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Abstract

We present a method for inference in hi-
erarchical phrase-based translation, where
both optimisation and sampling are per-
formed in a common exact inference
framework related to adaptive rejection
sampling. We also present a first imple-
mentation of that method along with ex-
perimental results shedding light on some
fundamental issues. In hierarchical transla-
tion, inference needs to be performed over
a high-complexity distribution defined by
the intersection of a translation hypergraph
and a target language model. We replace
this intractable distribution by a sequence
of tractable upper-bounds for which exact
optimisers and samplers are easy to obtain.
Our experiments show that exact inference
is then feasible using only a fraction of the
time and space that would be required by
the full intersection, without recourse to
pruning techniques that only provide ap-
proximate solutions. While the current im-
plementation is limited in the size of inputs
it can handle in reasonable time, our exper-
iments provide insights towards obtaining
future speedups, while staying in the same
general framework.

1 Introduction

In statistical machine translation (SMT), optimi-
sation — the task of searching for an optimum
translation — is performed over a high-complexity
distribution defined by the intersection between a
translation hypergraph and a target language model
(LM). This distribution is too complex to be repre-
sented exactly and one typically resorts to approx-
imation techniques such as beam-search (Koehn et
al., 2003) and cube-pruning (Chiang, 2007), where
maximisation is performed over a pruned represen-
tation of the full distribution.

Often, rather than finding a single optimum, one
is really interested in obtaining a set of proba-
bilistic samples from the distribution. This is the
case for minimum error rate training (Och, 2003;
Watanabe et al., 2007), minimum risk training
(Smith and Eisner, 2006) and minimum risk de-
coding (Kumar and Byrne, 2004). Due to the ad-
ditional computational challenges posed by sam-
pling, n-best lists, a by-product of optimisation, are
typically used as approximation to true probabilis-
tic samples. A known issue with n-best lists is that
they tend to be clustered around only one mode of
the distribution. A more direct procedure is to at-
tempt to directly draw samples from the underlying
distribution rather than rely on n-best list approxi-
mations (Arun et al., 2009; Blunsom and Osborne,
2008).

OS∗ (Dymetman et al., 2012a) is a recent ap-
proach that stresses a unified view between the two
types of inference, optimisation and sampling. In
this view, rather than resorting to pruning in or-
der to cope with the tractability issues, one upper-
bounds the complex goal distribution with a sim-
pler “proposal” distribution for which dynamic
programming is feasible. This proposal is incre-
mentally refined to be closer to the goal until the
maximum is found, or until the sampling perfor-
mance exceeds a certain level.

This paper applies the OS∗ approach to the
problem of inference in hierarchical SMT (Chi-
ang, 2007). In a nutshell, the idea is to replace
the intractable problem of intersecting a context-
free grammar with a full language model by the
tractable problem of intersecting it with a simpli-
fied, optimistic version of this LM which “forgets”
parts of n-gram contexts, and to incrementally add
more context based on evidence of the need to do
so. Evidence is gathered by optimising or sampling
from the tractable proxy distribution and focussing
on the most serious over-optimistic estimates rela-
tive to the goal distribution.
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Our main contribution is to provide an exact op-
timiser/sampler for hierarchical SMT that is effi-
cient in exploring only a small fraction of the space
of n-grams involved in a full intersection. Al-
though at this stage our experiments are limited to
short sentences, they provide insights on the be-
havior of the technique and indicate directions to-
wards a more efficient implementation within the
same paradigm.

The paper is organized as follows: §2 provides
background on OS∗ and hierarchical translation; §3
describes our approach to exact inference in SMT;
in §4 the experimental setup is presented and find-
ings are discussed; §5 discusses related work, and
§6 concludes.

2 Background

2.1 OS∗

The OS∗ approach (Dymetman et al., 2012a;
Dymetman et al., 2012b) proposes a unified view
of exact inference in sampling and optimisation,
where the two modalities are seen as extremes in a
continuum of inference tasks in Lp spaces (Rudin,
1987), with sampling associated with the L1 norm,
and optimisation with the L∞ norm.

The objective function p, over which inference
needs to be performed, is a complex non-negative
function over a discrete or continuous space X ,
which defines an unnormalised distribution over
X . The goal is to optimise or sample relative to
p — where sampling is interpreted in terms of the
normalised distribution p̄(.) = p(.)/

∫
X p(x)dx.

Directly optimising or sampling from p is unfea-
sible; however, it is possible to define an (unnor-
malized) distribution q of lower complexity than
p, which upper-bounds p everywhere (ie. p(x) ≤
q(x), ∀x ∈ X), and from which it is feasible to
optimise or sample directly.

