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Abstract

We present the system we developed to
provide efficient large-scale feature-rich
discriminative training for machine trans-
lation. We describe how we integrate with
MapReduce using Hadoop streaming to
allow arbitrarily scaling the tuning set and
utilizing a sparse feature set. We report our
findings on German-English and Russian-
English translation, and discuss benefits,
as well as obstacles, to tuning on larger
development sets drawn from the parallel
training data.

1 Introduction

The adoption of discriminative learning methods
for SMT that scale easily to handle sparse and lex-
icalized features has been increasing in the last
several years (Chiang, 2012; Hopkins and May,
2011). However, relatively few systems take full
advantage of the opportunity. With some excep-
tions (Simianer et al., 2012), most still rely on
tuning a handful of common dense features, along
with at most a few thousand others, on a relatively
small development set (Cherry and Foster, 2012;
Chiang et al., 2009). While more features tuned
on more data usually results in better performance
for other NLP tasks, this has not necessarily been
the case for SMT.

Thus, our main focus in this paper is to improve
understanding into the effective use of sparse fea-
tures, and understand the benefits and shortcom-
ings of large-scale discriminative training. To
this end, we conducted experiments for the shared
translation task of the 2013 Workshop on Statis-
tical Machine Translation for the German-English
and Russian-English language pairs.

2 Baseline system

We use a hierarchical phrase-based decoder im-
plemented in the open source translation system
cdec1 (Dyer et al., 2010). For tuning, we use
Mr. MIRA2 (Eidelman et al., 2013), an open
source decoder agnostic implementation of online
large-margin learning in Hadoop MapReduce. Mr.
MIRA separates learning from the decoder, allow-
ing the flexibility to specify the desired inference
procedure through a simple text communication
protocol. The decoder receives input sentences
and weight updates from the learner, while the
learner receives k-best output with feature vectors
from the decoder.

Hadoop MapReduce (Dean and Ghemawat,
2004) is a popular distributed processing frame-
work that has gained widespread adoption, with
the advantage of providing scalable parallelization
in a manageable framework, taking care of data
distribution, synchronization, fault tolerance, as
well as other features. Thus, while we could oth-
erwise achieve the same level of parallelization, it
would be in a more ad-hoc manner.

The advantage of online methods lies in their
ability to deal with large training sets and high-
dimensional input representations while remain-
ing simple and offering fast convergence. With
Hadoop streaming, our system can take advantage
of commodity clusters to handle parallel large-
scale training while also being capable of running
on a single machine or PBS-managed batch clus-
ter.

System design To efficiently encode the infor-
mation that the learner and decoder require (source
sentence, reference translation, grammar rules) in
a manner amenable to MapReduce, i.e. avoiding
dependencies on “side data” and large transfers
across the network, we append the reference and

1http://cdec-decoder.org
2https://github.com/kho/mr-mira
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per-sentence grammar to each input source sen-
tence. Although this file’s size is substantial, it is
not a problem since after the initial transfer, it re-
sides on Hadoop distributed file system, and Map-
Reduce optimizes for data locality when schedul-
ing mappers.

A single iteration of training is performed as
a Hadoop streaming job. Each begins with a
map phase, with every parallel mapper loading the
same initial weights and decoding and updating
parameters on a shard of the data. This is followed
by a reduce phase, with a single reducer collect-
ing final weights from all mappers and computing
a weighted average to distribute as initial weights
for the next iteration.

Parameter Settings We tune our system toward
approximate sentence-level BLEU (Papineni et al.,
2002),3 and the decoder is configured to use cube
pruning (Huang and Chiang, 2007) with a limit
of 200 candidates at each node. For optimiza-
tion, we use a learning rate of η=1, regularization
strength of C=0.01, and a 500-best list for hope
and fear selection (Chiang, 2012) with a single
passive-aggressive update for each sentence (Ei-
delman, 2012).

