
Proceedings of the 7th Workshop on Statistical Machine Translation, pages 468–479,
Montréal, Canada, June 7-8, 2012. c©2012 Association for Computational Linguistics

Direct Error Rate Minimization for Statistical Machine Translation

Tagyoung Chung∗

University of Rochester
Rochester, NY 14627, USA

chung@cs.rochester.edu

Michel Galley
Microsoft Research

Redmond, WA 98052, USA
mgalley@microsoft.com

Abstract

Minimum error rate training is often the pre-
ferred method for optimizing parameters of
statistical machine translation systems. MERT
minimizes error rate by using a surrogate rep-
resentation of the search space, such asN -
best lists or hypergraphs, which only offer
an incomplete view of the search space. In
our work, we instead minimize error rate di-
rectly by integrating the decoder into the min-
imizer. This approach yields two benefits.
First, the function being optimized is the true
error rate. Second, it lets us optimize param-
eters of translations systems other than stan-
dard linear model features, such as distortion
limit. Since integrating the decoder into the
minimizer is often too slow to be practical, we
also exploit statistical significance tests to ac-
celerate the search by quickly discarding un-
promising models. Experiments with a phrase-
based system show that our approach is scal-
able, and that optimizing the parameters that
MERT cannot handle brings improvements to
translation results.

1 Introduction

Minimum error rate training (Och, 2003) is a com-
mon method for optimizing linear model parame-
ters, which is an important part of building good ma-
chine translation systems. MERT minimizes an arbi-
trary loss function, usually an evaluation metric such
as BLEU (Papineni et al., 2002) or TER (Snover
et al., 2006) from a surrogate representation of the
search space, such as theN -best candidate transla-
tions of a development set. Much of the recent work

∗ This research was conducted during the author’s intern-
ship at Microsoft Research.

on minimum error rate training focused on improv-
ing the method by Och (2003). Recent efforts ex-
tended MERT to work on lattices (Macherey et al.,
2008) and hypergraphs (Kumar et al., 2009). Ran-
dom restarts and random walks (Moore and Quirk,
2008) are commonly used to combat the fact the
search space is highly non-convex, often with mul-
tiple minima.

Several problems still remain with MERT, three
of which are addressed by this work. First, theN -
best error surface explored by MERT is generally
not the same as the true error surface, which means
that the error rate at an optimum1 of theN -best er-
ror surface is not guaranteed to be any close to an
optimum of the true error surface. Second, most
SMT decoders make search errors, yet MERT ig-
nores the fact that the error surface of an error-prone
decoder differs from the one of an exact decoder
(Chang and Collins, 2011). MERT calculates an en-
velope from candidate translations and assumes all
translations on the envelope are reachable by the de-
coder, but these translations may become unreach-
able due to search errors. Third, MERT is only used
to tune linear model parameters, yet SMT systems
have many free decoder parameters—such as distor-
tion limit and beam size—that are not handled by
MERT. MERT does not provide a principled way to
set these parameters.

In order to overcome these issues, we explore the
application of direct search methods (Wright, 1995)
to SMT. To do this, we integrate the decoder and
the evaluation metric inside the objective function,

1The optimum found by MERT (Och, 2003) is generally not
globally optimal. An alternative that optimizesN -best lists ex-
actly is presented by Galley and Quirk (2011), and we do not
discuss it further here.

468

which takes source sentences and a set of weights as
inputs, and outputs the evaluation score (e.g., BLEU
score) computed on the decoded sentences. Since it
is impractical to calculate derivatives of this func-
tion, we use derivative-free optimization methods
such as the downhill simplex method (Nelder and
Mead, 1965) and Powell’s method (Powell, 1964),
which generally handle such difficult search condi-
tions relatively well. This approach confers several
benefits over MERT. First, the function being opti-
mized is the true error rate. Second, integrating the
decoder inside the objective function forces the op-
timizer to account for possible search errors. Third,
contrary to MERT, our approach does not require in-
put parameters to be those of a linear model, so our
approach can tune a broader range of features, in-
cluding non-linear and hidden-state parameters (e.g.,
distortion limit, beam size, and weight vector ap-
plied to future cost estimates).

In this paper, we make direct search reasonably
fast thanks to two speedup techniques. First, we
use a model selection acceleration technique called
racing (Moore and Lee, 1994) in conjunction with
randomization tests (Riezler and Maxwell, 2005) to
avoid decoding the entire development set at each
function evaluation. This approach discards the
current model whenever performance on the trans-
lated subset of the development data is deemed sig-
nificantly worse in comparison to the current best
model. Second, we store and re-use search graphs
across function evaluations, which eliminates some
of the redundancy of regenerating the same transla-
tions in different optimization steps.

Our experiments with a strong phrase-based trans-
lation system show that the direct search approach is
an effective alternative to MERT. The speed of direct
search is generally comparable to MERT, and trans-
lation accuracy is generally superior. The non-linear
and hidden-state features tuned in this work bring
gains on three language pairs, with improvements
ranging between 0.27 and 0.35 BLEU points.