Sampling is performed through rejection sam-
pling: first a sample x is drawn from q, and then x
is accepted or rejected with probability given by the
ratio r = p(x)/q(x), which is less than 1 by con-
struction. Accepted x’s can be shown to produce
an exact sample from p (Robert and Casella, 2004).
When the sample x from q is rejected, it is used as
a basis for “refining” q into a slightly more com-
plex q′, where p ≤ q′ ≤ q is still an upper-bound to
p. This “adaptive rejection sampling” technique in-
crementally improves the rate of acceptance, and is
pursued until some rate above a given threshold is
obtained, at which point one stops refining and uses

the current proposal to obtain further exact samples
from p.

In the case of optimisation, one finds the maxi-
mum x relative to q, and again computes the ratio
r = p(x)/q(x). If this ratio equals 1, then it is
easy to show that x is the actual maximum from
p.1 Otherwise we refine the proposal in a similar
way to the sampling case, continuing until we find
a ratio equal to 1 (or very close to 1 if we are will-
ing to accept an approximation to the maximum).
For finite spaces X , this optimisation technique is
argued to be a generalisation of A∗.

An application of the OS∗ technique to sam-
pling/optimisation with High-Order HMM’s is de-
scribed in Carter et al. (2012) and provides back-
ground for this paper. In that work, while the high-
order HMM corresponds to an intractable goal dis-
tribution, it can be upper-bounded by a sequence
of tractable distributions for which optimisers and
samplers can be obtained through standard dy-
namic programming techniques.

2.2 Hierarchical Translation

An abstract formulation of the decoding process
for hierarchical translation models such as that of
Chiang (2007) can be expressed as a sequence of
three steps. In a first step, a translation model
G, represented as a weighted synchronous context-
free grammar (SCFG) (Chiang, 2005), is applied to
(in other words, intersected with) the source sen-
tence f to produce a weighted context-free gram-
mar G(f) over the target language.2 In a second
step, G(f) is intersected with a weighted finite-
state automaton A representing the target language
model, resulting in a weighted context-free gram-
mar G′(f) = G(f) ∩ A. In a final step, a dynamic
programming procedure (see §2.4) is applied to
find the maximum derivation x in G′(f), and the
sequence of leaves of yield(x) is the result transla-
tion.

While this formulation gives the general princi-
ple, already mentioned in Chiang (2007), most im-
plementations do not exactly follow these steps or
use this terminology. In practice, the closest ap-
proach to this abstract formulation is that of Dyer
(2010) and the related system cdec (Dyer et al.,
2010); we follow a similar approach here.

1This is because if x′ was such that p(x′) > p(x), then
q(x′) ≥ p(x′) > p(x) = q(x), and hence x would not be a
maximum for q, a contradiction.

2G(f) is thus a compact representation of a forest over
target sequences, and is equivalent to a hypergraph, using dif-
ferent terminology.
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Whatever the actual implementation chosen, all
approaches face a common problem: the complex-
ity of the intersection G′(f) = G(f)∩A increases
rapidly with the order of the language model, and
can become unwieldy for moderate-length input
sentences even with a bigram model. In order to
address this problem, most implementations em-
ploy variants of a technique called cube-pruning
(Chiang, 2007; Huang and Chiang, 2007), where
the cells constructed during the intersection pro-
cess retain only a k-best list of promising candi-
dates. This is an approximation technique, related
to beam-search, which performs well in practice,
but is not guaranteed to find the actual optimum.

In the approach presented here — described in
detail in §3 — we do not prune the search space.
While we do construct the full initial grammar
G(f), we proceed by incrementally intersecting
it with simple automata associated with upper-
bounds ofA, for which the intersection is tractable.

2.3 Earley Intersection

In their classical paper Bar-Hillel et al. (1961)
showed that the intersection of a CFG with a FSA is
a CFG, and Billot and Lang (1989) were possibly
the first to notice the connection of this construct
with chart-parsing. In general, parsing with a CFG
can be seen as a special case of intersection, with
the input sequence represented as a “flat” (linear
chain) automaton, and this insight allows to gener-
alise various parsing algorithms to corresponding
intersection algorithms. One such algorithm, for
weighted context-free grammars and automata, in-
spired by the CKY parsing algorithm, is presented
in Nederhof and Satta (2008). The algorithm that
we are using is different; it is inspired by Earley
parsing, and was introduced in chapter 2 of Dyer
(2010). The advantage of Dyer’s “Earley Intersec-
tion” algorithm is that it combines top-down pre-
dictions with bottom-up completions. The algo-
rithm thus avoids constructing many non-terminals
that may be justified from the bottom-up perspec-
tive, but can never be “requested” by a top-down
derivation, and would need to be pruned in a sec-
ond pass. Our early experiments showed an impor-
tant gain in intermediary storage and in overall time
by using this Earley-based technique as opposed to
a CKY-based technique.

