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Abstract

In this paper, we describe the UPC system that
participated in the WMT 2012 shared task on
Quality Estimation for Machine Translation.
Based on the empirical evidence that fluency-
related features have a very high correlation
with post-editing effort, we present a set of
features for the assessment of quality estima-
tion for machine translation designed around
different kinds of n-gram language models,
plus another set of features that model the
quality of dependency parses automatically
projected from source sentences to transla-
tions. We document the results obtained on
the shared task dataset, obtained by combining
the features that we designed with the baseline
features provided by the task organizers.

1 Introduction

Quality Estimation (QE) for Machine Translations
(MT) is the task concerned with the prediction of the
quality of automatic translations in the absence of
reference translations. The WMT 2012 shared task
on QE for MT (Callison-Burch et al., 2012) required
participants to score and rank a set of automatic
English to Spanish translations output by a state-
of-the-art phrase based machine translation system.
Task organizers provided a training dataset of 1, 832
source sentences, together with reference, automatic
and post-edited translations, as well as human qual-
ity assessments for the automatic translations. Post-
editing effort, i.e., the amount of editing required to
produce an accurate translation, was selected as the
quality criterion, with assessments ranging from 1

(extremely bad) to 5 (good as it is). The organizers
also provided a set of linguistic resources and pro-
cessors to extract 17 global indicators of translation
quality (baseline features) that participants could de-
cide to employ for their models. For the evaluation,
these features are used to learn a baseline predictors
for participants to compare against. Systems partic-
ipating in the evaluation are scored based on their
ability to correctly rank the 422 test translations (us-
ing DeltaAvg and Spearman correlation) and/or to
predict the human quality assessment for each trans-
lation (using Mean Average Error - MAE and Root
Mean Squared Error - RMSE).

Our initial approach to the task consisted of sev-
eral experiments in which we tried to identify com-
mon translation errors and correlate them with qual-
ity assessments. However, we soon realized that
simple regression models estimated on the baseline
features resulted in more consistent predictors of
translation quality. For this reason, we eventually
decided to focus on the design of a set of global in-
dicators of translation quality to be combined with
the strong features already computed by the baseline
system.

An analysis of the Pearson correlation of the
baseline features (Callison-Burch et al., 2012)1

with human quality assessments shows that the two
strongest individual predictors of post-editing ef-
fort are the n-gram language model perplexities es-
timated on source and target sentences. This ev-
idence suggests that a reasonable approach to im-

1Baseline features are also described in http://www.
statmt.org/wmt12/quality-estimation-task.
html.
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Feature Pearson |r| Feature Pearson |r|

BL/4 0.3618 DEP/C+/Q4/R 0.0749
BL/5 0.3544 BL/13 0.0741
BL/12 0.2823 DEP/C−/Q1/W 0.0726
BL/14 0.2675 DEP/C+/Q4/W 0.0718
BL/2 0.2667 DEP/C+/Q34/R 0.0687
BL/1 0.2620 BL/3 0.0623
BL/8 0.2575 DEP/C+/Q34/W 0.0573
BL/6 0.2143 SEQ/sys-ref/W 0.0495
DEP/C−/S 0.2072 SEQ/sys/W 0.0492
BL/10 0.2033 SEQ/ref-sys/W 0.0390
DEP/C−/Q12/S 0.1858 BL/7 0.0351
BL/17 0.1824 SEQ/sys/SStop 0.0312
BL/16 0.1725 SEQ/sys/RStop 0.0301
DEP/C−/W 0.1584 SEQ/sys-ref/SStop 0.0291
DEP/C−/R 0.1559 SEQ/sys-ref/RStop 0.0289
DEP/C−/Q12/R 0.1447 DEP/Coverage/S 0.0286
DEP/Coverage/W 0.1419 SEQ/ref-sys/S 0.0232
DEP/C−/Q1/S 0.1413 SEQ/ref-sys/R 0.0205
BL/15 0.1368 SEQ/ref-sys/RStop 0.0187
DEP/C+/Q4/S 0.1257 SEQ/sys-ref/R 0.0184
DEP/Coverage/R 0.1239 SEQ/sys/R 0.0177
SEQ/ref-sys/PStop 0.1181 SEQ/ref-sys/Chains 0.0125
SEQ/sys/PStop 0.1173 SEQ/ref-sys/SStop 0.0104
SEQ/sys-ref/PStop 0.1170 SEQ/sys/S 0.0053
DEP/C−/Q12/W 0.1159 SEQ/sys-ref/S 0.0051
DEP/C−/Q1/R 0.1113 SEQ/sys/Chains 0.0032
DEP/C+/Q34/S 0.0933 SEQ/sys-ref/Chains 0.0014
BL/9 0.0889 BL/11 0.0001