2 Direct error rate minimization

Most current machine translation systems use a log-
linear model:

p(e|f) ∝ exp
(

∑

i

λihi(e, f)
)

wheref is a source sentence,e is a target sentence,
hi is a feature function, andλi is the weight of this
feature. Given a source sentencef , finding the best
target sentencêe according to the model is a search
problem, which is called decoding:

ê = argmax
e

exp
(

∑

i

λihi(e, f)
)

The target sentencêe is automatically evaluated
against a reference translationr using any metric
that is known to be relatively well correlated with
human judgment, such as BLEU or TER. Let us re-
fer to such error function as E

(

·
)

. Then, the process
of finding the best set of weightŝλ according to an
error function E is another search:

λ̂ = argmin
λ

E

(

r; argmax
e

exp
(

∑

i

λihi(e, f)
)

)

The typical MERT process solves the problem in an
iterative fashion. At each stepi, it producesN -best
lists by decoding witĥλi, then uses these lists to
find λ̂i+1. Och (2003) presents an efficient multi-
directional line search algorithm, which is based on
the fact that the error count along each line is piece-
wise constant and thus easy to optimize exactly. The
process is repeated until a certain convergence crite-
rion is met, or until no new candidate sentences are
added to the pool. The left side of Figure 1 summa-
rizes this process.

Though simple and effective, there are several lim-
itations to this approach. The primary reason is that
it can only tune parameters that are part of the log-
linear model. Aside from having parameters from
the log-linear model, decoders generally have free
parametersθ that needs to be set manually, such
as beam size and distortion limit. These decoder-
related parameters have complex interactions with
linear model parameters, thus, ideally, we would
want to tune them jointly with decoder parameters
such as distortion limit.

Direct search addresses these problems by includ-
ing all feature parameters and all decoder-related pa-
rameters within the optimization framework. Fig-
ure 1 contrasts MERT with direct search. Rather
than optimizing candidate pools of translations, di-
rect search treats the decoder and the evaluation tool

469

decoder

candidate
pool

λ̂

BLEU

optimization

inputf
other paramsθ

model paramsλ
outpute

repeat

decoder

λ̂, θ̂

1-best BLEU

optimization

inputf
model paramsλ
other paramsθ

Figure 1: Comparison of MERT (left) and direct search (right).

as a single function:

Φ(f, r; λ, θ) = E
(

r; argmax
e

exp
(

∑

i

λihi(e, f)
)

)

Then, it uses an optimization method to minimize
the function:

argmin
λ,θ

Φ(f, r; λ, θ)

This formulation solves the problem mentioned pre-
viously, since we jointly optimizeλ and θ, thus
accounting for the dependencies between the two.
However, there are two problems to address with di-
rect error minimization. First, this approach requires
the entire development set to be re-decoded every
time the function is evaluated, which can be pro-
hibitively expensive. To address this problem, we
present several methods to speed up the search pro-
cess in Section 5. Second, since the gradient of stan-
dard evaluation metrics such as BLEU is not known
and since methods for estimating the gradient numer-
ically require too many function evaluations, we can-
not use common search methods that use derivatives
of a function. Therefore, we need robust derivative-
free optimization methods. We discuss such opti-
mization methods in Section 3.

3 Derivative-free optimization

As discussed in the previous sections, we need to
rely on derivative-free optimization methods for di-
rect search. We consider two such optimization
methods:

Powell’s method For each iteration, Powell’s
method tries to find a good direction along which the
function can be minimized. This direction is deter-
mined by searching along each standard base vector.
Then, a line search is performed along the direction
by using line search methods such as golden section
search or Fibonacci search. The process is repeated
until convergence. We implement the golden sec-
tion search as presented by Press et al. (1992) in our
experiments. Although the golden section search is
only exact when the function is unimodal, we found
that it works quite well in practice. More details are
presented by Powell (1964).

Nelder-Mead method This approach sets up a
simplex on the search space, which is a polytope
with D + 1 vertices when there areD dimensions,
and successively moves the simplex to a lower point
to find a minimum of the function. The simplex is
moved using different actions, which are taken when
certain conditions are met. The basic idea behind
these actions is to replace the worst point in the sim-
plex with a new and better point, thereby moving the
simplex towards a minimum. This method has the
advantage of being able to deal with “bumpy” func-
tions and depending on the configuration of the sim-
plex at the time, it is possible to escape some local
minima. This is often refer to as downhill simplex
method and more details are presented by Nelder
and Mead (1965).

4 Parameters

In this section, we discuss the parameters that we
optimize with direct search, in addition to standard

470

linear model parameters:

4.1 Distortion limit

Distortion limit is one of decoder parameters that
sets a limit on the number of words the decoder
is allowed to skip when deciding which source
phrase to translate in order to allow reordering. Fig-
ure 2 shows a translation example from English to
Japanese. Every word jumped over incurs a dis-
tortion cost, which is usually one of the transla-
tion model parameters, which thereby discourages
reordering of words unless language model supports
the reordering.

Since having a large distortion limit leads to
slower decoding, having the smallest possible dis-
tortion limit that still facilitates correct reordering
would be ideal. Not only this speeds up translation,
but this also leads to better translation quality by
minimizing search errors. Since a larger distortion
limit means there are more possible re-orderings of
translations, it is prone to more search errors. In fact,
there are evidences that tuning the distortion limit
is beneficial in improving quality of translation by
limiting search errors. Galley and Manning (2008)
conduct a line search along increments of distor-
tion limit and separately tune the translation model
parameters for each increment of distortion limit.
The result shows significant difference in translation
quality when distortion limit is tuned along with the
model parameters. Separately tuning model param-
eters for different distortion limit is necessary be-
cause model parameters are coupled with distortion
limit. A representative example: when distortion
limit is zero, the distortion penalty feature can have
any weight and not affect BLEU scores, but this is
not the case when distortion limit is larger than zero.
Tuning distortion limit in direct search in conjunc-
tion with related features such linear distortion elim-
inates the need for a line search for distortion limit.

