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Abstract

We propose a pre-reordering scheme to
improve the quality of machine translation
by permuting the words of a source sen-
tence to a target-like order. This is accom-
plished as a transition-based system that
walks on the dependency parse tree of the
sentence and emits words in target-like or-
der, driven by a classifier trained on a par-
allel corpus. Our system is capable of gen-
erating arbitrary permutations up to flexi-
ble constraints determined by the choice of
the classifier algorithm and input features.

1 Introduction

The dominant paradigm in statistical machine
translation consists mainly of phrase-based sys-
tem such as Moses (Koehn et.al.,2007). Differ-
ent languages, however, often express the same
concepts in different idiomatic word orders, and
while phrase-based system can deal to some ex-
tent with short-distance word swaps that are cap-
tured by short segments, they typically perform
poorly on long-distance (more than four or five
words apart) reordering. In fact, according to
(Birch et.al., 2008), the amount of reordering be-
tween two languages is the most predictive feature
of phrase-based translation accuracy.

A number of approaches to deal with long-
distance reordering have been proposed. Since an
extuasive search of the permutation space is un-
feasible, these approaches typically constrain the
search space by leveraging syntactical structure of
natural languages.

In this work we consider approaches which in-
volve reordering the words of a source sentence
in a target-like order as a preprocessing step, be-
fore feeding it to a phrase-based decoder which
has itself been trained with a reordered training
set. These methods also try to leverage syntax,

typically by applying hand-coded or automatically
induced reordering rules to a constituency or de-
pendency parse of the source sentence. (Gal-
ley and Manning, 2008; Xu et.al., 2009; Genzel,
2010; Isozaki et.al., 2010) or by treating reorder-
ing as a global optimization problem (Tromble and
Eisner, 2009; Visweswariah et.al., 2011). In or-
der to keep the training and execution processes
tractable, these methods impose hard constrains
on the class of permutations they can generate.

We propose a pre-reordering method based on
a walk on the dependency parse tree of the source
sentence driven by a classifier trained on a parallel
corpus.

In principle, our system is capable of generat-
ing arbitrary permutations of the source sentence.
Practical implementations will necessarily limit
the available permutations, but these constraints
are not intrinsic to the model, rather they depend
on the specific choice of the classifier algorithm,
its hyper-parameters and input features.

2 Reordering as a walk on a dependency
tree

2.1 Dependency parse trees

Let a sentence be a list of words s ≡
(w1, w2, . . . , wn) and its dependency parse tree
be a rooted tree whose nodes are the words of the
sentence. An edge of the tree represents a syntac-
tical dependency relation between a head (parent)
word and a modifier (child) word. Typical depen-
dency relations include verb-subject, verb-object,
noun-adjective, and so on.

We assume that in addition to its head hi and
dependency relation type di each word is also an-
notated with a part-of-speech pi and optionally a
lemma li and a morphology mi (e.g. grammatical
case, gender, number, tense).

Some definitions require dependency parse
trees to be projective, meaning that any complete

164



subtree must correspond to a contiguous span of
words in the sentence, however, we don’t place
such a requirement. In practice, languages with a
substantially strict word ordering like English typ-
ically have largely projective dependencies, while
languages with a more free word ordering like
Czech can have substantial non-projectivity.

2.2 Reordering model
Given a sentence s ∈ S with its dependency parse
tree and additional annotations, we incrementally
construct a reordered sentence s′ by emitting its
words in a sequence of steps. We model the re-
ordering process as a non-deterministic transition
system which traverses the parse tree:

Let the state of the system be a tuple x ≡
(i, r, a, , . . . ) containing at least the index of the
current node i (initialized at the root), the list of
emitted nodes r (initialized as empty) and the last
transition action a (initialized as null). Additional
information can be included in the state x, such as
the list of the last K nodes that have been visited,
the last K actions and a visit count for each node.