We do not describe the Earley Intersection algo-
rithm in detail here, but refer to Dyer (2010), which
we follow closely.

2.4 Optimisation and Sampling from a
WCFG

Optimisation in a weighted CFG (WCFG)3, that
is, finding the maximum derivation, is well stud-
ied and involves a dynamic programming proce-
dure that assigns in turn to each nonterminal, ac-
cording to a bottom-up traversal regime, a max-
imum derivation along with its weight, up to the
point where a maximum derivation is found for the
initial nonterminal in the grammar. This can be
seen as working in the max-times semiring, where
the weight of a derivation is obtained through the
product of the weights of its sub-derivations, and
where the weight associated with a nonterminal is
obtained by maximising over the different deriva-
tions rooted in that nonterminal.

The case of sampling can be handled in a very
similar way, by working in the sum-times instead
of the max-times semiring. Here, instead of max-
imising over the weights of the competing deriva-
tions rooted in the same nonterminal, one sums
over these weights. By proceeding in the same
bottom-up way, one ends with an accumulation of
all the weights on the initial nonterminal (this can
also be seen as the partition function associated
with the grammar). An efficient exact sampler is
then obtained by starting at the root nonterminal,
randomly selecting an expansion proportionally to
the weight of this expansion, and iterating in a top-
down way. This process is described in more detail
in section 4 of Johnson et al. (2007), for instance.

3 Approach

The complexity of building the full intersection
G(f) ∩ A, when A represents a language model
of order n, is related to the fact that the number of
states of A grows exponentially with n, and that
each nonterminal N in G(f) tends to generate in
the grammar G′(f) many indexed nonterminals of
the form (i,N, j), where i, j are states of A and
the nonterminal (i,N, j) can be interpreted as an
N connecting an i state to a j state.

In our approach, instead of explicitly construct-
ing the full intersection G(f) ∩ A, which, using
the notation of §2.1, is identified with the unnor-
malised goal distribution p(x), we incrementally
produce a sequence of “proposal” grammars q(t),
which all upper-bound p, where q(0) = G(f) ∩
A(0), ..., q(t+1) = q(t) ∩ A(t), etc. Here A(0) is

3Here the CFG is assumed to be acyclic, which is typically
the case in translation applications.
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an optimistic, low complexity, “unigram” version
of the automaton A, and each increment A(t) is a
small automaton that refines q(t) relative to some
specific k-gram context (i.e., sequence of k words)
not yet made explicit in the previous increments,
where k takes some value between 1 and n. This
process produces a sequence of grammars q(t) such
that q(0)(.) ≥ q(1)(.) ≥ q(2)(.) ≥ ... ≥ p(.).

In the limit
⋂M

t=0A
(t) = A for some largeM , so

that we are in principle able to reconstruct the full
intersection p(.) = q(M) = G(f)∩A(0)∩...∩A(M)

in finite time. In practice our actual process stops
much earlier: in optimisation, when the value of
the maximum derivation x∗t relative to q(t) becomes
equal to its value according to the full language
model, in sampling when the acceptance rate of
samples from q(t) exceeds a certain threshold. The
process is detailed in what follows.

3.1 OS∗ for Hierarchical Translation

Our application of OS∗ to hierarchical translation is
illustrated in Algorithm 1, with the two modes, op-
timisation and sampling, made explicit and shown
side-by-side to stress the parallelism.

On line 1, we initialise the time step to 0, and
for sampling we also initialise the current accep-
tance rate (AR) to 0. On line 2, we initialise the
initial proposal grammar q(0), where A(0) is de-
tailed in §3.2. On line 3, we start a loop: in op-
timisation we stop when we have found an x that
is accepted, meaning that the maximum has been
found; in sampling, we stop when the estimated
acceptance rate (AR) of the current proposal q(t)

exceeds a certain threshold (e.g. 20%) — this AR
can be roughly estimated by observing how many
of the last (say) one hundred samples from the pro-
posal have been accepted, and tends to reflect the
actual acceptance rate obtained by using q(t) with-
out further refinements. On line 4, in optimisation,
we compute the argmax x from the proposal, and in
sampling we draw a sample x from the proposal.4

On line 5, we compute the ratio r = p(x)/q(t)(x);
by construction q(t) is an optimistic version of p,
thus r ≤ 1.