4.2 Polynomial features

Most phrase-based decoders typically use a dis-
tortion penalty feature to discourage (or maybe
sometimes encourage) reordering. Whereas distor-
tion limit is a hard constraint—since the decoder
never considers jumps larger than the given limit—
distortion penalty is a soft constraint, since it penal-
izes reordering proportionally to the length of the

I did not see the book you borrowed

私は あなたが 借りた 本を なかった

+5
-3

-3

Figure 2: Reordering in phrase-based translation. A min-
imum distortion limit of five is needed to correctly trans-
late this example. The source sentence is relatively sim-
ple but a relatively large distortion limit is needed to ac-
commodate the correct reordering due to typological dif-
ference between two languages.

jump. The total distortion penalty is calculated as
follows:

D(e, f) = λd

∑

j

|dj |
pd

whereλd is the weight for distortion penalty feature,
and dj is the size of the jump needed to translate
the j-th phrase pair. For example, in Figure 2, the
total distortion penalty feature value is 11, which is
multiplied with λd to get the total distortion cost of
translating the example sentence. Althoughpd is typ-
ically set to one (linear), one may consider polyno-
mial distortion penalty (Green et al., 2010). Green et
al. (2010) show that settingpd to a higher value than
one improves the translation quality, but uses a pre-
determined value forpd. Instead of manually setting
the value ofpd, it can be given a value tuned with di-
rect search. Although we only discussed distortion
penalty here, it is straightforward to tunepi for each
featurehi(e, f)pi using direct error rate minimiza-
tion, wherehi(e, f) is any linear model feature of
the decoder.

4.3 Future cost estimates

Since beam search involves pruning, it is crucial to
have good future cost estimation in order to min-
imize the number of search errors (Koehn et al.,
2003). The concept of future cost estimation is re-
lated to heuristic functions in the A* search algo-
rithm. The total costf(x) of a partial translation
hypothesis is estimated by combiningg(x), which is
the actual current cost from the beginning of a sen-
tence to pointx andh(x), which is the future cost

471

estimate from pointx to the end of the sentence:

f(x) = g(x) + h(x)

In SMT decoding, the same feature weight vec-
tor is generally used when computingg(x) andh(x).
However, this may not be ideal since future cost esti-
mators use different heuristics depending on the fea-
tures. For example, the future cost estimator (Green
et al., 2010) for linear distortion always underesti-
mates completion cost, which is generally deemed
a good property. Unfortunately, some features have
estimators that tend to overestimate completion cost,
as it is the case with the language model. This prob-
lem is illustrated in Figure 3. The Figure shows
that the ratio between the estimated total cost and
the actual total cost converges to1.0. However,
in earlier stages of translations, the estimated fu-
ture cost for language model is larger than it should
be, which leads to higher total estimated cost. In
the A* search parlance, we are using an inadmissi-
ble heuristic since the future cost is overestimated,
which leads to suboptimal search. This suggests that
separately tuning parameters that are involved in the
future cost estimation will lead to better pruning de-
cisions. This essentially doubles the number of lin-
ear model parameters, since for every feature used in
future cost estimation, we create a counterpart and
tune its weight independently.

4.4 Search parameters

In addition to the parameters listed above, we also
tune general decoder parameters that affect the
search quality: beam size and parameters controlling
histogram pruning and threshold pruning. While it
makes sense to set these parameters automatically
instead of manually, the methods we have presented
thus far are not particularly fit for this type of pa-
rameters. Indeed, if the sole goal is to maximize
translation quality (e.g., as measured by standard
BLEU), a larger beam size and less pruning is usu-
ally preferable. To address this problem, we opti-
mize these three parameters using a slightly different
objective function. When tuning any of these three
features, the goal of translation is to get the most ac-
curate translation given a pre-defined time limit, so
we change the objective to be a time-sensitive objec-
tive function. Much akin to brevity penalty in BLEU,

0 0.2 0.4 0.6 0.8 1
0

1

2

3

4

5

Figure 3: y axis is ratio between estimated total cost vs.
actual total cost of language model for thousands of trans-
lations.1.0 means the estimated total cost and the actual
total cost are exactly the same, and anything higher than
1.0 means the future cost has been overestimated thereby
inflating the estimated total cost. Thex-axis represents
how much translation has been completed.0.1 means
10% of a sentence has been translated.

we define time penalty as:

TP
(

·
)

=

{

1.0 ti ≤ td

exp
(

1− ti
td

)

ti > td

whereTP
(

·
)

is a time penalty that is multiplied
to BLEU, ti is the time it takes to translate devel-
opment set under current parameters, andtd is the
desired time limit for translating the development
set. With this error metric, we still optimize for
the translation quality as long as the translation hap-
pens within desired timetd. With the modified time-
sensitive BLEU score as error metric, direct search
may tune the parameters that have the speed and ac-
curacy trade-off that we want.2

5 Speeding up direct search

Optimizing the true error surface is generally more
computationally expensive than with any surrogate
error surface, since each function evaluation usually
requires decoding or re-decoding the entire devel-
opment set. Since SMT tuning sets used for error

2A disadvantage of using time in the definition ofTP
`

·
´

is that it adds non-determinism that can make optimization un-
stable. Our solution is to replace time with pseudo-time, a de-
terministic substitute expressed as a linear combination of the
number of n-gram lookups and hypothesis expansions (these
two quantities correlate quite well with decoding time).

