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Abstract
In this paper we present the approach and
system setup of the joint participation of
Fondazione Bruno Kessler and University
of Edinburgh in the WMT 2013 Quality
Estimation shared-task. Our submissions
were focused on tasks whose aim was pre-
dicting sentence-level Human-mediated
Translation Edit Rate and sentence-level
post-editing time (Task 1.1 and 1.3, re-
spectively). We designed features that
are built on resources such as automatic
word alignment, n-best candidate transla-
tion lists, back-translations and word pos-
terior probabilities. Our models consis-
tently overcome the baselines for both
tasks and performed particularly well for
Task 1.3, ranking first among seven parti-
cipants.

1 Introduction

Quality Estimation (QE) for Machine Transla-
tion (MT) is the task of evaluating the quality
of the output of an MT system without relying
on reference translations. The WMT 2013 QE
Shared Task defined four different tasks covering
both word and sentence level QE. In this work
we describe the Fondazione Bruno Kessler (FBK)
and University of Edinburgh approach and system
setup of our participation to the shared task. We
developed models for two sentence-level tasks:
Task 1.1: Scoring and ranking for post-editing ef-
fort, and Task 1.3: Predicting post-editing time.

The first task aims at predicting the Human-
mediated Translation Edit Rate (HTER) (Snover
et al., 2006) between a suggestion generated by
a machine translation system and its manually
post-edited version. The data set contains 2,754
English-Spanish sentence pairs post-edited by one
translator (2,254 for training and 500 for test). We
participated only in the scoring mode of this task.

The second task requires to predict the time, in
seconds, that was required to post edit a transla-
tion given by a machine translation system. Par-
ticipants are provided with 1,087 English-Spanish
sentence pairs, source and suggestion, along with
their respective post-edited sentence and post-
editing time in seconds (803 data points for train-
ing and 284 for test).

For both tasks we applied supervised learning
methods and made use of information about word
alignments, n-best diversity scores, word posterior
probabilities, pseudo-references, and back trans-
lation to train our models. In the remainder of
this paper we describe the features designed for
our participation (Section 2), the learning methods
used to build our models (Section 3), the experi-
ments that led to our submitted systems (Section
4), and we briefly conclude our experience in this
evaluation task (Section 5).

2 Features

2.1 Word Alignment

Information about word alignments is used to ex-
tract quantitative (amount and distribution of the
alignments) and qualitative features (importance
of the aligned terms) under the assumption that
features that explore what is aligned can bring im-
provements to tasks where sentence-level seman-
tic relations need to be identified. Among the pos-
sible applications, Souza et al. (2013) recently in-
vestigated with success their application in Cross-
lingual Textual Entailment for content synchro-
nization (Mehdad et al., 2012; Negri et al., 2013).

For our experiments in both tasks we built word
alignment models using the resources made avail-
able for the evaluation campaign. To train the
word alignment models we used the MGIZA++
implementation (Gao and Vogel, 2008) of the IBM
models (Brown et al., 1993) and the concatenation
of Europarl, News Commentary, MultiUN, paral-
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lel corpora made available for task 1.3. The train-
ing data comprises about 12.8 million sentence
pairs.

The word alignment features are divided into
three main groups: AL, POS and IDF. The
AL group regards quantitative information about
aligned and unaligned words between source
sentence (src) and machine translation output
(tgt). The features of this group are computed
for both src and tgt:

• proportion of aligned words;

• number of contiguous unaligned words nor-
malized by the length of the sentence;

• length of the longest sequence of
aligned/unaligned words normalized by
the length of the sentence;

• average length of aligned/unaligned se-
quences of words;

• position of the first/last unaligned word nor-
malized by the length of the sentence;

• proportion of aligned n-grams in the sen-
tence.

To compute the features of the POS group
we use part-of-speech (PoS) information for each
word in src and tgt. Training and test data for
both tasks were preprocessed with the TreeTag-
ger (Schmid, 1995) and mapped to a more coarse-
grained set of part-of-speech tags (P ) based on the
universal PoS tag set by Petrov et al. (2012). In
this group there are two different types of features:
one is computed for the alignments (the mapping
between a word in src and a word in tgt) and
the other is computed for aligned words (words in
src that are aligned to one or more words in tgt
and vice-versa). The features computed over the
alignments are:

• proportion of alignments connecting words
with the same PoS tag;

• proportion of alignments connecting words
with the same PoS tag for each tag p ∈ P .

