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Abstract

We present the syntax-based string-to-
tree statistical machine translation systems
built for the WMT 2013 shared transla-
tion task. Systems were developed for
four language pairs. We report on adapting
parameters, targeted reduction of the tun-
ing set, and post-evaluation experiments
on rule binarization and preventing drop-
ping of verbs.

1 Overview

Syntax-based machine translation models hold
the promise to overcome some of the fundamen-
tal problems of the currently dominating phrase-
based approach, most importantly handling re-
ordering for syntactically divergent language pairs
and grammatical coherence of the output.

We are especially interested in string-to-tree
models that focus syntactic annotation on the tar-
get side, especially for morphologically rich target
languages (Williams and Koehn, 2011).

We have trained syntax-based systems for the
language pairs

• English-German,
• German-English,
• Czech-English, and
• Russian-English.

We have also tried building systems for French-
English and Spanish-English but the data size
proved to be problematic given the time con-
straints. We give a brief description of the syntax-
based model and its implementation within the
Moses system. Some of the available features are
described as well as some of the pre-processing
steps. Several experiments are described and final
results are presented for each language pair.

2 System Description

The syntax-based system used in all experiments
is the Moses string-to-tree toolkit implementing
GHKM rule extraction and Scope-3 parsing previ-
ously described in by Williams and Koehn (2012)

2.1 Grammar
Our translation grammar is a synchronous context-
free grammar (SCFG) with phrase-structure labels
on the target side and the generic non-terminal la-
bel X on the source side. In this paper, we write
these rules in the form

LHS → RHSs | RHSt

where LHS is a target-side non-terminal label and
RHSs and RHSt are strings of terminals and non-
terminals for the source and target sides, respec-
tively. We use subscripted indices to indicate the
correspondences between source and target non-
terminals.

For example, a translation rule to translate the
German Haus into the English house is

NN → Haus | house

If our grammar also contains the translation rule

S → das ist ein X1 | this is a NN1

then we can apply the two rules to an input das ist
ein Haus to produce the output this is a house.

2.2 Rule Extraction
The GHKM rule extractor (Galley et al., 2004,
2006) learns translation rules from a word-aligned
parallel corpora for which the target sentences are
syntactically annotated. Given a string-tree pair,
the set of minimally-sized translation rules is ex-
tracted that can explain the example and is consis-
tent with the alignment. The resulting rules can be
composed in a non-overlapping fashion in order to
cover the string-tree pair.

Two or more minimal rules that are in a parent-
child relationship can be composed together to ob-
tain larger rules with more syntactic context. To
avoid generating an exponential number of com-
posed rules, several limitation have to be imposed.

One such limitation is on the size of the com-
posed rules, which is defined as the number of
non-part-of-speech, non-leaf constituent labels in
the target tree (DeNeefe et al., 2007). The corre-
sponding parameter in the Moses implementation
is MaxRuleSize and its default value is 3.
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Another limitation is on the depth of the rules’
target subtree. The rule depth is computed as the
maximum distance from its root node to any of its
children, not counting pre-terminal nodes (param-
eter MaxRuleDepth, default 3).

The third limitation considered is the number of
nodes in the composed rule, not counting target
words (parameter MaxNodes, default 15).

These parameters are language-dependent and
should be set to values that best represent the char-
acteristics of the target trees on which the rule ex-
tractor is trained on. Therefore the style of the
treebanks used for training the syntactic parsers
will also influence these numbers. The default
values have been set based on experiments on
the English-German language pair (Williams and
Koehn, 2012). It is worth noting that the Ger-
man parse trees (Skut et al., 1997) tend to be
broader and shallower than those for English. In
Section 3 we present some experiments where we
choose different settings of these parameters for
the German-English language pair. We use those
settings for all language pairs where the target lan-
guage is English.

2.3 Tree Restructuring

The coverage of the extracted grammar depends
partly on the structure of the target trees. If the
target trees have flat constructions such as long
noun phrases with many sibling nodes, the rules
extracted will not generalize well to unseen data
since there will be many constraints given by the
types of different sibling nodes.

In order to improve the grammar coverage to
generalize over such cases, the target tree can be
restructured. One restructuring strategy is tree
binarization. Wang et al. (2010) give an exten-
sive overview of different tree binarization strate-
gies applied for the Chinese-English language
pair. Moses currently supports left binarization
and right binarization.