472

rate minimization often comprise one thousand sen-
tences or more, each function evaluation can take
minutes or more. However, this problem is some-
what mitigated by the fact that translating in batches
is highly parallelizable. Since MERT (Och, 2003) is
also easily parallelizable, we need to resort to other
speedup techniques to make direct search a practi-
cal alternative to MERT. We now present two tech-
niques that make optimization of the true error sur-
face more efficient.

5.1 A racing algorithm for speeding up SMT
model selection

Error rate minimization as presented in this paper
can be seen as a form of model selection, which
has been the focus of a lot of work in the learn-
ing literature. The most popular approaches to
model selection—such as minimizing cross valida-
tion error—tend to be very slow in practice; there-
fore, researchers have addressed the problem of ac-
celerating model selection using statistical tests.

Prior to considering the SMT case, we review one
of these methods in the case of leave-one-out cross
validation (LOOCV). Racing for model selection
(Maron and Moore, 1994; Moore and Lee, 1994)
works as follows: we are given a collection ofNm

models andNd data points, and we must find the
model that minimizes the meane∗j = 1

Nd

∑

i ej(i),
whereej(i) is the classification error of modelMj

on theith datapoint when trained on all datapoints
except theith point. The models are evaluated con-
currently, and at any given stepk ∈ [1, Nd], each
modelMj is associated with two pieces of informa-
tion: the current estimate of its mean error rate, and
the estimate of its variance. As evaluations progress,
we eliminate any model that is significantly worse
than any other model.3 We also note that the Rac-
ing technique first randomizes the order of the data
points to ensure that prefixes of the dataset are gen-

3The details of these statistical tests are not so important
here since we use different ones in the case of SMT, but we
briefly summarize them as follows: Maron and Moore (1994)
use a non-parametric method (Hoeffding bounds (Hoeffding,
1963)) for confidence estimation, and places confidence inter-
vals on the mean value of the random variable representing
ej(i). A model is discarded if its confidence interval no longer
overlaps with the confidence interval of the current best model.
Moore and Lee (1994) use a similar technique, but relies on
Bayesian statistics instead of Hoeffding bounds.

erally representative of the entire set.

In this work, we use Racing to speed up direct
search for SMT, but this requires two main adjust-
ments compared to the LOOCV case. First, our
models have real-valued parameters, so we cannot
exhaustively evaluate the set of all models since it is
infinite. Instead, we use direct search to select which
models compete against each other during Racing.
In the case of Powell’s method, all points of a grid
along the current search direction are evaluated in
parallel using Racing, before we turn to the next
line search. In the case of the downhill simplex op-
timizer and in the case of line searches other than
grid search (e.g., golden section search), the use of
Racing is more difficult because the function eval-
uations requested by these optimizers have depen-
dencies that generally prevent concurrent function
evaluations. Since functions in downhill simplex are
evaluated in sequence and not in parallel, our solu-
tion is to race the current model against our current
best model.4 When the evaluation of a modelM is
interrupted because it is deemed significantly worse
than the current best model̂M , the error rate ofM
on the entire development set is extrapolated from
its relative performance on the decoded subset.5

The second main difference with the LOOCV
case is that we do not use confidence intervals to de-
termine which of two or models are best. In SMT, it
is common to use either bootstrap resampling (Efron
and Tibshirani, 1993; Och, 2003) or randomization
tests (Noreen, 1989). In this paper, we use the ran-
domization test for discarding unpromising models,
since this statistical test was shown to be less likely
to cause type-I errors6 than bootstrap methods (Rie-
zler and Maxwell, 2005). Since both kinds of statisti-
cal tests involve a time-consuming sampling step, it

4Since Racing only discards suboptimal models, the current
best modelM∗ is one for which we have decoded the entire de-
velopment set. Once a new modelM is evaluated, we perform
at stepj a significance test to determine whetherM ’s transla-
tion of sentences1 . . . j is better or worse thanM∗ translation
for the same range of sentences. IfM is significantly worse, we
discard it. IfM∗ is worse, we continue evaluating the perfor-
mance ofM , since we needM ’s output for the full development
set ifM eventually becomes the new best model.

5For example, if error rates of̂M andM are respectively
10% and 11% on the subset decoded by both models andM̂ ’s
error on the entire set is 20%,M ’s extrapolated error is 22%.

6A type I error rejects a null hypothesis that is true.

473

is somewhat wasteful to perform a new test after the
decoding of each sentence, so we translate sentences
in small batches ofK sentences before performing
each randomization test.7

We finally note that Racing no longer guarantees
that the error function observed by the optimizer is
the true error function. Racing causes some approx-
imations of the error function, but the degree of ap-
proximation is designed to be small in regions with
low error rates, and Racing ensures that the most
promising function evaluations in our progression to-
wards an optimum are unaffected. In contrast, the
approximation of the error function computed from
N -best lists or lattice does not share this property.8

To further speed up function evaluations in direct
search, we employ a method meant to deal with mod-
els that are nearly identical, a situation in which Rac-
ing usually does not help much. Indeed, when two
models produce very similar outputs, we often need
to run the race through every sentence of the devel-
opment set since none of the two models end up be-
ing significantly better. A solution to this problem
consists of discarding models that are nearly identi-
cal to other models, where similarity between mod-
els is solely measured from their outputs.9 To do
this, we resort again to a randomization test: Given
two modelsMa andMb, this test performs random
permutations between outputs ofMa andMb, that is,
it determines for each sentence of indexi whether or
not to permute the two model outputs, with proba-
bility p = 0.5. WhenMa andMb are very similar,
these permutations have little effect, even when we
repeat this sampling process many times. To cope
with this problem, we slightly modify the random-

7In our experiments, we setK = 50. Some other practi-
cal considerations: the significance level used for discarding
unpromising models isp ≤ .05. The randomization test is a
sampling-based technique, for which we must specify a sample
sizeR. In this paper, we useR = 5000.