Table 1: Pearson correlation (in absolute value) of the
baseline (BL) features and the extended feature set (SEQ
and DEP) with the quality assessments.

prove the accuracy of the baseline would be to con-
centrate on the estimation of other n-gram language
models, possibly working at different levels of lin-
guistic analysis and combining information coming
from the source and the target sentence. On top of
that, we add another class of features that capture
the quality of grammatical dependencies projected
from source to target via automatic alignments, as
they could provide clues about translation quality
that may not be captured by sequential models.

The novel features that we incorporate are de-
scribed in full detail in the next section; in Sec-
tion 3 we describe the experimental setup and the
resources that we employ, while in Section 4 we
present the results of the evaluation; finally, in Sec-
tion 5 we draw our conclusions.

2 Extended features set

We extend the set of 17 baseline features with 35
new features:

SEQ: 21 features based on n-gram language mod-
els estimated on reference and automatic trans-
lations, combining lexical elements of the tar-
get sentence and linguistic annotations (POS)
automatically projected from the source;

DEP: 18 features that estimate a language model
on dependency parse trees automatically pro-
jected from source to target via unsupervised
alignments.

All the related models are estimated on a cor-
pus of 150K newswire sentences collected from the
training/development corpora of previous WMT edi-
tions (Callison-Burch et al., 2007; Callison-Burch et
al., 2011). We selected this resource because we pre-
fer to estimate the models only on in-domain data.
The models for SEQ features are computed based
on reference translations (ref ) and automatic trans-
lations generated by the same Moses (Koehn et al.,
2007) configuration used by the organizers of this
QE task. As features, we encode the perplexity of
observed sequences with respect to the two models,
or the ratio of these values. For DEP features, we es-
timate a model that explicitly captures the difference
between reference and automatic translations for the
same sentence.

2.1 Sequential features (SEQ)

The simplest sequential models that we estimate
are 3-gram language models2 on the following se-
quences:

W: (Word), the sequence of words as they appear
in the target sentence;

R: (Root), the sequence of the roots of the words in
the target;

S: (Suffix) the sequence of the suffixes of the words
in the target;

As features, for each automatic translation we en-
code:

• The perplexity of the corresponding sequence
according to automatic (sys) translations: for

2We also considered using longer histories, i.e., 5-grams, but
since we could not observe any noticeable difference we finally
selected the least over-fitting alternative.
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example, SEQ/sys/R and SEQ/sys/W are the
root-sequence and word-sequence perplexities
estimated on the corpus of automatic transla-
tions;

• The ratio between the perplexities according
the two sets of translations: for example,
SEQ/ref-sys/S is the ratio between the perplex-
ity of suffix-sequences on reference and auto-
matic translations, and SEQ/sys-ref/S is its in-
verse.3

We also estimate 3-gram language models on
three variants of a sequence in which non-stop words
(i.e., all words belonging to an open class) are re-
placed with either:

RStop: the root of the word;

SStop: the suffix of the word;

PStop: the POS of the aligned source word(s).

This last model (PStop) is the only one that requires
source/target pairs in order to be estimated. If the
target word is aligned to more than one word, we
use the ordered concatenation of the source words
POS tags; if the word cannot be aligned, we replace
it with the placeholder “*”, e.g.: “el NN de * VBZ
JJ en muchos NNS .”. Also in this case, different
features encode the perplexity with respect to au-
tomatic translations (e.g., SEQ/sys/PStop) or to the
ratio between automatic and reference translations
(e.g., SEQ/ref-sys/RStop).

Finally, a last class of sequences (Chains) col-
lapses adjacent stop words into a single token.
Content-words or isolated stop-words are not in-
cluded in the sequence, e.g: “mediante la de los
de la y de las y la a los”. Again, we consider
the same set of variants, e.g. SEQ/sys/Chains or
SEQ/sys-ref/Chains.
Since there are 7 sequence types and 3 combinations
(sys, sys-ref, ref-sys) we end up with 21 new fea-
tures.

3Features extracted solely from reference translations have
been considered, but they were dropped during development
since we could not observe a noticeable effect on prediction
quality.