Baseline Features We used a set of 16 stan-
dard baseline features: rule translation relative
frequency P (e|f), lexical translation probabilities
Plex(e|f) and Plex(f |e), target n-gram language
model P (e), penalties for source and target words,
passing an untranslated source word to the tar-
get side, singleton rule and source side, as well
as counts for arity-0,1, or 2 SCFG rules, the total
number of rules used, and the number of times the
glue rule is used.

2.1 Data preparation
For both languages, we used the provided Eu-
roparl and News Commentary parallel training
data to create the translation grammar neces-
sary for our model. For Russian, we addi-
tionally used the Common Crawl and Yandex
data. The data were lowercased and tokenized,
then filtered for length and aligned using the
GIZA++ implementation of IBM Model 4 (Och
and Ney, 2003) to obtain one-to-many align-
ments in both directions and symmetrized sing the
grow-diag-final-and method (Koehn et al., 2003).

3We approximate corpus BLEU by scoring sentences us-
ing a pseudo-document of previous 1-best translations (Chi-
ang et al., 2009).

We constructed a 5-gram language model us-
ing SRILM (Stolcke, 2002) from the provided
English monolingual training data and parallel
data with modified Kneser-Ney smoothing (Chen
and Goodman, 1996), which was binarized using
KenLM (Heafield, 2011). The sentence-specific
translation grammars were extracted using a suffix
array rule extractor (Lopez, 2007).

For German, we used the 3,003 sentences in
newstest2011 as our Dev set, and report results
on the 3,003 sentences of the newstest2012 Test
set using BLEU and TER (Snover et al., 2006).
For Russian, we took the first 2,000 sentences of
newstest2012 for Dev, and report results on the re-
maining 1,003. For both languages, we selected
1,000 sentences from the bitext to be used as an
additional testing set (Test2).

Compound segmentation lattices As German
is a morphologically rich language with produc-
tive compounding, we use word segmentation lat-
tices as input for the German translation task.
These lattices encode alternative segmentations of
compound words, allowing the decoder to auto-
matically choose which segmentation is best. We
use a maximum entropy model with recommended
settings to create lattices for the dev and test sets,
as well as for obtaining the 1-best segmentation of
the training data (Dyer, 2009).

3 Evaluation

This section describes the experiments we con-
ducted in moving towards a better understanding
of the benefits and challenges posed by large-scale
high-dimensional discriminative tuning.

3.1 Sparse Features

The ability to incorporate sparse features is the pri-
mary reason for the recent move away from Min-
imum Error Rate Training (Och, 2003), as well as
for performing large-scale discriminative training.
We include the following sparse Boolean feature
templates in our system in addition to the afore-
mentioned baseline features: rule identity (for ev-
ery unique rule in the grammar), rule shape (map-
ping rules to sequences of terminals and nontermi-
nals), target bigrams, lexical insertions and dele-
tions (for the top 150 unaligned words from the
training data), context-dependent word pairs (for
the top 300 word pairs in the training data), and
structural distortion (Chiang et al., 2008).
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Dev Test Test2 5k 10k 25k 50k
en 75k 74k 27k 132k 255k 634k 1258k
de 74k 73k 26k 133k 256k 639k 1272k

Table 1: Corpus statistics in tokens for German.

Dev Test Test2 15k
ru 46k 24k 24k 350k
en 50k 27k 25k 371k

Table 2: Corpus statistics in tokens for
Russian.

Set # features Tune Test
↑BLEU ↑BLEU ↓TER

de-en 16 22.38 22.69 60.61
+sparse 108k 23.86 23.01 59.89

ru-en 16 30.18 29.89 49.05
+sparse 77k 32.40 30.81 48.40

Table 3: Results with the addition of sparse fea-
tures for German and Russian.

All of these features are generated from the
translation rules on the fly, and thus do not have
to be stored as part of the grammar. To allow for
memory efficiency while scaling the training data,
we hash all the lexical features from their string
representation into a 64-bit integer.