8In the case ofN -best MERT, it is not even guaranteed that
we find the true error rate of our current best modelM while
searching theN -best error surface. In fact, if we take the pa-
rameters of our best modelM and re-decode the development
set, we may get an error rate that is different from what was pre-
dicted from theN -best list. With direct search and Racing, no
such approximation affects our current best model.

9Measuring model similarity only based on parameter val-
ues is less effective, since features and other parameters are
sometimes redundant, and two models may behave similarly
while having fairly distinct parameter values.

ization test to discard one of the two nearly iden-
tical models. Specifically, we compute the gap—
measured in error rate—between the best random-
ized output and the worst randomized output. If this
gap is lower than a pre-defined threshold, we only
keep the best model.10 This adjustment to the sig-
nificance test makes direct search reasonably fast,
since Racing is effective during the initial steps of
search (when steps tend to be relatively big, and
when differences in error rate are pretty significant),
and our modification to randomization tests helps
while search converges towards an optimum using
increasingly smaller steps.

5.2 Lattice-based decoding

We use another technique to speed up direct search
by storing and re-using search graphs, which con-
sist of lattices in the case of phrase-based decod-
ing (Och et al., 1999) and hypergraphs in the case
of hierarchical decoding (Chiang, 2005). The suc-
cessive expansion of translation options in order to
construct the search graph is generally done from
scratch, but this can be wasteful when the same
sentences are translated multiple times, as it is the
case with direct search. Even when the parame-
ters of the decoder change across function evalua-
tions, some partial translation are likely to be con-
structed multiple times, and this is more likely to
happen when changes in parameters are relatively
small. To overcome this inefficiency, we memoize
hypotheses expansions made in all function evalu-
ations, which then allows us to reuse some edges
(or hyperedges) from previous iterations to construct
the current graph (or hypergraph). Since feature
values—including expensive features like language
model score—are stored into each edge, the speedup
is roughly proportional to the percentage of edges
we can reuse.

A more radical way of exploiting search graphs
of previous iterations is to use them as constraints in
a forced decoding approach. In this framework, the
decoder takes as input not only an input sentence,
but also a constraining search graph. During decod-
ing, it is forced to discard any translation hypothe-

10In the case where we compare our current best model and
a model that is currently being evaluated, we discard the latter.
In our experiments with BLEU, we discard if the gap is smaller
than 0.1 BLEU point.

474

decoder

constrained
decoder

λ̂, θ̂

1-best BLEU

optimization

inputf
other paramsθ

model paramsλ

latticeℓ

repeat

Figure 4: Lattice-constrained decoding for direct search.

ses that violate the constraining search graph. This
makes the memoization method presented in the pre-
vious paragraph maximally efficient, since lattice-
constrained decoding has all linear model feature
values already pre-computed. While this approach
is similar in spirit to lattice-based MERT (Macherey
et al., 2008), there is a crucial difference. The opti-
mization steps in lattice MERT bypass the decoder,
but the lattice-based approach presented here does
not. The distinction is important when it comes to
tuning non-linear and hidden state parameters of the
decoder. For instance, the initial lattice may have
been constructed with a distortion limit of 4, while
the current model specifies a distortion limit of 2.
At that stage, optimization via lattice-constrained de-
coding instead of lattice-based MERT ensures that
we will never select a path of the input lattice that
corresponds to a distortion limit of more than 2. This
is important since the error rate must reflect the fact
that jumps of two or more words are not allowed.

Figure 4 shows how direct search with lattice-
constrained decoding is structured. Similarly to
MERT and as opposed to straight direct search, opti-
mization is repeated multiple times. Since each opti-
mization in the lattice-constrained case does not re-
quire recomputing any features, it usually turns into
very significant gains in terms of translation speed,
though it also causes a small loss of translation ac-
curacy in general. The overall approach depicted in
Figure 4 works as follows: a first set of lattices is
generated using an initialλ0 andθ0. We then run
direct search with a decoder constrained on this set
of lattices. After optimization has converged, the op-

Train MERT dev. Test
Korean-English 7.9M 1000 6000
Arabic-English 11.1M 1000 6000
Farsi-English 739K 1000 2000

Table 1: Size of bitexts in number of sentence pairs.

timal λ̂ and θ̂ are provided as inputλ1 andθ1 to
start a new iteration of this process. Note that the
constraining lattices built at each iteration are always
merged with those of the previous ones, so constrain-
ing lattices grow over time. The two stopping crite-
ria are similar to MERT: if the norm of the difference
between the previous parameter vector—including
λ andθ—and the current vector falls below a pre-
defined tolerance value, we do not continue to the
next iteration. Alternatively, if a new pass of un-
constrained decoding generates lattices that are sub-
sumed by lattices constructed at previous iteration,
we stop and do not run the next optimization step.