At each step we choose one of the following ac-
tions:

• EMIT : emit the current node. Enabled only
if the current node hasn’t already been emit-
ted

i /∈ r

(i, r, a, , . . . )
EMIT→ (i, (r | i) , EMIT, , . . . )

• UP : move to the parent of the current node

hi 6= null, ∀j a 6= DOWNj

(i, r, a, , . . . )
UP→ (hi, r, UP, , . . . )

• DOWNj : move to the child j of the current
node. Enabled if the subtree of j (including
j) contains nodes that have not been emitted
yet.

hj = i, a 6= UP, ∃k ∈ subtree(i) : k /∈ r

(i, r, a, , . . . )
DOWNj→ (j, r, DOWNj , , . . . )

The pre-conditions on the UP and DOWN actions
prevent them from canceling each other, ensuring
that progress is made at each step. The additional
precondition on DOWN actions ensures that the
process always halts at a final state where all the
nodes have been emitted.

Let T (s) be the set of legal traces of the transi-
tion system for sentence s. Each trace τ ∈ T (s)
defines a permutation sτ of s as the list of emitted
nodes r of its final state.

We define the reordering problem as finding the
trace τ∗ that maximizes a scoring function Φ

τ∗ ≡ arg max
τ∈T (s)

Φ (s, τ) (1)

Note that since the parse tree is connected, in
principle any arbitrary permutation can be gen-
erated for a suitable choice of Φ, though the
maximization problem (1) is NP-hard and APX-
complete in the general case, by trivial reduction
from the traveling salesman problem.

The intuition behind this model is to leverage
the syntactical information provided by the de-
pendency parse tree, as successfully done by (Xu
et.al., 2009; Genzel, 2010; Isozaki et.al., 2010)
without being strictly constrained by a specific
type reordering rules.

2.3 Trace scores
We wish to design a scoring function Φ that cap-
tures good reorderings for machine translation and
admits an efficient optimization scheme.

We chose a function that additively decomposes
into local scoring functions, each depending only
on a single state of the trace and the following tran-
sition action

Φ (s, τ) ≡
|τ |−1∑

t=1

φ (s, x (τ, t) , xa (τ, t+ 1))

(2)
We further restrict our choice to a function

which is linear w.r.t. a set of elementary local fea-
ture functions {fk}

φ (s, x, a) ≡
|F |∑

k=1

vkfk (s, x, a) (3)

where {vk} ∈ R|F | is a vector of parameters
derived from a training procedure.

While in principle each feature function could
depend on the whole sentence and the whole se-
quence of nodes emitted so far, in practice we re-
strict the dependence to a fixed neighborhood of
the current node and the last few emitted nodes.
This reduces the space of possible permutations.

2.4 Classifier-driven action selection
Even when the permutation space has been re-
stricted by an appropriate choice of the feature
functions, computing an exact solution of the opti-
mization problem (1) remains non-trivial, because
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at each step of the reordering generation process,
the set of enabled actions depends in general on
nodes emitted at any previous step, and this pre-
vents us from applying typical dynamic program-
ming techniques. Therefore, we need to apply an
heuristic procedure.

In our experiments, we apply a simple greedy
procedure: at each step we choose an action ac-
cording to the output a two-stage classifier:

1. A three-class one-vs-all logistic classifier
chooses an action among EMIT, UP or
DOWN based on a vector of features ex-
tracted from a fixed neighborhood of the cur-
rent node i, the last emitted nodes and addi-
tional content of the state.

2. If a DOWN action was chosen, then a one-
vs-one voting scheme is used to choose
which child to descend to: For each pair
(j, j′) : j < j′ of children of i, a binary lo-
gistic classifier assigns a vote either to j or
j′. The child that receives most votes is cho-
sen. This is similar to the max-wins approach
used in packages such as LIBSVM (Chang
and Lin, 2011) to construct a M -class clas-
sifier from M (M − 1) /2 binary classifiers,
except that we use a single binary classifier
acting on a vector of features extracted from
the pair of children (j, j′) and the node i,
with their respective neighborhoods.

We also experimented with different classification
schemes, but we found that this one yields the best
performance.

Note that we are not strictly maximizing a
global linear scoring function as as defined by
equations (2) and (3), although this approach is
closely related to that framework.