By left binarization all the left-most children
of a parent node n except the right most child
are grouped under a new node. This node is in-
serted as the left child of n and receives the la-
bel n̄. Left binarization is then applied recursively
on all newly inserted nodes until the leaves are
reached. Right binarization implies a similar pro-
cedure but in this case the right-most children of
the parent node are grouped together except the
left most child.

Another binarization strategy that is not cur-
rently integrated in Moses, but is worth investigat-
ing for different language pairs, is parallel head
binarization.

The result of parallel binarization of a parse
tree is a binarization forest. To generate a bina-
rization forest node, both right binarization and
left binarization are applied recursively to a parent
node with more than two children. Parallel head
binarization is a case of parallel binarization with
the additional constraint that the head constituent
is part of all the new nodes inserted by either left
or right binarization steps.

In Section 3 we give example of some initial ex-
periments carried out for the German-English lan-
guage pair.

2.4 Pruning The Grammar
Decoding for syntax-based model relies on a
bottom-up chart parsing algorithm. Therefore de-
coding efficiency is influenced by the following
combinatorial problem: given an input sentence
of length n and a context-free grammar rule with
s consecutive non-terminals, there are

(
n+1
s

)
ways

to choose subspans, or application contexts (Hop-
kins and Langmead, 2010), that the rule can ap-
plied to. The asymptotic running time of chart
parsing is linear in this number O(ns).

Hopkins and Langmead (2010) maintain cubic
decoding time by pruning the grammar to remove
rules for which the number of potential applica-
tion contexts is too large. Their key observation is
that a rule can have any number of non-terminals
and terminals as long as the number of consecutive
non-terminal pairs is bounded. Terminals act to
anchor the rule, restricting the number of potential
application contexts. An example is the rule X →
WyY Zz for which there are at most O(n2) appli-
cation contexts, given that the terminals will have
a fixed position and will play the role of anchors
in the sentence for the non-terminal spans. The
number of consecutive non-terminal pairs plus the
number of non-terminals at the edge of a rule is
referred to as the scope of the rule. The scope of a
grammar is the maximum scope of any of its rules.
Moses implements scope-3 pruning and therefore
the resulting grammar can be parsed in cubic time.

2.5 Feature Functions
Our feature functions are unchanged from last
year. They include the n-gram language model
probability of the derivation’s target yield, its word
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count, and various scores for the synchronous
derivation. Our grammar rules are scored accord-
ing to the following functions:

• p(RHSs|RHSt,LHS), the noisy-channel
translation probability.

• p(LHS,RHSt|RHSs), the direct translation
probability.

• plex (RHSt|RHSs) and plex (RHSs|RHSt),
the direct and indirect lexical weights (Koehn
et al., 2003).

• ppcfg(FRAGt), the monolingual PCFG prob-
ability of the tree fragment from which
the rule was extracted. This is defined
as
∏n

i=1 p(ri), where r1 . . . rn are the con-
stituent CFG rules of the fragment. The
PCFG parameters are estimated from the
parse of the target-side training data. All lex-
ical CFG rules are given the probability 1.
This is similar to the pcfg feature proposed
by Marcu et al. (2006) and is intended to en-
courage the production of syntactically well-
formed derivations.

• exp(−1/count(r)), a rule rareness penalty.

• exp(1), a rule penalty. The main grammar
and glue grammars have distinct penalty fea-
tures.

3 Experiments

This section describes details for the syntax-based
systems submitted by the University of Edinburgh.
Additional post-evaluation experiments were car-
ried out for the German-English language pair.

3.1 Data
We made use of all available data for each lan-
guage pair except for the Russian-English where
the Commoncrawl corpus was not used. Table 1
shows the size of the parallel corpus used for each
language pair. The English side of the paral-
lel corpus was parsed using the Berkeley parser
(Petrov et al., 2006) and the German side of the
parallel corpus was parsed using the BitPar parser
(Schmid, 2004). For German-English, German
compounds were split using the script provided
with Moses. The parallel corpus was word-aligned
using MGIZA++ (Gao and Vogel, 2008).

All available monolingual data was used for
training the language models for each language

Lang. pair Sentences Grammar Size
en-de 4,411,792 31,568,480
de-en 4,434,060 55,310,162
cs-en 14,425,564 209,841,388
ru-en 1,140,359 7,946,502

Table 1: Corpus statistics for parallel data.

pair. 5-gram language models were trained us-
ing SRILM toolkit (Stolcke, 2002) with modi-
fied Kneser-Ney smoothing (Chen and Goodman,
1998) and then interpolated using weights tuned
on the newstest2011 development set.