6 Experiments

6.1 Setup

For our experiments, we use a phrase-based transla-
tion system similar to Moses (Koehn et al., 2007).
Our decoder uses many of the same features as
Moses, including four phrasal and lexicalized trans-
lation scores, phrase penalty, word penalty, a lan-
guage model score, linear distortion, and six lexical-
ized reordering scores. Unless specified otherwise,
the decoder’s stack size is 50, and the number of
translation options per input phrase is 25.

Table 1 summarizes the amount of training data
used to train translation systems from Korean, Ara-
bic, and Farsi into English. These data sets are
drawn from various sources, which include news,
web, and technical data, as well as United Nations
data in the case of Arabic. In order to get the sense
of how presented techniques generalize, we evalu-
ate our systems on a fairly broad domain. We use
development and test sets are a mix of news, web,
and technical data. All systems translate into En-
glish, for which we built a 5-gram language model
with cutoff counts 1, 1, 1, 2, 3 for unigrams to 5-
grams, using a corpus of roughly seven billion En-
glish words. This includes the target side of the par-
allel training data, plus a significant amount of data
gathered from the web.

475

Minimizer Optimized parameters Arabic Korean Farsi
1 MERT with grid search lin, DL 29.12 (14.6) 23.30 (20.8) 32.16 (11.7)
2 Direct search (simplex) lin, DL 29.07 (1.2) 23.42 (4.4) 32.22 (1.3)
3 Direct search (Powell) lin, DL 29.20 (2.3) 23.39 (5.6) 32.28 (2.1)
4 Direct search (Powell) lin, extended, DL 29.39 (4.4) 23.61 (8.9) 32.51 (4.9)
5 Lattice-constrained (Powell) lin, extended, DL 29.27 (0.7) 23.43 (1.3) 32.42 (1.1)
6 Direct search (Powell) lin, extended, DL, search 29.31 (6.5) 23.46 (9.7) 32.62 (6.2)

Table 2: BLEU-4 scores (%) with one reference, translating into English; the numbers in parentheses are times in
hours to run parameter optimization end-to-end. ‘Lin’ refers to Moses linear model features; ‘extended’ refers to non-
linear and hidden state features (polynomial features, future cost); ‘DL’ refers to distortion limit; ‘search’ is the set of
parameters controlling search quality (parameters controlling beam size, histogram pruning, and threshold pruning).

Our baseline system is trained for each language
pair by running minimum error rate training (Och,
2003) on 1000 sentences. Each iteration of MERT
utilizes 19 random starting points, plus the points of
convergence at all previous iterations of MERT, and
a uniform weight vector. That is, the first iteration
of MERT uses 20 starting points, the second uses 21
points, etc. Since MERT is not able to directly opti-
mize search parameters such as distortion limit and
beam size, our baseline system uses grid search to
optimize them. To make this search more tractable,
we only perform the grid search for a single param-
eter: the distortion limit. For each language pair,
the grid search consists of repeating MERT for eight
distinct distortion limits ranging from 3 to 10. The
optimal distortion limits found for Korean, Arabic,
and Farsi, are 8, 5, and 6, respectively.11 To ensure
that the comparison with our approach is consistent,
this grid search is made on the MERT dev set itself.

The next subsection contrasts the different direct
search methods presented in this paper. Note that
all these experiments use the speedup techniques
based on statistical significance test presented in Sec-
tion 5. Indeed, we found that using these techniques
resulted in faster speeds without affecting the search
in any significant way. Models tuned with or without
significance tests often ended up identical.

6.2 Results

The main results are shown in Table 2, and are com-
puted using standard BLEU-4 (Papineni et al., 2002)

11We rerun MERT for each different distortion limit because
of the dependencies between this parameter and linear model
features, particularly linear distortion and lexicalized reordering
scores. A linear model that is effective with a distortion limit of
4 can be suboptimal for a limit of 8.

using one reference translation, and ignoring case.
Row 1 displays results of the MERT baseline, with
a distortion limit that was found optimal using a
grid search on the development set. Rows 2 and 3
show results of direct error rate minimization with
downhill simplex and Powell’s method, where di-
rect search optimizes both linear model parameters
and the distortion limit. We see here that the per-
formance of direct search is comparable and some-
times better than MERT, but the benefit of direct
search here is that it does not require an external grid
search to find an effective distortion limit (each di-
rect search is initialized with a distortion limit of 10).
Row 4 shows the performance of Powell’s method
using the extended parameter set (Section 4), which
includes model weights for future costs and polyno-
mial features. We lack space to present an exten-
sive analysis of the relative impact of the different
non-linear features and parameters discussed in this
paper, but we generally find that the following pa-
rameters work best: distortion limit, polynomial dis-
tortion penalty, and weight of future cost estimate of
the language model. The fact that Moses-style future
cost estimation for language models often overesti-
mates probably explains why the latter feature helps.

In the last row of Table 2, optimization is done
using the time-sensitive variant of BLEU presented
in Section 4.4, and the set of parameters tuned here
includes all the previous ones, in addition to beam
size, and the two parameters controlling histogram
and threshold pruning in beam search. Clearly, run-
ning direct search to directly optimize BLEU would
yield a very large beam size and would set pruning
parameters that are so permissive that they would al-
most completely disable pruning. The benefit of us-
ing the time-sensitive variant of BLEU is that direct

476

search is forced to find parameter weights that of-
fer a good balance between accuracy and speed. To
make our results in row 6 as comparable as possible
to row 4, we use the running time (on the develop-
ment set) of row 4 as a time constraint for the model
of row 6, which is to decode the entire development
set at least as fast. In other words, the system of
row 6 is optimized to be no slower than the system
of row 4, and is otherwise penalized due to the time
penalty. The effect of this is that translation speed at
tuning time is almost the same, and speed of systems
4 and 6 is roughly the same at test time. A com-
parison between rows 4 and 6 suggests that tuning
search parameters such as beam size and without af-
fecting time does not provide much gain in terms of
translation quality, but the method nevertheless has
one advantage: one can target a specific translation
speed without having to manually tune any param-
eter such as beam size, and without even having to
decide which parameter to manually tune.

