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Montréal, Canada, June 7-8, 2012. c©2012 Association for Computational Linguistics

Syntax-aware Phrase-based Statistical Machine Translation:
System Description

Ulrich Germann
University of Toronto

Toronto, Ontario, Canada
germann@cs.toronto.edu

Abstract

We present a variant of phrase-based SMT that
uses source-side parsing and a constituent re-
ordering model based on word alignments in
the word-aligned training corpus to predict hi-
erarchical block-wise reordering of the input.
Multiple possible translation orders are rep-
resented compactly in a source order lattice.
This source order lattice is then annotated with
phrase-level translations to form a lattice of to-
kens in the target language. Various feature
functions are combined in a log-linear fashion
to evaluate paths through that lattice.

1 Introduction

Dealing with word order differences is one of the
major challenges in automatic translation between
human languages. With its moderate context sen-
sitivity and reliance onn-gram language models,
phrase-based statistical machine translation (PB-
SMT) (Koehn et al., 2003) is usually quite good
at performing small word order changes — for
instance, the inversion of adjective and noun in
English-to-French translation and vice versa. How-
ever, it regularly fails to execute word order changes
over long distances, as they are required, for exam-
ple, to accommodate the substantial differences in
the word order in subordinate clauses between Ger-
man and English, or to cope with the phenomenon
of the “sentence bracket” (Satzklammer) in German
main clauses, in which the finite part of the verb
complex and additional elements (separable pre-
fixes, participles, infinitives, etc.) form a bracket that
encloses most of the arguments and other adverbial

constituents, as shown in Fig. 1. In order to keep de-
coding complexity in check, phrase-based decoders
such as theMoses system (Koehnet al., 2007) rou-
tinely limit the maximum distance for word order
changes to six or seven word positions, thus rul-
ing out, a priori, word order changes necessary to
achieve good and fluent translations.

As is generally acknowledged, word order dif-
ferences are not entirely arbitrary. By and large
they follow syntactic structure. An analysis of
word-aligned French-English data by Fox (2002)
showed that word alignment links rarely cross syn-
tactic boundaries. Wu’s (1997)Inversion Transac-
tion Grammar (ITG), assumes that word order dif-
ferences can be accounted for by hierarchical inver-
sion of adjacent blocks of text. Yamada and Knight
(2001) present a stochastic model for transforming
English parse trees into Japanese word sequences
within a source-channel framework for Japanese-
to-English translation. Collinset al. (2005) per-
form heuristic word re-ordering from German into
English word order based on German parse trees
with a particular focus on the aforementioned drastic
word order differences between German and English
clause structure.

Building on Chiang (2007), several systems under
active development (e.g., Weeseet al., 2011; Dyer
et al., 2010) rely on synchronous context-free gram-
mars to deal with word order differences. In essence,
these systems parse the input while synchronously
building a parse tree in the translation target lan-
guage, using probabilities of the source and target
trees as well as correspondence probabilities to eval-
uate translation hypotheses.
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“Dieser1 Vorschlag2 wird3 sicherlich4 im5 Ausschuß6 gründlich7 diskutiert8 werden9 müssen10 .”

“This1 proposal2 will 3 certainly4 have10 to10 be9 discussed8 toroughly7 in5 the5 commission6.”

Figure 1: The sentence bracket (Satzklammer) in German.

The system presented in this paper takes a slightly
different route and is closer to the approach taken
by Collins et al. (2005): we parse only monolin-
gually on the source side, re-order, and then trans-
late. However, unlike Collinset al. we do not use a
series of rules to perform the transformations (nor do
we re-order the training data on the source side), but
try to learn reordering rules from the word-aligned
corpus with the original word order on both sides.
Moreover, we do not commit to a single parse and
a single re-ordering of the source at translation time
but consider multiple parse alternatives to create a
lattice of possible translation orders. Each vertex in
the lattice corresponds to a specific subset of source
words translated up to that point.

