leads to 31.5 points of BLEU, posi-
tioning this system as second in the final classifica-
tion.

6 Conclusions and future work

The presented CEU-UPV system, using phrase
translation models combinations and NN LMs,
leads an improvement of 0.4 points of BLEU in the
two cases: the count smoothing approach (Smooth3
system) and the linear interpolation approach (Lin-
ear system). The incorporation of NN LMs in
both systems gets an additional improvement of
0.5 BLEU points for the Smooth3 system, and 0.6
BLEU points for the Linear system. The final result
for the primary system is 31.5 BLEU points.

The combination of translation models could be
enhanced optimizing the βt weights over the BLEU
score. Currently the weights are manually set for
the Smooth[1,2,3] systems, and fixed to the LM
weights for the Linear system. Nevertheless, both
approaches achieve similar results. Finally, it is im-
portant to emphasize that the use of NN LMs implies
an interesting improvement, though this year’s gain
is lower than that obtained by our 2010 system.1

1Note that the NN LMs didn’t achieve convergence due to
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