The features implemented for aligned words
are:

• proportion of aligned words tagged with p in
the sentence (p ∈ P ). This feature is pro-
cessed for both src and tgt;

• proportion of words in src aligned with
words in tgt that share the same PoS tag
(and vice-versa);

• proportion of words tagged with p in src and
that are aligned to words with the same tag
p in tgt (and vice-versa). This is done for
every p ∈ P .

The last group, IDF, is composed by one fea-
ture that explores the notion of inverse document
frequency as another source of qualitative infor-
mation. The idea is that rare words (with higher
IDF) are more informative than frequent words.
The IDF scores for each word are calculated for
English and Spanish on each side of the parallel
corpora used to build the alignment models. This
feature is calculated for both src and tgt (at test
stage, the average IDF value of each language is
assigned to unseen terms):

• summation of the IDF scores of aligned
words in src divided by the sum of IDF
scores of the aligned words in tgt (and vice-
versa).

Preliminary experiments have been executed to
find the best word alignment algorithm for each
task. We explored three different word alignment
algorithms: the hidden Markov model (HMM)
(Vogel et al., 1996) and IBM models 3 and 4
(Brown et al., 1993). We also tried three sym-
metrization models (Koehn et al., 2005): union,
intersection, and grow-diag-final-and, a more
complex symmetrization method which combines
intersection with some alignments from the union.
The best alignment and symmetrization combina-
tion found for Task 1.1 was IBM4 with intersec-
tion and for task 1.3 was HMM with intersec-
tion. These experiments were carried out in 10-
fold cross-validation on the training set and used
only the alignment features.

2.2 N-best Diversity scores
Our n-best diversity features are based on the intu-
ition that a large number of possible choices gen-
erally leads to more errors. While a similar notion
can be expressed locally by counting the transla-
tion options for each word or phrase, we consider
n-best lists as a good approximation of the search
space. This allows us to circumvent problems as-
sociated with the local measures, such as ambigu-
ous alignment and segmentation, and limitations
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of using the search graph directly such as the in-
ability compute edit distance between hypotheses.

Thus, to quantify the coherence of translation
options we compute a (symmetrical) matrix of
pairwise Levenshtein distances, either on token or
character level, for n-best lists of size up to 100k1

using the baseline system and the systems we de-
scribe in Section 2.4. For this matrix the following
features are produced:

1. The index of the central hypothesis, i.e. the
translation with the minimum average dis-
tance to all other entries.

2. The average edit distance between the cen-
tral hypothesis and all other entries normal-
ized by the length of top scoring hypothesis.

3. Edit distance between top scoring and central
hypothesis

4. Number of hypotheses with an edit distance
to the top-scoring hypothesis below a set
threshold.

2.3 Word Posterior Probabilities

Following previous work on word posterior prob-
abilities (WPPs) (Ueffing et al., 2003) we com-
puted the sequence of edit operations needed to
transform the MT suggestion into all entries of an
n-best list in which we normalized the logarithmic
model scores to resemble probabilities. Tokens are
considered incorrect is the operation is either in-
sert or substitute, otherwise the probability of the
hypothesis counts towards the correctness of the
word. These word-level features were then nor-
malized by taking the geometric mean of the in-
dividual probabilities. We did this for all systems
described in Section 2.4 and varying sizes of n be-
tween 10 and 100k.

2.4 Pseudo-references and back-translation

Motivated by the success of pseudo-reference fea-
tures (Soricut et al., 2012) we employed three ad-
ditional MT systems: one similar to the original
system but trained on more data, a hierarchical
phrase-based system, and a Spanish-English sys-
tem to translate back into English. All models

1Computing the pair-wise edit-distances between all 100k
entries is computationally expensive. However, we found the
n-best lists to be highly repetitive, so that on average only
3.7% of the values had to be computed. The computation is
also trivially parallel.

have been estimated using publicly available soft-
ware (SRILM (Stolcke, 2002), Moses (Koehn et
al., 2007)), and corpora (Europarl, News Com-
mentary, MultiUN, Gigaword). Using the predic-
tions of the English-Spanish systems as pseudo-
references and likewise the original source as ref-
erence for the back-translation system we com-
puted a number of automatic metrics including
BLEU (Papineni et al., 2002), GTM (Turian et al.,
2003), PER (Tillmann et al., 1997), TER (Snover
et al., 2006) and Meteor (Denkowski and Lavie,
2011).

3 Learning algorithms

To build our models using the features presented
in Section 2 we tried different learning algorithms.
After some preliminary experiments for both tasks
we decided to use mainly two: support vector
machines (SVM) and extremely randomized trees
(Geurts et al., 2006). For all experiments pre-
sented in this paper we use the Scikit-learn (Pe-
dregosa et al., 2011) implementations of the above
algorithms.