Individual edges and sequences of edges in this
lattice are annotated with word- and phrase1-level
translations extracted from the word-aligned train-
ing corpus, in the same way as phrase tables for PB-
SMT are constructed2. An optimal path through the
lattice is determined by dynamic programming, con-
sidering a variety of feature functions combined in a
log-linear fashion.

In the following, we first describe the individ-
ual processing steps in more detail and then try to
shed some light on the system’s performance in this
year’s shared task. Due to space limitations, many
details will have to be skipped.

2 System Description

2.1 Grammatical framework

The central idea underlying this work is that gram-
mar constrains word reordering: we are allowed to
permute siblings in a CFG tree, or the governor and
its dependents in a dependency structure, but we are
not allowed to break phrase coherence by moving

1“Phrase” being any contiguous sequence of words in this con-
text, as in PBSMT.

2Except that we do not pre-compute phrase tables but construct
them dynamically on the fly using suffix arrays, as suggested
by Callison-Burchet al. (2005).

words out of their respective sub-tree. Obviously,
we need to be careful in the precise formulation of
our grammar, so as not to over-constrain word order
options. For example, the German parse tree for the
phraseein1 [zu hoher]2 Preis3 in Fig. 2 below rules
out the proper word order of its English translation
[too high]2 a1 price3.

NP

Det
ein1

N′

AP
[zu hoher]2

N
Preis3

Figure 2: X-bar syntax can be too restrictive. This tree
does not allow the word order of the English translation
[too high]2 a1 price3.

In her analysis of phrasal cohesion in transla-
tion, Fox (2002) pointed out that phrasal cohesion
is greater with respect to dependency structure than
with respect to constituent structure. We therefore
decided to rely on the segmentation granularity in-
herent in dependency parses.

2.2 Parsing

For parsing, we developed our own hybrid left-
corner dependency parser for German. In many re-
spects, it is inspired by the work on dependency
parsing by Eisner (1996) (edge factorization) and
McDonaldet al. (2005) (choice of features for edge
scores). From the generative point of view, we can
imagine the following generative process: We start
with the root word of the sentence. A Markov pro-
cess then generates this word’s immediate depen-
dents from left to right, at some point placing the
head word itself. The dependents (but not the head
word) are then expanded recursively in the same
fashion. At parse time we process the input left to
right, deciding for each word what its governors are,
or whether it governs some items to its left or right.
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Since each word has exactly one governor (bar the
root word), we renormalize edge scores by marginal-
izing over the potential governors. If the word is po-
tentially the left corner of a sub-tree, we establish a
new rule (akin to a dotted rule in an Earley parser)
and add it to the parse chart. For potential gover-
nors to the left, we scan the parse chart for partial
productions that end immediately before the word
in question and extend them by the word in ques-
tion. Whenever we add an item to a partial produc-
tion that is “past or reaching its head” (i.e., the span
covered by the rule includes the sub-tree’s root or the
newly added item is the root), we treat the sub-tree
as a new item in a bottom-up fashion, i.e., determine
potential governors outside of the span covered, add
a new rule if the sub-tree could be the left corner of a
larger sub-tree, etc. In addition to the joint probabil-
ity of all individual edges, we also consider the cost
of adding an item to a partial production. To reduce
parse complexity, we use a beam to limit the number
of potential governors that are considered for each
item. Unlike conventional CFGs, the set of “rules”
in this grammar is not finite; rules are generated on
the fly by a Markov process. This adds robustness;
we can always attach an item (token or sub-tree) to
one of its immediate neighbors.

2.3 Construction of a source order lattice (SOL)

Rows and columns in the parse chart correspond to
the start and end positions of parse spans in the sen-
tence. Each cell contains zero or more production
rules that correspond to different segmentations of
the respective span into sub-spans that may be re-
ordered during translation. Based on the underly-
ing part-of-speech tags, we retrieve similar syntactic
configurations from the word-aligned, source-side-
parsed training corpus.