On line 6, in optimisation we accept x if the
ratio is equal to 1, in which case we have found
the maximum, and in sampling we accept x with
probability r, which is a form of adaptive rejec-
tion sampling and guarantees that accepted sam-

4Following the OS∗ approach, taking an argmax is actually
assimilated to an extreme form of sampling, with an L∞ space
taking the place of an L1 space.

ples form exact samples from p; see (Dymetman et
al., 2012a).

If x was rejected (line 7), we then (lines 8, 9)
refine q(t) into a q(t+1) such that p(.) ≤ q(t+1)(.) ≤
q(t)(.) everywhere. This is done by defining the
incremental automatonA(t+1) on the basis of x and
q(t), as will be detailed below, and by intersecting
this automaton with q(t)

Finally, on line 11, in optimisation we return the
x which has been accepted, namely the maximum
of p, and in sampling we return the list of already
accepted x’s, which form an exact sample from p,
along with the current q(t), which can be used as a
sampler to produce further exact samples with an
acceptance rate performance above the predefined
threshold.

3.2 Incremental refinements
Initial automatonA(0) This deterministic au-

tomaton is an “optimistic” version ofA which only
records unigram information. A(0) has only one
state q0, which is both initial and final. For each
word a of the target language it has a transition
(q0, a, q0) whose weight is denoted by w1(a). This
weight is called the “max-backoff unigram weight”
(Carter et al., 2012) and it is defined as:

w1(a) ≡ max
h

plm(a|h),

where plm(a|h) is the conditional language model
probability of a relative to the history h, and where
the maximum is taken over all possible histories,
that is, over all possible sequence of target words
that might precede a.

Max-backoffs Following Carter et al. (2012),
for any language model of finite order, the unigram
max-backoff weights w1(a) can be precomputed in
a “Max-ARPA” table, an extension of the ARPA
format (Jurafsky and Martin, 2000) for the target
language model, which can be precomputed on the
basis of the standard ARPA table.

From the Max-ARPA table one can also directly
compute the following “max-backoff weights”:
w2(a|a−1), w3(a|a−2 a−1), ..., which are defined
by:

w2(a|a−1) ≡ max
h

plm(a|h, a−1)
w3(a|a−2 a−1) ≡ max

h
plm(a|h, a−2 a−1)

...

where the maximum is taken over the part of
the history which is not explicitely indicated.
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Algorithm 1 OS∗ for Hierarchical Translation: Optimisation (left) and Sampling (right).
1: t← 0
2: q(0) ← G(f) ∩A(0)

3: while not an x has been accepted do
4: Find maximum x in q(t)

5: r ← p(x)/q(t)(x)
6: Accept-or-Reject x according to r
7: if Rejected(x) then
8: define A(t+1) based on x and q(t)

9: q(t+1) ← q(t) ∩A(t+1)

10: t← t+ 1
11: return x

1: t← 0, AR← 0
2: q(0) ← G(f) ∩A(0)

3: while not AR > threshold do
4: Sample x ∼ q(t)

5: r ← p(x)/q(t)(x)
6: Accept-or-Reject x according to r
7: if Rejected(x) then
8: define A(t+1) based on x and q(t)

9: q(t+1) ← q(t) ∩A(t+1)

10: t← t+ 1
11: return already accepted x’s along with q(t)

Note that: (i) if the underlying language model
is, say, a trigram model, then w3(a|a−2 a−1)
is simply plm(a|a−2 a−1), and similarly for an
underlying model of order k in general, and
(ii) w2(a|a−1) = maxa−2 w3(a|a−2 a−1) and
w1(a) = maxa−1 w2(a|a−1).

Incremental automata A(t) The weight
assigned to any target sentence by A(0) is larger or
equal to its weight according to A. Therefore, the
initial grammar q(0) = G(f) ∩ A(0) is optimistic
relative to the actual grammar p = G(f) ∩ A: for
any derivation x in p, we have p(x) ≤ q(0)(x).
We can then apply the OS∗ technique with q(0).
In the case of optimisation, this means that
we find the maximum derivation x from q(0).
By construction, with y = yield(x), we have
A(0)(y) ≥ A(y). If the two values are equal, we
have found the maximum,5 otherwise there must
be a word yi in the sequence ym1 = y for which
plm(yi|yi−11 ) is strictly smaller than w1(yi). Let us
take among such words the one for which the ratio
α = w2(yi|yi−1)/w1(yi) ≤ 1 is the smallest, and
for convenience let us rename b = yi−1, a = yi.
We then define the (deterministic) automaton A(1)

as illustrated in the following figure:

b:1 
a:α 

else:1 

b:1 

else:1 

0 1 

Here the state 0 is both initial and final, and the
state 1 is final; all edges carry a (multiplicative)
weight equal to 1, except edge (1, a, 0), which car-
ries the weight α. We use the abbreviation “else”
to refer to any label other than bwhen starting from
0, and other than b or a when starting from 1.