In preliminary experiments we noticed that the
number of features that we were using for both
tasks was leading to poor results when using the
SVM regression (SVR) models. In order to cope
with this problem we performed feature selection
prior to the SVM regression training. For that
we used Randomized Lasso, or stability selec-
tion (Meinshausen and Bühlmann, 2010). It re-
samples the training data several times and fits a
Lasso regression model on each sample. Features
that appear in a given number of samples are re-
tained. Both the fraction of the data to be sam-
pled and the threshold to select the features can be
configured. In our experiments we set the sam-
pling fraction to 75%, the selection threshold to
25% and the number of re-samples to 200.

To optimize the SVR with radial basis function
(RBF) kernel hyper-parameters we used random
search (Bergstra and Bengio, 2012) instead of the
traditional grid search procedure. We found ran-
dom search to be as efficient or better than grid
search and it drastically reduced the time required
to compute the best parameter combination.

Finally, we trained an extremely randomized
forest, i.e. an ensemble of extremely randomized
trees. Each tree can be parameterized differently.
The results of the individual trees are combined by
averaging their predictions. When a tree is built,
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System Features MAE RMSE Predict. Interval Parameters
SVR Base 0.127 0.163 [0.046, 0.671] 347.5918, 0.001, 0.0001
SVR Base + All 0.121 0.155 [0.090, 0.714] 0.4052, 0.0753, 0.0010
RL + SVR Sel(Base + All) 0.119 0.1534 [0.084, 0.745] 40.5873, 0.0484, 0.0002
ET Base + All 0.123 0.156 [0.142, 0.708] 100
ET Base + All 0.122 0.155 [0.164, 0.712] 1000

Table 1: Experiments results for Task 1.1 on 10-fold cross-validation. “Base” are the 17 baseline features.
“All” corresponds to all the features described in Section 2 in a total of 141 features. “SVR” is support
vector regression, “RL” is randomized Lasso and “ET” is extremely randomized trees. MAE stands for
the average mean absolute error and RMSE is the root mean squared error. Parameters for SVR are C, ε,
γ and for ET is the number of estimators.

the node splitting step is done at random by pick-
ing the best split among a random subset of the
input features.

4 Experiments

For both tasks we set up a baseline system that
uses the same 17 black box “baseline” features
provided for the WMT 2012 QE shared task
(Callison-Burch et al., 2012). The baseline model
is trained with an SVM regression with RBF ker-
nel and optimized parameters. Parameter opti-
mization for SVM regression models was per-
formed with 1000 iterations of random search for
which the process was set to minimize the mean
absolute error (MAE)2. The parameters of SVR
with RBF kernel (the penalty parameter C, the
width of the insensitivity zone ε, and the RBF pa-
rameter γ) are sampled from an exponential distri-
bution.

Experiments for both tasks were run using
10-fold cross-validation on the training set. In
Task 1.3 some data points were annotated by
2 or more post-editors and, in a normal cross-
validation scheme, the same data point might ap-
pear in the training and test set but annotated by
different post-editors. To address this characteris-
tic we implemented a cross-validation that divides
along source sentences, so that all translations of a
source segment end up in either the training or test
portion of a split. The number of features available
for both tasks is not the same (112 for Task 1.1
and 141 for Task 1.3) because there were fewer n-
best diversity, pseudo-references and word poste-
rior probability based features developed with dif-
ferent parameters due to time constraints.

2Given by MAE =

∑N

i=1
|H(si)−V (si)|

N
, where H(si)

is the hypothesis score for the entry si and V (si) is the gold
standard value for si in a dataset with N entries.

During our experiments with the training set,
the best model for Task 1.1 was the combination
of randomized Lasso feature selection with SVR
(0.119 MAE). The extremely randomized trees
presented results around 0.12 MAE worse than the
figures obtained by the SVR models. Results ob-
tained for Task 1.1 are summarized in Table 1.

As for Task 1.3, training results are presented in
Table 2. The best model combines feature selec-
tion (randomized Lasso) with SVR. During train-
ing it obtained the lowest average MAE (38.6).
Compared to the models built with extremely ran-
domized trees, the prediction interval of this sys-
tem is narrower. This indicates that the tree-based
models cover a wider range of data points than the
SVR-based models.

In the official results released by the organiz-
ers our submissions had close performances for
Task 1.1. The difference between the SVR and the
extremely randomized tree models is very small
(around 0.0012 MAE points). For Task 1.3 our
best submission is the one based on ensembles of
trees, a trend that was not observed during train-
ing. Our hypothesis is that the tree-based ensem-
ble model was capable of generalizing the train-
ing data better than the SVR-based ones and that
despite the low number of employed features the
latter was prone to overfitting.