For each example retrieved from the training cor-
pus, we determine, from the word alignment infor-
mation in the training corpus, the order in which the
dependents and the head word are translated. To re-
duce noise from alignment errors, each example is
weighted by the joint lexical translation probability
of the words immediately involved in the produc-
tion (i.e., the head and its dependents, but not grand-
children). Thus, examples with unlikely word align-
ments count less than examples that have highly
probable word alignments. If exact matches for the

production rule in question cannot be found in the
corpus (which happens frequently), we fall back on
a factorized model that maps from source to target
positions based on the part-of-speech of the depen-
dent in question and its governor. Words that are part
of the verb complex (auxiliaries, separable prefixes,
the ‘lexical head’, etc.) are grouped together and re-
ceive special treatment. (This is currently work in
progress; at this point, we translate only the lexical
head, but ignore negation and auxiliaries.)

For each of the topN segmentations suggested
by the parser, translation order probabilities are
computed on the basis of the weighted occurrence
counts, and used to set the edge weights in a lat-
tice of possible translation orders, which we call the
Source Order Lattice (SOL). Each vertex in this lat-
tice corresponds to a specific set of source words
translated so far. (In principle, the number of ver-
tices in this lattice is exponential in the length of the
input sentence; in practice, since we consider only a
small number of possibilities, their number is quite
manageable.) For each chunk of text in the sug-
gested order of translation, we increase the weight
of the edge between the vertex representing the set
of words translated so far and the vertex represent-
ing the set of words translated after this chunk has
been translated by the probability of translating the
chunk in question at this particular point in the trans-
lation process. Edges representing two or more con-
secutive words (with the exception of those repre-
senting a verb complex) are recursively replaced by
local SOLs, until each edge corresponds to a single
word in the source sentence.

2.4 Constructing a target word lattice

The global SOL thus constructed is then transformed
into a Target Word Lattice (TWL), while maintain-
ing underlying alignment information. Each individ-
ual edge or sequence of adjacent edges correspond-
ing to a contiguous sequence of words in the source
sentence is replaced by a lattice that encodes the
range of possible translations for the respective word
or phrase. Translations are extracted from the word-
aligned bilingual training corpus with the phrase-
extraction method that is commonly used in phrase-
based SMT. As it is done in theJoshua system
(Weeseet al., 2011), we extract phrase translations
on the fly from the word-aligned bilingual corpus
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using suffix arrays instead of using pre-computed
phrase tables.

2.5 Search

Once constructed, the TWL is searched with dy-
namic programming with a beam search. Hypothe-
ses are scored by a log-linear combination of the fol-
lowing feature functions. Feature values are normal-
ized by hypothesis length unless noted otherwise, to
safeguard against growth of cumulative feature val-
ues at different rates as the length of a hypothesis in-
creases, and to keep hypotheses of different lengths
mutually comparable.

• Distortion probabilities from the SOL as de-
scribed above.

• Relative phrase translation frequencies
based on counts in the training corpus.

• Lexical translation probabilities: forward
(p (target | source); normalized by target
length) and backward (p (source | target);
normalized by source length). Lexical transla-
tion probabilities are based on alignment link
counts in the word-aligned corpus.

• N -gram language model probability as esti-
mated with the SRILM toolkit.

• Fluency. Simple length-based normalization
of joint n-gram probabilities is problematic. It
entices the decoder to “throw in” additional,
highly frequent words to increase the language
model score. Inversely, lack of normalization
provides an incentive to keep translation hy-
potheses as short as possible, even at the ex-
pense of fluency. This fluency feature func-
tion computes the ratio of the language model
probability of each proposed target word in
context and its unigram probability. Rewards
(p (wi |wi−k+1 . . . wi−1) > p (wi)) and penal-
ties (p (wi |wi−k+1 . . . wi−1) < p (wi)) re-
ceive different weights in the log-linear com-
bination. Rewards are normalized by tar-
get length; penalties by the number of source
words translated. The rationale between the
different forms of normalization is this: if we
don’t normalize rewards by hypothesis length,
we have an incentive to pad the translation with