2.2 Dependency features (DEP)
These features are based on the assumption that
by observing how dependency parses are projected
from source to target we can gather clues concern-
ing translation quality that cannot be captured by se-
quential models. The features encode the extent to
which the edges of the projected dependency tree are
observed in reference-quality translations.

The model for DEP features is estimated on
the same set of 150K English sentences and the
corresponding reference and automatic translations,
based on the following algorithm:

1. Initialize two maps M+ and M− to store edge
counts;

2. Then, for each source sentence s: parse s with
a dependency parser;

3. Align the words of s with the reference and the
automatic translations r and a;

4. For each dependency relation 〈d, sh, sm〉 ob-
served in the source, where d is the relation
type and sh and sm are the head and modifier
words, respectively:

(a) Identify the aligned head/modifier words
in r and a, i.e., 〈rh, rm〉 and 〈ah, am〉;

(b) If rh = ah and rm = am, then incre-
ment M+

〈d,ah,am〉 by one, otherwise incre-
ment M−

〈d,ah,am〉.

In other terms, M+ keeps track of how many times
a projected dependency is the same in the automatic
and in the reference translation, while M− accounts
for the cases in which the two projections differ.

Let T be the set of dependency relations projected
on an automatic translation. In the feature space we
represent:

Coverage: The ratio of dependency edges found in
M− or M+ over the total number of projected
edges, i.e.

Coverage(T ) =

∑
D∈T M+

D + M−
D

|T |
;

C+: The quantity C+ = 1
|T |

∑
D∈T

M+
D

M+
D−M−

D

;
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C−: The quantity C− = 1
|T |

∑
D∈T

M−
D

M+
D−M−

D

.

Intuitively, high values of C+ mean that most pro-
jected dependencies have been observed in reference
translations; conversely, high values of C− suggest
that most of the projected dependencies were only
observed in automatic translations.

Similarly to SEQ features, also in this case we ac-
tually employ three variants of these features: one in
which we use word forms (i.e., DEP/Coverage/W,
DEP/C+/W and DEP/C−/W), one in which we
look at roots (i.e., DEP/Coverage/R, DEP/C+/R
and DEP/C−/R) and one in which we only con-
sider suffixes (i.e., DEP/Coverage/S, DEP/C+/S and
DEP/C−/S).

Moreover, we also estimate C+ in the top (Q4)
and top two (Q34) fourths of edge scores, and C− in
the bottom (Q1) and bottom two (Q12) fourths. As
an example, the feature DEP/C+/Q4/R encodes the
value of C+ within the top fourth of the ranked list of
projected dependencies when only considering word
roots, while DEP/C−/W is the value of C− on the
whole edge set estimated using word forms.

3 Experiment setup

To extract the extended feature set we use an align-
ment model, a POS tagger and a dependency parser.
Concerning the former, we trained an unsupervised
model with the Berkeley aligner4, an implementa-
tion of the symmetric word-alignment model de-
scribed by Liang et al. (2006). The model is trained
on Europarl and newswire data released as part of
WMT 2011 (Callison-Burch et al., 2011) training
data. For POS tagging and semantic role annota-
tion we use SVMTool5 (Jesús Giménez and Lluı́s
Màrquez, 2004) and Swirl6 (Surdeanu and Turmo,
2005), respectively, with default configurations. To
estimate the SEQ and DEP features we use refer-
ence and automatic translations of the newswire sec-
tion of WMT 2011 training data. The automatic
translations are generated by the same configura-
tion generating the data for the quality estimation
task. The n-gram models are estimated with the

4http://code.google.com/p/berkeleyaligner
5http://www.lsi.upc.edu/˜nlp/SVMTool/
6http://www.surdeanu.name/mihai/swirl/

Feature set DeltaAvg MAE

Baseline 0.4664 0.6346
Extended 0.4694 0.6248

Table 2: Comparison of the baseline and extended feature
set on development data.

SRILM toolkit 7, with order equal to 3 and Kneser-
Ney (Kneser and Ney, 1995) smoothing.

As a learning framework we resort to Support
Vector Regression (SVR) (Smola and Schölkopf,
2004) and learn a linear separator using the SVM-
Light optimizer by Joachims (1999)8. We represent
feature values by means of their z-scores, i.e., the
number of standard deviations that separate a value
from the average of the feature distribution. We
carry out the system development via 5-fold cross
evaluation on the 1,832 development sentences for
which we have quality assessments.