Altogether, these templates result in millions of
potential features, thus how to select appropriate
features, and how to properly learn their weights
can have a large impact on the potential benefit.

3.2 Adaptive Learning Rate
The passive-aggressive update used in MIRA has a
single learning rate η for all features, which along
with α limits the amount each feature weight can
change at each update. However, since the typical
dense features (e.g., language model) are observed
far more frequently than sparse features (e.g., rule
identity), it has been shown to be advantageous
to use an adaptive per-feature learning rate that
allows larger steps for features that do not have
much support (Green et al., 2013; Duchi et al.,
2011). Essentially, instead of having a single pa-
rameter η,

α← min

(
C,

cost(y′)−w>(f(y+)− f(y′))

‖f(y+)− f(y′)‖2
)

w← w + αη
(
f(y+)− f(y′)

)

we instead have a vector Σ with one entry for each
feature weight:

Σ−1 ← Σ−1 + λdiag
(
ww>

)

w← w + αΣ1/2
(
f(y+)− f(y′)

)
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Figure 1: Learning curves for tuning when using
a single step size (η) versus different per-feature
learning rates.

In practice, this update is very similar to that of
AROW (Crammer et al., 2009; Chiang, 2012).

Figure 1 shows learning curves for sparse mod-
els with a single learning rate, and adaptive learn-
ing with λ=0.01 and λ=0.1, with associated re-
sults on Test in Table 4.4 As can be seen, using
a single η produces almost no gain on Dev. How-
ever, while both settings using an adaptive rate fare
better, the proper setting of λ is important. With
λ=0.01 we observe 0.5 BLEU gain over λ=0.1 in
tuning, which translates to a small gain on Test.
Henceforth, we use an adaptive learning rate with
λ=0.01 for all experiments.

Table 3 presents baseline results for both lan-
guages. With the addition of sparse features, tun-
ing scores increase by 1.5 BLEU for German, lead-
ing to a 0.3 BLEU increase on Test, and 2.2 BLEU

for Russian, with 1 BLEU increase on Test. The
majority of active features for both languages are
rule id (74%), followed by target bigrams (14%)
and context-dependent word pairs (11%).

3.3 Feature Selection

As the tuning set size increases, so do the num-
ber of active features. This may cause practi-
cal problems, such as reduced speed of computa-
tion and memory issues. Furthermore, while some

4All sparse models are initialized with the same tuned
baseline weights. Learning rates are local to each mapper.
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Adaptive # feat. Tune Test
↑BLEU ↑BLEU ↓TER

none 74k 22.75 22.87 60.19
λ=0.01 108k 23.86 23.01 59.89
λ=0.1 62k 23.32 22.92 60.09

Table 4: Results with different λ settings for using a per-feature learning rate with sparse features.

Set # feat. Tune Test
↑BLEU ↑BLEU ↓TER

all 510k 32.99 22.36 59.26
top 200k 200k 32.96 22.35 59.29

all 373k 34.26 28.84 49.29
top 200k 200k 34.45 28.98 49.30

Table 5: Comparison of using all features versus
top k selection.

sparse features will generalize well, others may
not, thereby incurring practical costs with no per-
formance benefit. Simianer et al. (2012) recently
explored `1/`2 regularization for joint feature se-
lection for SMT in order to improve efficiency and
counter overfitting effects. When performing par-
allel learning, this allows for selecting a reduced
set of the top k features at each iteration that are
effective across all learners.

Table 5 compares selecting the top 200k fea-
tures versus no selection for a larger German and
Russian tuning set (§3.4). As can be seen, we
achieve the same performance with the top 200k
features as we do when using double that amount,
while the latter becomes increasing cumbersome
to manage. Therefore, we use a top 200k selection
for the remainder of this work.