The feature weights for each system were tuned
on development sets using the Moses implementa-
tion of minimum error rate training (Och, 2003).
The size of the tuning data varied for different lan-
guages depending on the amount of available data.
In the case of the the German-English pair a filter-
ing criteria based on sentence level BLEU score
was applied which is briefly described in Section
3.5. Table 2 shows the size of the tuning set for
each language pair.

Lang. pair Sentences
en-de 7,065
de-en 2,400
cs-en 10,068
ru-en 1,501

Table 2: Corpus statistics for tuning data.

3.2 Pre-processing
Some attention was given to pre-processing of the
English side of the corpus prior to parsing. This
was done to avoid propagating parser errors to the
rule-extraction step. These particular errors arise
from a mismatch in punctuation and tokenization
between the corpus used to train the parser, the
PennTree bank, and the corpus which is being
parsed and passed on to the rule extractor. There-
fore we changed the quotation marks, which ap-
pear quite often in the parallel corpora, to opening
and closing quotation marks. We also added some
PennTree bank style tokenization rules1. These
rules split contractions such as I’ll, It’s, Don’t,
Gonna, Commissioner’s in order to correctly sep-
arate the verbs, negation and possessives that are

1The PennTree bank tokenization rules considered were
taken from http://www.cis.upenn.edu/˜treebank/
tokenizer.sed. Further examples of contractions were
added.
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Grammar Size BLEU

Parameters Full Filtered 2009-40 2010-40 2011-40 Average
Depth=3, Nodes=15, Size=3 2,572,222 751,355 18.57 20.43 18.51 19.17
Depth=4, Nodes=20, Size=4 3,188,970 901,710 18.88 20.38 18.63 19.30
Depth=5, Nodes=20, Size=5 3,668,205 980,057 19.04 20.47 18.75 19.42
Depth=5, Nodes=30, Size=5 3,776,961 980,061 18.90 20.59 18.77 19.42
Depth=5, Nodes=30, Size=6 4,340,716 1,006,174 18.98 20.52 18.80 19.43

Table 3: Cased BLEU scores for various rule extraction parameter settings for German-English language
pair. The parameters considered are MaxRuleDepth, MaxRuleSize, MaxNodes. Grammar sizes are given
for the full extracted grammar and after filtering for the newstest2008 dev set.

newstest2012 newstest2013
System Sentences BLEU Glue Rule Tree Depth BLEU Glue Rule Tree Depth
Baseline 5,771 23.21 5.42 4.03 26.27 4.23 3.80
Big tuning set 10,068 23.52 3.41 4.34 26.33 2.49 4.03
Filtered tuning set 2,400 23.54 3.21 4.37 26.30 2.37 4.05

Table 4: Cased BLEU scores for German-English systems tuned on different data. Scores are emphasized
for the system submitted to the shared translation task.

parsed as separate constituents.
For German–English, we carried out the usual

compound splitting (Koehn and Knight, 2003), but
not pre-reordering (Collins et al., 2005).

3.3 Rule Extraction

Some preliminary experiments were carried out
for the German-English language pair to deter-
mine the parameters for the rule extraction step:
MaxRuleDepth, MaxRuleSize, MaxNodes. Table 3
shows the BLEU score on different test sets for
various parameter settings. For efficiency rea-
sons less training data was used, therefore the
grammar sizes, measured as the total number of
extracted rules, are smaller than the final sys-
tems (Table 1). The parameters on the third line
Depth=5, Nodes=20, Size=4 were chosen as the
average BLEU score did not increase although the
size of the extracted grammar kept growing. Com-
paring the rate of growth of the full grammar and
the grammar after filtering for the dev set (the
columns headed “Full” and “Filtered”) suggests
that beyond this point not many more usable rules
are extracted, even while the total number of rules
stills increases.

3.4 Decoder Settings

We used the following non-default decoder param-
eters:

max-chart-span=25: This limits sub deriva-
tions to a maximum span of 25 source words. Glue
rules are used to combine sub derivations allowing
the full sentence to be covered.

ttable-limit=200: Moses prunes the translation
grammar on loading, removing low scoring rules.
This option increases the number of translation
rules that are retained for any given source side
RHSs.

cube-pruning-pop-limit=1000: Number of hy-
potheses created for each chart span.