5This case is very unlikely with A(0), but helps introduce
the general case.

It is easy to check that this automaton assigns to
any word sequence y a weight equal to αk, where k
is the number of occurrences of b a in y. In particu-
lar, if y is such that yi−1 = b, yi = a, then the tran-
sition in (the deterministic automaton) A(0) ∩A(1)

that consumes yi carries the weight α w1(a), in
other words, the weight w2(a|b). Thus the new
proposal grammar q(1) = q(0) ∩ A(1) has now
“incorporated” knowledge of the bigram a-in-the-
context-b, at the cost of some increase in its com-
plexity.6

The general procedure for choosing A(t+1) fol-
lows the same pattern. We find the max deriva-
tion x in q(t) along with its yield y; if p(x) =
q(t)(x), we stop and output x; otherwise we find
some subsequence yi−m−1, yi−m, ..., yi such that
the knowledge of the n-gram yi−m, ..., yi has al-
ready been registered in q(t), but not that of the
n-gram yi−m−1, yi−m, ..., yi, and we define an
automaton A(t+1) which assign to a sequence a
weight αk, where

α =
wm+1(yi|yi−m−1, yi−m, ..., yi−1)

wm(yi|yi−m, ..., yi−1)
,

and where k is the number of occurrences of
yi−m−1, yi−m, ..., yi in the sequence.7

We note that we have p ≤ q(t+1) ≤ q(t) ev-
erywhere, and also that the number of possible re-
finement operations is bounded, because at some
point we would have expanded all contexts to their
maximum order, at which point we would have re-
produced p(.) on the whole space X of possible

6Note that without further increasing q(1)’s complexity one
can incorporate knowledge about all bigrams sharing the pre-
fix b. This is because A(1) does not need additional states
to account for different continuations of the context b, all we
need is to update the weights of the transitions leaving state 1
appropriately. More generally, it is not more costly to account
for all n-grams prefixed by the same context of n − 1 words
than it is to account for only one of them.

7Building A(t+1) is a variant of the standard construction
for a “substring-searching” automaton (Cormen et al., 2001)
and produces an automaton with n states (the order of the n-
gram). This construction is omitted for the sake of space.
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derivations exactly. However, we typically stop
much earlier than that, without expanding contexts
in the regions of X which are not promising even
on optimistic assessments based on limited con-
texts.

Following the OS∗ methodology, the situation
with sampling is completely parallel to that of op-
timisation, the only difference being that, instead
of finding the maximum derivation x from q(t)(.),
we draw a sample x from the distribution asso-
ciated with q(t)(.), then accept it with probabil-
ity given by the ratio r = p(x)/q(t)(x) ≤ 1. In
the case of a reject, we identify a subsequence
yi−m−1, yi−m, ..., yi in yield(x) as in the optimi-
sation case, and similarly refine q(t) into q(t+1) =
q(t) ∩ A(t+1). The acceptance rate gradually in-
creases because q(t) comes closer and closer to p.
We stop the process at a point where the current ac-
ceptance rate, estimated on the basis of, say, the last
one hundred trials, exceeds a predefined threshold,
perhaps 20%.

3.3 Illustration

In this section, we present a small running example
of our approach. Consider the lowercased German
source sentence: eine letzte beobachtung .

Table 1 shows the translation associated with the
optimum derivation from each proposal q(i). The
n-gram whose cost, if extended by one word to the
left, would be increased by the largest factor is un-
derlined. The extended context selected for refine-
ment is highlighted in bold.

i Rules Optimum
0 311 <s> one last observation . </s>
1 454 <s> one last observation . </s>
2 628 <s> one last observation . </s>
3 839 <s> one final observation . </s>
4 1212 <s> one final observation . </s>

...
12 3000 <s> a final observation . </s>
13 3128 <s> one final observation . </s>

Table 1: Optimisation steps showing the iteration
(i), the number of rules in the grammar and the
translation associated to the optimum derivation.