This approach is related to transition-based de-
pendency parsing such as (Nivre and Scholz,
2004; Attardi, 2006) or dependency tree revi-
sion(Attardi and Ciaramita, 2007).

3 Training

3.1 Dataset preparation

Following (Al-Onaizan and Papineni, 2006;
Tromble and Eisner, 2009; Visweswariah et.al.,
2011), we generate a source-side reference re-
ordering of a parallel training corpus. For each
sentence pair, we generate a bidirectional word
alignment using GIZA++ (Och and Ney, 2000)

and the “grow-diag-final-and” heuristic imple-
mented in Moses (Koehn et.al.,2007), then we as-
sign to each source-side word a integer index cor-
responding to the position of the leftmost target-
side word it is aligned to (attaching unaligned
words to the following aligned word) and finally
we perform a stable sort of source-side words ac-
cording to this index.

On language pairs where GIZA++ produces
substantially accurate alignments (generally all
European languages) this scheme generates a
target-like reference reordering of the corpus.

In order to tune the parameters of the down-
stream phrase-based translation system and to test
the overall translation accuracy, we need two addi-
tional small parallel corpora. We don’t need a ref-
erence reordering for the tuning corpus since it is
not used for training the reordering system, how-
ever we generate a reference reordering for the test
corpus in order to evaluate the accuracy of the re-
ordering system in isolation. We obtain an align-
ment of this corpus by appending it to the train-
ing corpus, and processing it with GIZA++ and
the heuristic described above.

3.2 Reference traces generation and classifier
training

For each source sentence s in the training set
and its reference reordering s′, we generate a
minimum-length trace τ of the reordering transi-
tion system, and for each state and action pair in it
we generate the following training examples:

• For the first-stage classifier we generate a sin-
gle training examples mapping the local fea-
tures to an EMIT, UP or DOWN action label

• For the second-stage classifier, if the action is
DOWNj , for each pair of children (k, k′) :
k < k′ of the current node i, we generate a
positive example if j = k or a negative ex-
ample if j = k′.

Both classifiers are trained with the LIBLIN-
EAR package (Fan et.al., 2008), using the L2-
regularized logistic regression method. The reg-
ularization parameter C is chosen by two-fold
cross-validation. In practice, subsampling of the
training set might be required in order to keep
memory usage and training time manageable.

3.3 Translation system training and testing
Once the classifiers have been trained, we run
the reordering system on the source side of the
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whole (non-subsampled) training corpus and the
tuning corpus. For instance, if the parallel cor-
pora are German-to-English, after the reorder-
ing step we obtain German’-to-English corpora,
where German’ is German in an English-like
word order. These reordered corpora are used to
train a standard phrase-based translation system.
Finally, the reordering system is applied to source
side of the test corpus, which is then translated
with the downstream phrase-based system and the
resulting translation is compared to the reference
translation in order to obtain an accuracy measure.
We also evaluate the ”monolingual” reordering ac-
curacy of upstream reordering system by compar-
ing its output on the source side of the test cor-
pus to the reference reordering obtained from the
alignment.

4 Experiments

We performed German-to-English and Italian-to-
English reordering and translation experiments.

4.1 Data

The German-to-English corpus is Europarl v7
(Koehn, 2005). We split it in a 1,881,531 sentence
pairs training set, a 2,000 sentence pairs develop-
ment set (used for tuning) and a 2,000 sentence
pairs test set. We also used a 3,000 sentence pairs
”challenge” set of newspaper articles provided by
the WMT 2013 translation task organizers.

The Italian-to-English corpus has been assem-
bled by merging Europarl v7, JRC-ACQUIS v2.2
(Steinberger et.al., 2006) and bilingual newspaper
articles crawled from news websites such as Cor-
riere.it and Asianews.it. It consists of a 3,075,777
sentence pairs training set, a 3,923 sentence pairs
development set and a 2,000 sentence pairs test
set.

The source sides of these corpora have been
parsed with Desr (Attardi, 2006). For both lan-
guage pairs, we trained a baseline Moses phrase-
based translation system with the default configu-
ration (including lexicalized reordering).