4 Evaluation

In Table 1 we show the absolute value of the Pear-
son correlation of the features used in our model,
i.e., the 17 baseline features (BL/*), the 21 sequence
(SEQ/*) and the 18 dependency (DEP/*) features,
with the human quality assessments. The more cor-
related features are in the top (left) part of the ta-
ble. At a first glance, we can see that 9 of the 10
features having highest correlation are already en-
coded by the baseline. We can also observe that
DEP features show a higher correlation than SEQ
features. This evidence seems to contradict our ini-
tial expectations, but it can be easily ascribed to the
limited size of the corpus used to estimate the n-
gram models (150K sentences). This point is also
confirmed by the fact that the three variants of the
*PStop model (based on sequences of target stop-
words interleaved by POS tags projected from the
source sentence and, hence, on a very small vocab-
ulary) are the three sequential models sporting the
highest correlation. Alas, the lack of lexical anchors
makes them less useful as predictors of translation
quality than BL/4 and BL/5. Another interesting as-

7http://www-speech.sri.com/projects/
srilm

8http://svmlight.joachims.org/
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System DeltaAvg MAE

Baseline 0.55 0.69

Official Evaluation 0.22 0.84
Amended Evaluation 0.51 0.71

Table 3: Official and amended evaluation on test data of
the extended feature sets.

pect is that DEP/C− features show higher correlation
than DEP/C+. This is an expected behaviour, as be-
ing indicators of possible errors they are intended to
have discriminative power with respect to the human
assessments. Finally, we can see that more than 50%
of the included features, including five baseline fea-
tures, have negligible (less than 0.1) correlation with
the assessments. Even though these features may not
have predictive power per se, their combination may
be useful to learn more accurate models of quality.9

Table 2 shows a comparison of the baseline fea-
tures against the extended feature set as the average
DeltaAvg score and Mean Absolute Error (MAE) on
the 10 most accurate development configurations. In
both cases, the extended feature set results in slightly
more accurate models, even though the improve-
ment is hardly significant.

Table 3 shows the results of the official evaluation.
Our submission to the final evaluation (Official) was
plagued by a bug that affected the values of all the
baseline features on the test set. As a consequence,
the official performance of the model is extremely
poor. The row labeled Amended shows the results
that we obtained after correcting the problem. As we
can see, on both tasks the baseline outperforms our
model, even though the difference between the two
is only marginal. Ranking-wise, our official submis-
sion is last on the ranking task and last-but-one on
the quality prediction task. In contrast, the amended
model shows very similar accuracy to the baseline,
as the majority of the systems that took part in the
evaluation.

9Our experiments on development data were not signifi-
cantly affected by the presence or removal of low-correlation
features. Given the relatively small feature space, we adopted
a conservative strategy and included all the features in the final
models.

5 Discussion and conclusions

We have described the system with which we par-
ticipated in the WMT 2012 shared task on quality
estimation. The model incorporates all the base-
line features, plus two sets of novel features based
on: 1) n-gram language models estimated on mixed
sequences of target sentence words and linguistic
annotations projected from the source sentence by
means of automatic alignments; and 2) the likeli-
hood of the projection of dependency relations from
source to target.

On development data we found out that the ex-
tended feature set granted only a very marginal im-
provement with respect to the strong feature set of
the baseline. In the official evaluation, our submis-
sion was plagued by a bug affecting the generation
of baseline features for the test set, and as a result
we had an incredibly low performance. After fix-
ing the bug, re-evaluating on the test set confirmed
that the extended set of features, at least in the cur-
rent implementation, does not have the potential to
significantly improve over the baseline features. On
the contrary, the accuracy of the corrected model is
slightly lower than the baseline on both the ranking
and the quality estimation task.

During system development it was clear that im-
proving significantly over the results of the base-
line features would be very difficult. In our expe-
rience, this is especially due to the presence among
the baseline features of extremely strong predictors
of translation quality such as the perplexity of the
automatic translation. We could also observe that
the parametrization of the learning algorithm had
a much stronger impact on the final accuracy than
the inclusion/exclusion of specific features from the
model.

We believe that the information that we encode,
and in particular dependency parses and stop-word
sequences, has the potential to be quite relevant for
this task. On the other hand, it may be necessary to
estimate the models on much larger datasets in order
to compensate for their inherent sparsity. Further-
more, more refined methods may be required in or-
der to incorporate the relevant information in a more
determinant way.
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