Consider the very first iteration (i = 0), at which
point only unigram costs have been incorporated.
The sequence <s> one last observation . </s>
represents the translation associated to the best
derivation x in q(0). We proceed by choosing from
it one sequence to be the base for a refinement that
will lower q(0) bringing it closer to p. Amongst all
possible one-word (to the left) extensions, extend-

ing the unigram ‘one’ to the bigram ‘<s> one’ is
the operation that lowers q(0)(x) the most. It might
be helpful to understand it as the bigram ‘<s> one’
being associated to the largest LM gap observed
in x. Therefore the context ‘<s>’ is selected for
refinement, which means that an automaton A(1)

is designed to down-weight derivations compatible
with bigrams prefixed by ‘<s>’. The proposal q(0)

is intersected with A(1) producing q(1). We pro-
ceed like this iteratively, always selecting a con-
text not yet accounted for until q(i)(x) = p(x) for
the best derivation (13th iteration in our example),
when the true optimum is found with a certificate
of optimality.
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Figure 1: Certificate of optimality.

Figure 1 displays the progression of Q (score of
the best derivation) and P (that derivation’s true
score). As guaranteed by construction, Q is always
above P . B represents the score of the best deriva-
tion so far according to the true scoring function,
that is, B is a lower-bound on the true optimum8.
The optimal solution is achieved when P = Q.

Curve B in Figure 1 shows that the best scoring
solution was found quite early in the search (i = 3).
However, optimality could only be proven 10 itera-
tions later. Another way of stating the convergence
criterion Q = P is observing a zero gap (in the log
domain) between Q and P (see curve C – current
gap), or a zero gap between Q and B (see curve M
– minimum gap). Observe how M drops quickly
from 1 to nearly 0, followed by a long tail whereM

8This observation allows for error-safe pruning in optimi-
sation: if x is a lower-bound on the true optimum, derivations
in q(i) that score lower than p(x) could be safely removed.
We have left that possibility for future work.
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decreases much slower. Note that if we were will-
ing to accept an approximate solution, we could al-
ready stop the search if B remained unchanged for
a predetermined number of iterations or if changes
in B were smaller than some threshold, at the cost
of giving up on the optimality certificate.

Finally, curve R shows the number of states in
the automaton A(i) that refines the proposal at it-
eration i. Note how lower order n-grams (2-grams
in fact) are responsible for the largest drop in the
first iterations and higher-order n-grams (in fact 3-
grams) are refined later in the long tail.

Figure 2 illustrates the progression of the sam-
pler for the same German sentence. At each iter-
ation a batch of 500 samples is drawn from q(i).
The rejected samples in the batch are used to col-
lect statistics about overoptimistic n-grams and to
heuristically choose one context to be refined for
the next iteration, similar to the optimisation mode.
We start with a low acceptance rate which grows
up to 30% after 15 different contexts were incor-
porated. Note how the L1 norm of q (its partition
function) decreases after each refinement, that is,
q is gradually brought closer to p, resulting in the
increased number of exact samples and better ac-
ceptance rate.

Note that, starting from iteration one, all refine-
ments here correspond to 2-grams (i.e. one-word
contexts). This can be explained by the fact that,
in sampling, lower-order refinements are those that
mostly increase acceptance rate (rationale: high-
order n-grams are compatible with fewer grammar
rules).
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Figure 2: L1 norm of q, the number of exact sam-
ples drawn, the acceptance rate and the refinement
type at each iteration.

4 Experiments

We used the Moses toolkit (Koehn et al., 2007)
to extract a SCFG following Chiang (2005) from
the 6th version of the Europarl collection (Koehn,
2005) (German-English portion). We trained lan-
guage models using lmplz (Heafield et al., 2013)
and interpolated the models trained on the En-
glish monolingual data made available by the
WMT (Callison-Burch et al., 2012) (i.e. Eu-
roparl, newscommentaries, news-2012 and com-
moncrawl). Tuning was performed via MERT us-
ing newstest2010 as development set; test sen-
tences were extracted from newstest2011. Finally,
we restricted our SCFGs to having at most 10 tar-
get productions for a given source production.

Figure 3 shows some properties of the initial
grammar G(f) as a function of the input sentence
length (the quantities are averages over 20 sen-
tences for each class of input length). The number
of unigrams grows linearly with the input length,
while the number of unique bigrams compatible
with strings generated by G(f) appears to grow
quadratically9 and the size of the grammar in num-
ber of rules appears to be cubic — a consequence
of having up to two nonterminals on the right-hand
side of a rule.

Figure 4 shows the number of refinement oper-
ations until convergence in optimisation and sam-
pling, as well as the total duration, as a function of
the input length.10 The plots will be discussed in
detail below.

4.1 Optimisation

In optimisation (Figures 4a and 4b), the number of
refinements up to convergence appears to be lin-
ear with the input length, while the total duration
grows much quicker. These findings are further
discussed in what follows.