Table 3 presents the official evaluation numbers
for both tasks.

4.1 Feature analysis

To gain some insight about the relevance of the
features we explored in our submissions, we com-
pared the output of the randomized Lasso with
the most important features computed by the ex-
tremely randomized tree algorithm. Below we
present the features that appear in the intersection
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System Features MAE RMSE Predict. Interval Parameters
SVR Base 41.3 69.2 [5.6, 315.7] 138.7359, 2.3331, 0.0185
SVR Base + All 40.2 70.6 [8.6, 335.6] 308.3817, 0.2194, 0.0009
RL + SVR Sel(Base + All) 38.6 69.1 [11.5, 332.0] 161.5705, 7.3370, 0.0460
ET Base + All 44.1 72.2 [11.9, 446.2] 100
ET Base + All 43.7 72.0 [12.6, 446.2] 1000

Table 2: Experiments results for Task 1.3 on 10-fold cross-validation. “Base” are the 17 baseline features.
“All” corresponds to all the features described in Section 2 in a total of 141 features. “SVR” is support
vector regression, “RL” is randomized Lasso and “ET” is extremely randomized trees. MAE stands for
the average mean absolute error and RMSE is the root mean squared error. Parameters for SVR are C, ε,
γ and for ET is the number of estimators.

System MAE RMSE
Task 1.1

Official Baseline 0.1491 0.1822
RL + SVR 0.1450 0.1773
ET 0.1438 0.1768

Task 1.3
Official Baseline 51.93 93.35
RL + SVR 47.92 86.66
ET 47.52 82.60

Table 3: Official results for tasks 1.1 and 1.3 on
the test set.

of these two sets for each task.
In Task 1.1, the feature selection algorithm re-

tained 29 out of 112 features. We take the intersec-
tion of this set with the 29 most relevant features
computed by the ensemble tree-based method.
This selection comes from features based on dif-
ferent resources:

• proportion of words in src aligned with
words in tgt that share the same PoS tag;

• average number of translations per source
word according to IBM Model 1 thresholded
P (t|s) > 0.01;

• average number of translations per source
word according to IBM Model 1 thresholded
P (t|s) > 0.2;

• average source sentence token length;

• number of times the top-scoring hypothesis is
repeated in an 10k-best list;

• position of the first unaligned word normal-
ized by the length of the sentence for src
and tgt;

• position of the last unaligned word normal-
ized by the length of the sentence for src
and tgt;

• summation of the IDF scores of aligned
words in tgt divided by the summation of
IDF scores of the aligned words in src;

• length of the longest sequence of unaligned
words normalized by the length of the src;

• percentage of bigrams in the 4th quartile of
frequency of the source language corpus;

• percentage of trigrams in the 4th quartile of
frequency of the source language corpus;

• proportion of alignments connecting words
with the same PoS tag;

• proportion of aligned words in src.

For Task 1.3, the randomized Lasso selection
reduced the input feature vector from 141 fea-
tures to 19. We compared these features with the
19 most important features computed by the ex-
tremely randomized tree algorithm. As above the
intersection of both sets utilizes many resources:

• proportion of aligned words in src with the
adjective PoS tag.

• rank of central hypothesis (see Section 2.2)
and average edit distance to all other entries
in 10k-best list of Spanish-English backtrans-
lation system;

• language model probability for tgt;

• length of the longest sequence of aligned
words in tgt;
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• number of occurrences of the target word
within the target hypothesis averaged for all
words in the hypothesis;

• percentage of bigrams in the 4th quartile of
frequency of the source language corpus;

• percentage of trigrams in the 4th quartile of
frequency of the source language corpus;

• number of contiguous unaligned words in
tgt normalized by the length of tgt.

5 Conclusion

This paper presented the participation of FBK
and University of Edinburgh to the WMT 2013
Quality Estimation shared task. Our approach
explored features based on word alignment, n-
best diversity scores, pseudo-references and back-
translations, and word posterior probabilities. We
experimented with two different learning methods,
SVR and extremely randomized trees for predict-
ing sentence-level post-editing time and HTER.

Our submitted systems were particularly suc-
cessful for predicting sentence-level post-editing
time, ranking 1st among seven participants. The
submitted models for predicting HTER consis-
tently overcome the baseline for the task. In addi-
tion to the description of our approach and system
setup, we presented a first analysis of the features
used in our models with the objective of assess-
ing the importance of the features used either for
predicting time or HTER.
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