Times to run optimizations end-to-end are re-
ported in parentheses in Table 2 and they take into
account the time to run the grid search in the case
of MERT. Times to decode test sets are not reported
here since they are roughly the same across all mod-
els. While translation accuracy with MERT and di-
rect search is roughly the same when the underly-
ing parameter set is the same, direct search wins in
running time when it comes to optimizing search pa-
rameters like distortion limit. Since each grid search
runs MERT eight times, MERT is generally faster
than direct search, but the difference of speed re-
mains reasonable if the number of tuned parameters
is the same, and direct search is rarely twice as slow.

We finally discuss the case of lattice-constrained
decoding, which is shown in row 5 of Table 2. This
method is not applicable when tuning parameters
that affect search thoroughness (row 6), such as
beam size. The reason is that lattice-constrained
decoding is a form of forced decoding that con-
siderably narrows the search space. Under a con-
strained decoding setting, it appears that a large
beam size seldom affects translation speed, but this
is misleading and largely due to constraints cre-
ated by the lattice. We thus evaluate the lattice-
constrained case without tuning ‘search’ features,
and find that direct search is significantly faster us-
ing lattice-constrained, with only a slight degrada-

tion of translation quality. Lattice constraints are
augmented 2-5 times before it converges.

7 Related work

The use of derivative-free optimization methods to
tune machine translation parameters has been tried
before. Bender et al. (2004) used the Nelder-Mead
method to tune model parameters for a phrase-based
translation system. However, their way of making
direct search fast and practical is to set distortion
limit to zero, which results in poor translation qual-
ity for many language pairs. Zens et al. (2007) also
use the Nelder-Mead method to tune parameters in a
log-linear model to maximize expected BLEU. Zhao
and Chen (2009) proposes changes to Nelder-Mead
method to better fit parameter tuning in their ma-
chine translation setting. They show the modifica-
tion brings better search of parameters over the regu-
lar Nelder-Mead method. Our work is related to the
search-based structured prediction (SEARN) model
of Dauḿe (2006), in the sense that direct search also
accounts for what happens during search (including
search errors) to try to find parameters that are not
only good for prediction, but for search as well.

8 Conclusion

This paper addressed the problem of minimizing er-
ror rate at a corpus level. We show that a technique
to directly minimize the true error rate, rather than
one estimated from a surrogate representation such
as anN -best list, is in fact feasible. We present two
techniques that make this minimization significantly
faster, to the point where this technique is a viable
alternative to MERT. In the case where free param-
eters of the decoder (such as distortion limit) also
need to be optimized, our technique is in fact much
faster. We also optimize non-linear and hidden state
features that cannot be tuned using MERT, which
yield improvements in translation accuracy. Experi-
ments on large test sets yield gains on three language
pairs, and our best configuration outperforms MERT
by 0.27 to 0.35 BLEU points using a baseline system
trained on large amounts of data.

Acknowledgments

We thank anonymous reviewers, Chris Quirk, Kristina
Toutanova, and Anthony Aue for valuable suggestions.

477

References

Oliver Bender, Richard Zens, Evgeny Matusov, and Her-
mann Ney. 2004. Alignment templates: the RWTH
SMT system. InProc. of the International Workshop
on Spoken Language Translation, pages 79–84, Kyoto,
Japan.

Yin-Wen Chang and Michael Collins. 2011. Exact de-
coding of phrase-based translation models through La-
grangian relaxation. InProceedings of the 2011 Con-
ference on Empirical Methods in Natural Language
Processing, pages 26–37, Edinburgh, Scotland, UK.,
July. Association for Computational Linguistics.

David Chiang. 2005. A hierarchical phrase-based model
for statistical machine translation. InProceedings of
the 43rd Annual Conference of the Association for
Computational Linguistics (ACL-05), pages 263–270,
Ann Arbor, MI.

Hal Dauḿe, III. 2006. Practical Structured Learning
Techniques for Natural Language Processing. Ph.D.
thesis, University of Southern California, Los Angeles,
CA, USA.

B. Efron and R. J. Tibshirani. 1993.An Introduction to
the Bootstrap. Chapman & Hall, New York.

Michel Galley and Christopher D. Manning. 2008. A
simple and effective hierarchical phrase reordering
model. In Proceedings of the 2008 Conference on
Empirical Methods in Natural Language Processing,
pages 848–856, Honolulu, Hawaii, October. Associa-
tion for Computational Linguistics.

Michel Galley and Chris Quirk. 2011. Optimal search
for minimum error rate training. InProceedings of
the 2011 Conference on Empirical Methods in Natural
Language Processing, pages 38–49, Edinburgh, Scot-
land, UK., July. Association for Computational Lin-
guistics.