highly frequent tokens (commas, ‘the’) wher-
ever their probability in context is higher than
their simple unigram probability. Awkwardly
placed tokens, on the other hand, should always
trigger a penalty, and the system should not
be allowed to soften the blow by adding more
poorly, but not quite as poorly placed tokens.
Normalization of penalties by covered source
length is an acknowledgement of the fact that
in longer sentences, the probability of having
points of disfluency increases. We use two re-
ward/penalty pairs sets of fluency feature func-
tions. One operates on surface forms, the other
one on part-of-speech tag sequences.

• Cumulative probability density of observed
n-gram counts. This feature function penal-
izesn-grams that do not occur as often as they
should (even if observed), based on prior obser-
vation, and rewards those that do. Consider the
following sequence of words in English:

can you are

The sequencecan you is fairly frequent, and so
is you are. However,can you are is not. With
standardn-gram back-off models, the model,
upon not finding the full contextcan you for
are, will back off to the contextyou and thus
assign an inappropriately high probability to
p (are | can you).

Then-gram cdf feature models the event as a
Bernoulli experiment. Suppose, for example,
thatp (are | you) = .01, and we have observed
can you 1000 times, but have never seencan
you are. Then the expected count of observa-
tions is 10 and

cdf (0 | 1000; .01) = (1− .01)1000 ≈ .000043

3 Training and tuning

The system was trained on the German-English part
of Europarl corpus (v.5). The language model for
English was trained on all monolingual data avail-
able for WMT-2010. We true-cased, but did not
lower-case the data. Word alignment was performed
with multi-threaded Giza++ (Gao and Vogel, 2008).

In order to bootstrap training data for our parser,
we parsed the German side of the Europarl corpus
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with the Berkeley Parser (Petrovet al., 2006; Petrov
and Klein, 2007) and converted the CFG structures
to dependency structures using simple hand-written
heuristics to identify the head in each phrase, simi-
lar to those used by Magerman (1995) and Collins
(1996). This head was then selected as the gover-
nor of the respective phrase. Part-of-speech tagging
and lemmatization on the English side as well as the
German development and test data was performed
with the tool TreeTagger (Schmid, 1995).

For tuning the model parameters, we tried to ap-
ply pairwise rank optimization (PRO) (Hopkins and
May, 2011), but we were not able to achieve results
that beat our hand-tuned parameter settings.

4 Evaluation

Unfortunately, with a BLEU score of .121, (.150 af-
ter several bug fixes in the program code), our sys-
tem performed extremely poorly in the shared task.
We have since tried to track down the reasons for the
poor performance, but have not been able to find a
compelling explanation for it.

A partial explanation may lie in the fact that we
used only the Europarl data for training.3 However,
our system also lags far behind a baseline Moses
system trained on the same subset of data used for
our system, which achieves a BLEU score of .184.

Since our feature functions are very similar to
those used in MOSES, we suspect that better tuning
of the feature weights might close the gap. We are
currently in the process of implementing and test-
ing other parameter tuning methods (in addition to
manual tuning and PRO), specifically lattice-based
minimum error rate training (Machereyet al., 2008)
and batch MIRA (Cherry and Foster, 2012).

5 Conclusion

We have presented a variant of PBSMT that uses
syntactic information from source-side parses in or-
der to account better for word-order differences in
German-to-English machine translation, while pre-
serving the advantages of PBSMT. Several compo-
nents were developed from scratch, such as a depen-
dency parser for German and a reordering model for
parse constituents, as well as several novel variants

3Participation in the shared task was a short term decision, and
we did not have the time to re-train our system.

of n-gram based fluency measures. While our re-
sults for this year’s shared task are certainly disap-
pointing, we nevertheless believe that we are on the
right track. We are not ready to give up quite yet.
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