In order to keep the memory requirements and
duration of classifier training manageable, we sub-
sampled each training set to 40,000 sentences,
while both the baseline and reordered Moses sys-
tem are trained on the full training sets.

4.2 Features

After various experiments with feature selection,
we settled for the following configuration for both
German-to-English and Italian-to-English:

• First stage classifier: current node i state-
ful features (emitted?, left/right subtree emit-
ted?, visit count), curent node lexical and
syntactical features (surface form wi, lemma
li, POS pi, morphology mi, DEPREL di, and
pairwise combinations between lemma, POS
and DEPREL), last two actions, last two vis-
ited nodes POS, DEPREL and visit count,
last two emitted nodes POS and DEPREL, bi-
gram and syntactical trigram features for the
last two emitted nodes and the current node,
all lexical, syntactical and stateful features
for the neighborhood of the current node
(left, right, parent, parent-left, parent-right,
grandparent, left-child, right-child) and pair-
wise combination between syntactical fea-
tures of these nodes.

• Second stage classifier: stateful features for
the current node i and the the children pair
(j, j′), lexical and syntactical features for
each of the children and pairwise combina-
tions of these features, visit count differences
and signed distances between the two chil-
dren and the current node, syntactical trigram
features between all combinations of the two
children, the current node, the parent hi and
the two last emitted nodes and the two last
visited nodes, lexical and syntactical features
for the two children left and right neighbors.

All features are encoded as binary one-of-n indi-
cator functions.

4.3 Results

For both German-to-English and Italian-to-
English experiments, we prepared the data as
described above and we trained the classifiers on
their subsampled training sets. In order to evaluate
the classifiers accuracy in isolation from the rest
of the system, we performed two-fold cross vali-
dation on the same training sets, which revealed
an high accuracy: The first stage classifier obtains
approximately 92% accuracy on both German and
Italian, while the second stage classifier obtains
approximately 89% accuracy on German and 92%
on Italian.
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BLEU NIST
German 57.35 13.2553
Italian 68.78 15.3441

Table 1: Monolingual reordering scores

BLEU NIST
de-en baseline 33.78 7.9664

de-en reordered 32.42 7.8202
it-en baseline 29.17 7.1352

it-en reordered 28.84 7.1443

Table 2: Translation scores

We applied the reordering preprocessing system
to the source side of the corpora and evaluated the
monolingual BLEU and NIST score of the test sets
(extracted from Europarl) against their reference
reordering computed from the alignment

To evaluate translation performance, we trained
a Moses phrase-based system on the reordered
training and tuning corpora, and evaluated the
BLEU and NIST of the (Europarl) test sets. As
a baseline, we also trained and evaluated Moses
system on the original unreordered corpora.

We also applied our baseline and reordered
German-to-English systems to the WMT2013
translation task dataset.

5 Discussion

Unfortunately we were generally unable to im-
prove the translation scores over the baseline, even
though our monolingual BLEU for German-to-
English reordering is higher than the score re-
ported by (Tromble and Eisner, 2009) for a com-
parable dataset.

Accuracy on the WMT 2013 set is very low. We
attribute this to the fact that it comes form a differ-
ent domain than the training set.

Since classifier training set cross-validation ac-
curacy is high, we speculate that the main problem
lies with the training example generation process:
training examples are generated only from opti-
mal reordering traces. This means that once the
classifiers produce an error and the system strays
away from an optimal trace, it may enter in a fea-
ture space that is not well-represented in the train-
ing set, and thus suffer from unrecoverable per-
formance degradation. Moreover, errors occurring
on nodes high in the parse tree may cause incor-
rect placement of whole spans of words, yielding

a poor BLEU score (although a cursory exami-
nation of the reordered sentences doesn’t reveal
this problem to be prevalent). Both these issues
could be possibly addressed by switching from
a classifier-based system to a structured predic-
tion system, such as averaged structured percep-
tron (Collins, 2002) or MIRA (Crammer, 2003;
McDonald et.al., 2005).

Another possible cause of error is the purely
greedy action selection policy. This could be ad-
dressed using a search approach such as beam
search.

We reserve to investigate these approaches in
future work.
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