Table 2 shows some important quantities regard-
ing optimisation with OS∗ using a 4-gram LM. The
first column shows how many sentences we are
considering, the second column shows the sentence
length, the third column m is the average num-
ber of refinements up to convergence. Column |A|
refers to the refinement type, which is the number
of states in the automaton A, that is, the order of

9The number of unique bigrams is an estimate obtained by
combining the terminals at the boundary of nonterminals that
may be adjacent in a derivation.

10The current implementation faces timeouts depending on
the length of the input sentence and the order of the language
model, explaining why certain curves are interrupted earlier
than others in Figure 4.
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Figure 3: Properties of the initial grammar as function of input length

S Length m |A| count |Rf |
|R0|

9 4 45.0 2 20.3 74.6 ± 53.9
3 19.2
4 5.4

10 5 62.3 2 21.9 145.4 ± 162.6
3 32.9
4 7.5

9 6 102.8 2 34.7 535.8 ± 480.0
3 54.9
4 13.2

Table 2: Optimisation with a 4-gram LM.

the n-grams being re-weighted (e.g. |A| = 2 when
refining bigrams sharing a one-word context). Col-
umn count refers to the average number of refine-
ments that are due to each refinement type. Finally,
the last column compares the number of rules in the
final proposal to that of the initial one.

The first positive result concerns how much con-
text OS∗ needs to take into account for finding the
optimum derivation. Table 2 (column m) shows
that OS∗ explores a very reduced space of n-gram
contexts up to convergence. To illustrate that, con-
sider the last row in Table 2 (sentences with 6
words). On average, convergence requires incorpo-
rating only about 103 contexts of variable order, of
which 55 are bigram (2-word) contexts (remember
that |A| = 3 when accounting for a 2-word con-
text). According to Figure 3b, in sentences with
6 words, about 2,000 bigrams are compatible with
strings generated by G(f). This means that only
2.75% of these bigrams (55 out of 2,000) need to
be explicitly accounted for, illustrating how waste-
ful a full intersection would be.

A problem, however, is that the time until con-
vergence grows quickly with the length of the input
(Figure 4b). This can be explained as follows. At
each iteration the grammar is refined to account for
n-grams sharing a context of (n − 1) words. That

S Input m |A| count |Rf |
|R0|

10 5 1.0 2 1.0 1.9 ± 1.0
10 6 6.6 2 6.3 17.6 ± 13.6

3 0.3
10 7 14.5 2 12.9 93.8 ± 68.9

3 1.5
4 0.1

Table 3: Sampling with a 4-gram LM and reaching
a 5% acceptance rate.

operation typically results in a larger grammar:
most rules are preserved, some rules are deleted,
but more importantly, some rules are added to ac-
count for the portion of the current grammar that
involves the selected n-grams. Enlarging the gram-
mar at each iteration means that successive refine-
ments become incrementally slower.

The histogram of refinement types of Table 2
highlights how efficient OS∗ is w.r.t. the space of
n-grams it needs to explore before convergence.
The problem is clearly not the number of refine-
ments, but rather the relation between the growth
of the grammar and the successive intersections.
Controlling for this growth and optimising the in-
tersection as to partially reuse previously computed
charts may be the key for a more generally tractable
solution.

4.2 Sampling

Figure 4c shows that sampling is more economi-
cal than optimisation in that it explicitly incorpo-
rates even fewer contexts. Note how OS∗ con-
verges to acceptance rates from 1% to 10% in much
fewer iterations than are necessary to find an opti-
mum11. Although the convergence in sampling is

11Currently we use MERT to train the model’s weight vec-
tor — which is normalised by its L1 norm in the Moses im-
plementation. While optimisation is not sensitive to the scale
of the weights, in sampling the scale determines how flat or
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Figure 4: Convergence for different LM order as function of the input length in optimisation (top) and
sampling (bottom). We show the number of refinements up to convergence on the left, and the convergence
time on the right. In optimisation we stop when the true optimum is found. In sampling we stop at different
acceptance rate levels: (a, b and c) use a 2-gram LM to reach 1, 5 and 10% AR; (1-4) use a 3-gram LM to
reach 2, 3, 5 and 10% AR; and (X, Y) use a 4-gram LM to reach 5 and 10% AR.

faster than in optimisation, the total duration is still
an issue (Figure 4b).

Table 3 shows the same quantities as Table 2, but
now for sampling. It is worth highlighting that even
though we are using an upper-bound over a 4-gram
LM (and aiming at a 5% acceptance rate), very few
contexts are selected for refinement, most of them
lower-order ones (one-word contexts — rows with
|A| = 2).