3.4 Large-Scale Training

In the previous section, we saw that learning
sparse features on the small development set leads
to substantial gains in performance. Next, we
wanted to evaluate if we can obtain further gains
by scaling the tuning data to learn parameters di-
rectly on a portion of the training bitext. Since the
bitext is used to learn rules for translation, using
the same parallel sentences for grammar extrac-
tion as well as for tuning feature weights can lead
to severe overfitting (Flanigan et al., 2013). To
avoid this issue, we used a jackknifing method to
split the training data into n = 10 folds, and built
a translation system on n−1 folds, while sampling

sentences from the News Commentary portion of
the held-out fold to obtain tuning sets from 5,000
to 50,000 sentences for German, and 15,000 sen-
tences for Russian.

Results for large-scale training for German are
presented in Table 6. Although we cannot com-
pare the tuning scores across different size sets,
we can see that tuning scores for all sets improve
substantially with sparse features. Unfortunately,
with increasing tuning set size, we see very little
improvement in Test BLEU and TER with either
feature set. Similar findings for Russian are pre-
sented in Table 7. Introducing sparse features im-
proves performance on each set, respectively, but
Dev always performs better on Test.

While tuning on Dev data results in better BLEU

on Test than when tuning on the larger sets, it is
important to note that although we are able to tune
more features on the larger bitext tuning sets, they
are not composed of the same genre as the Tune
and Test sets, resulting in a domain mismatch.

This phenomenon is further evident in German
when testing each model on Test2, which is se-
lected from the bitext, and is thus closer matched
to the larger tuning sets, but is separate from both
the parallel data used to build the translation model
and the tuning sets. Results on Test2 clearly show
significant improvement using any of the larger
tuning sets versus Dev for both the baseline and
sparse features. The 50k sparse setting achieves
almost 1 BLEU and 2 TER improvement, showing
that there are significant differences between the
Dev/Test sets and sets drawn from the bitext.

For Russian, we amplified the effects by select-
ing Test2 from the portion of the bitext that is sepa-
rate from the tuning set, but is among the sentences
used to create the translation model. The effects of
overfitting are markedly more visible here, as there
is almost a 7 BLEU difference between tuning on
Dev and the 15k set with sparse features. Further-
more, it is interesting to note when looking at Dev
that using sparse features has a significant nega-
tive impact, as the baseline tuned Dev performs
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Tuning Test
↑BLEU ↓TER

5k 22.81 59.90
10k 22.77 59.78
25k 22.88 59.77
50k 22.86 59.76

Table 8: Results for German with 2 iterations of
tuning on Dev after tuning on larger set.

reasonably well, while the introduction of sparse
features leads to overfitting the specificities of the
Dev/Test genre, which are not present in the bitext.

We attempted two strategies to mitigate this
problem: combining the Dev set with the larger
bitext tuning set from the beginning, and tuning
on a larger set to completion, and then running 2
additional iterations of tuning on the Dev set using
the learned model. Results for tuning on Dev and a
larger set together are presented in Table 7 for Rus-
sian and Table 6 for German. As can be seen, the
resulting model improves somewhat on the other
genre and strikes a middle ground, although it is
worse on Test than Dev.

Table 8 presents results for tuning several ad-
ditional iterations after learning a model on the
larger sets. Although this leads to gains of around
0.5 BLEU on Test, none of the models outperform
simply tuning on Dev. Thus, neither of these two
strategies seem to help. In future work, we plan
to forgo randomly sampling the tuning set from
the bitext, and instead actively select the tuning
set based on similarity to the test set.

4 Conclusion

We explored strategies for scaling learning for
SMT to large tuning sets with sparse features.
While incorporating an adaptive per-feature learn-
ing rate and feature selection, we were able to
use Hadoop to efficiently take advantage of large
amounts of data. Although discriminative training
on larger sets still remains problematic, having the
capability to do so remains highly desirable, and
we plan to continue exploring methods by which
to leverage the power of the bitext effectively.
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