Spence Green, Michel Galley, and Christopher D. Man-
ning. 2010. Improved models of distortion cost for
statistical machine translation. InHuman Language
Technologies: The 2010 Annual Conference of the
North American Chapter of the Association for Com-
putational Linguistics, pages 867–875, Los Angeles,
California, June. Association for Computational Lin-
guistics.

Wassily Hoeffding. 1963. Probability inequalities for
sums of bounded random variables.Journal of the
American Statistical Association, 58(301):13–30.

Philipp Koehn, Franz Josef Och, and Daniel Marcu.
2003. Statistical phrase-based translation. InProceed-
ings of the 2003 Meeting of the North American chap-
ter of the Association for Computational Linguistics
(NAACL-03), Edmonton, Alberta.

Philipp Koehn, Hieu Hoang, Alexandra Birch, Chris
Callison-Burch, Marcello Federico, Nicola Bertoldi,

Brooke Cowan, Wade Shen, Christine Moran, Richard
Zens, Chris Dyer, Ondrej Bojar, Alexandra Constantin,
and Evan Herbst. 2007. Moses: Open source toolkit
for statistical machine translation. InProceedings of
ACL, Demonstration Session, pages 177–180.

Shankar Kumar, Wolfgang Macherey, Chris Dyer, and
Franz Och. 2009. Efficient minimum error rate train-
ing and minimum Bayes-risk decoding for translation
hypergraphs and lattices. InProceedings of the Joint
Conference of the 47th Annual Meeting of the ACL and
the 4th International Joint Conference on Natural Lan-
guage Processing of the AFNLP, pages 163–171, Sun-
tec, Singapore, August. Association for Computational
Linguistics.

Wolfgang Macherey, Franz Och, Ignacio Thayer, and
Jakob Uszkoreit. 2008. Lattice-based minimum error
rate training for statistical machine translation. InPro-
ceedings of the 2008 Conference on Empirical Meth-
ods in Natural Language Processing, pages 725–734,
Honolulu, Hawaii, October. Association for Computa-
tional Linguistics.

Oded Maron and Andrew W. Moore. 1994. Hoeffding
races: Accelerating model selection search for classi-
fication and function approximation. InAdvances in
neural information processing systems 6, pages 59–66.
Morgan Kaufmann.

Andrew Moore and Mary Soon Lee. 1994. Efficient
algorithms for minimizing cross validation error. In
W. W. Cohen and H. Hirsh, editors,Proceedings of the
11th International Confonference on Machine Learn-
ing, pages 190–198. Morgan Kaufmann.

Robert C. Moore and Chris Quirk. 2008. Random
restarts in minimum error rate training for statistical
machine translation. InProceedings of the 22nd In-
ternational Conference on Computational Linguistics
(Coling 2008), pages 585–592, Manchester, UK, Au-
gust. Coling 2008 Organizing Committee.

J. A. Nelder and R. Mead. 1965. A simplex method
for function minimization.Computer Journal, 7:308–
313.

Eric W. Noreen. 1989. Computer-Intensive Methods
for Testing Hypotheses : An Introduction. Wiley-
Interscience.

Franz Josef Och, Christoph Tillmann, Hermann Ney, and
Lehrstuhl Fiir Informatik. 1999. Improved alignment
models for statistical machine translation. InProceed-
ings of the Conference on Empirical Methods in Nat-
ural Language Processing and Very Large Corpora,
pages 20–28.

Franz Josef Och. 2003. Minimum error rate training for
statistical machine translation. InProceedings of the
41th Annual Conference of the Association for Compu-
tational Linguistics (ACL-03).

478

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-
Jing Zhu. 2002. BLEU: A method for automatic eval-
uation of machine translation. InProceedings of the
40th Annual Conference of the Association for Compu-
tational Linguistics (ACL-02).

M. J. D. Powell. 1964. An efficient method for finding
the minimum of a function of several variables without
calculating derivatives.The Computer Journal, 7:155–
162.

William H. Press, Saul A. Teukolsky, William T. Vetter-
ling, and Brian P. Flannery. 1992.Numerical recipes
in C (2nd ed.): the art of scientific computing. Cam-
bridge University Press, New York, NY, USA.

Stefan Riezler and John T. Maxwell. 2005. On some
pitfalls in automatic evaluation and significance test-
ing for MT. In Proceedings of the ACL Workshop on
Intrinsic and Extrinsic Evaluation Measures for Ma-
chine Translation and/or Summarization, pages 57–64,
June.

Matthew Snover, Bonnie Dorr, Richard Schwartz, Linnea
Micciulla, and John Makhoul. 2006. A study of trans-
lation edit rate with targeted human annotation. InPro-
ceedings of Association for Machine Translation in the
Americas, pages 223–231.

M H Wright. 1995. Direct search methods: Once
scorned, now respectable. Numerical Analysis,
344:191–208.

Richard Zens, Sasa Hasan, and Hermann Ney. 2007. A
systematic comparison of training criteria for statisti-
cal machine translation. InProceedings of the 2007
Joint Conference on Empirical Methods in Natural
Language Processing and Computational Natural Lan-
guage Learning (EMNLP-CoNLL), pages 524–532.

Bing Zhao and Shengyuan Chen. 2009. A simplex
Armijo downhill algorithm for optimizing statistical
machine translation decoding parameters. InProceed-
ings of Human Language Technologies: The 2009 An-
nual Conference of the North American Chapter of the
Association for Computational Linguistics, Compan-
ion Volume: Short Papers, pages 21–24, Boulder, Col-
orado, June. Association for Computational Linguis-
tics.

479