Observe that an improved acceptance rate al-
ways leads to faster acquisition of exact samples
after we stop refining our proxy distribution. How-
ever, Figure 4d shows for example that moving
from 5% to 10% acceptance rate using a 4-gram
LM (curves X and Y) is time-consuming. Thus
there is a trade-off between how much time one
spends improving the acceptance rate and how
many exact samples one intends do draw. Figure
5 shows the average time to draw batches between

peaked the distribution is. Arun et al. (2010) experiment with
scaling MERT-trained weights as to maximise BLEU on held-
out data, as well as with MBR training. A more adequate
training algorithm along similar lines is reserved for future
work.
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Figure 5: Average time to draw 1 to 1 million sam-
ples, for input sentences of length 6, using a 4-gram
LM at 5% (curve 1) and 10% (curve 2) acceptance
rate (including the time to produce the sampler).

one and one million samples from two exact sam-
plers that were refined up to 5% and 10% accep-
tance rate respectively. The sampler at 5% AR
(which is faster to obtain) turns out to be more effi-
cient if we aim at producing less than 10K samples.

Finally, note that samples are independently
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drawn from the final proposal, making the ap-
proach an appealing candidate to parallelism in or-
der to increase the effective acceptance rate.

5 Related Work

Rush and Collins (2011) do not consider sampling,
but they address exact decoding for hierarchical
translation. They use a Dual Decomposition ap-
proach (a special case of Lagrangian Relaxation),
where the target CFG (hypergraph in their termi-
nology) component and the target language model
component “trade-off” their weights so as to ensure
agreement on what each component believes to be
the maximum. In many cases, this technique is
able to detect the actual true maximum derivation.
When this is not the case, they use a finite-state-
based intersection mechanism to “tighten” the first
component so that some constraints not satisfied by
the current solution are enforced, and iterate until
the true maximum is found or a time-out is met,
which results in a high proportion of finding the
true maximum.

Arun et al. (2009, 2010) address the question
of sampling in a standard phrase-based transla-
tion model (Koehn et al., 2003). Contrarily to our
use of rejection sampling (a Monte-Carlo method),
they use a Gibbs sampler (a Markov-Chain Monte-
Carlo (MCMC) method). Samples are obtained
by iteratively re-sampling groups of well-designed
variables in such a way that (i) the sampler does not
tend to be trapped locally by high correlations be-
tween conditioning and conditioned variables, and
(ii) the combinatorial space of possibilities for the
next step is small enough so that conditional prob-
abilities can be computed explicitly. By contrast to
our exact approach, the samples obtained by Gibbs
sampling are not independent, but form a Markov
chain that only converges to the target distribution
in the limit, with convergence properties difficult
to assess. Also by contrast to us, these papers do
not address the question of finding the maximum
derivation directly, but only through finding a max-
imum among the derivations sampled so far, which
in principle can be quite different.

Blunsom and Osborne (2008) address proba-
bilistic inference, this time, as we do, in the context
of hierarchical translation, where sampling is used
both for the purposes of decoding and training the
model. When decoding in the presence of a lan-
guage model, an approximate sampling procedure
is performed in two stages. First, cube-pruning is
employed to construct a WCFG which generates

a subset of all the possible derivations that would
correspond to a full intersection with the target lan-
guage model. In a second step this grammar is
sampled through the same dynamic programming
procedure that we have described in §2.4. By con-
trast to our approach, the paper does not attempt
to perform exact inference. However it does not
only address the question of decoding, but also that
of training the model, which requires, in addition
to sampling, an estimate of the model’s partition
function. In common with Arun et al. (2010), the
authors stress the fact that a sampler of derivations
is also a sampler of translations as strings, while a
maximiser over derivations cannot be used to find
the maximum translation string.

6 Conclusions

The approach we have presented is, to our knowl-
edge, the first one to address the problem of ex-
act sampling for hierarchical translation and to do
that in a framework that also handles exact opti-
misation. Our experiments show that only a frac-
tion of the language model n-grams need to be in-
corporated in the target grammar in order to per-
form exact inference in this approach. However,
in the current implementation, we experience time-
outs for sentences of even moderate length. We are
working on improving this situation along three di-
mensions: (i) our implementation of the Earley In-
tersection rebuilds a grammar from scratch at each
intersection, while it could capitalise on the charts
built during the previous steps; (ii) the unigram-
level max-backoffs are not as tight as they could
be if one took into account more precisely the set
of contexts in which each word can appear rela-
tive to the grammar; (iii) most importantly, while
our refinements are “local” in the sense of address-
ing one n-gram context at a time, they still affect
a large portion of the rules in the current grammar,
even rules that have very low probability of being
ever sampled by this grammar; by preventing re-
finement of such rules during the intersection pro-
cess, we may be able to make the intersection more
local and to produce much smaller grammars, with-
out losing the exactness properties of the approach.
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