3.5 Tuning sets

One major limitation for the syntax-based systems
is that decoding becomes inefficient for long sen-
tences. Therefore using large tuning sets will slow
down considerably the development cycle. We
carried out some preliminary experiments to de-
termine how the size of the tuning set affects the
quality and speed of the system.

Three tuning sets were considered. The tun-
ing set that was used for training the baseline sys-
tem was built using the data from newstest2008-
2010 filtering out sentences longer than 30 words.
The second tuning set was built using all data
from newstest2008-2011. The final tuning set
was also built using the concatenation of the sets
newstest2008-2011. All sentences in this set were
decoded with a baseline system and the output was
scored according to sentence-BLEU scores. We se-
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lected examples with high sentence-BLEU score in
a way that penalizes excessively short examples2.
Results of these experiments are shown in Table 4.

Results show that there is some gain in BLEU

score when providing longer sentences during tun-
ing. Further experiments should consider tuning
the baseline with the newstest2008-2011 data, to
eliminate variance caused by having different data
sources. Although the size of the third tuning set is
much smaller than that of the other tuning sets, the
BLEU score remains the same as when using the
largest tuning set. The glue rule number, which
shows how many times the glue rule was applied,
is lowest when tuning with the third data set. The
tree depth number, which shows the depth of the
resulting target parse tree, is higher for the third
tuning set as compared to the baseline and similar
to that resulted from using the largest tuning set.
These numbers are all indicators of better utilisa-
tion of the syntactic structure.

Regarding efficiency, the baseline tuning set and
the filtered tuning set took about a third of the time
needed to decode the larger tuning set.

Therefore we could draw some initial conclu-
sions that providing longer sentences is useful,
but sentences for which some baseline system per-
forms very poorly in terms of BLEU score can be
eliminated from the tuning set.

3.6 Results

Table 5 summarizes the results for the systems
submitted to the shared task. The BLEU scores for
the phrase-based system submitted by the Univer-
sity of Edinburgh are also shown for comparison.
The syntax-based system had BLEU scores similar
to those of the phrase-based system for German-
English and English-German language pairs. For
the Czech-English and Russian-English language
pairs the syntax-based system was 2 BLEU points
behind the phrase-based system.

However, in the manual evaluation, the
German–English and English–German syntax
based systems were ranked higher than the phrase-
based systems. For Czech–English, the syntax
systems also came much closer than the BLEU

score would have indicated.
The Russian-English system performed worse

because we used much less of the available data
for training (leaving out Commoncrawl) and there-

2Ongoing work by Eva Hasler. Filtered data set was pro-
vided in order to speed up experiment cycles.

phrase-based syntax-based
BLEU manual BLEU manual

en-de 20.1 0.571 19.4 0.614
de-en 26.6 0.586 26.3 0.608
cs-en 26.2 0.562 24.4 0.542
ru-en 24.3 0.507 22.5 0.416

Table 5: Cased BLEU scores and manual evalua-
tion scores (”expected wins”) on the newstest2013
evaluation set for the phrase-based and syntax-
based systems submitted by the University of Ed-
inburgh.

fore the extracted grammar is less reliable. An-
other reason was the mismatch in data format-
ting for the Russian-English parallel corpus. All
the training data was lowercased which resulted in
more parsing errors.

3.7 Post-Submission Experiments

Table 6 shows results for some preliminary ex-
periments carried out for the German-English lan-
guage pair that were not included in the final sub-
mission. The baseline system is trained on all
available parallel data and tuned on data from
newstest2008-2010 filtered for sentences up to 30
words.

Tree restructuring — In one experiment the
parse trees were restructured before training by
left binarization. Tree restructuring is need to im-
prove generalization power of rules extracted from
flat structures such as base noun phrases with sev-
eral children. The second raw in Table 6 shows
that the BLEU score did not improve and more
glue rules were applied when using left binariza-
tion. One reason for this result is that the rule ex-
traction parameters MaxRuleDepth, MaxRuleSize,
MaxNodes had the same values as in the baseline.
Increasing this parameters should improve the ex-
tracted grammar since binarizing the trees will in-
crease these three dimensions.

Verb dropping — A serious problem of
German–English machine translation is the ten-
dency to drop verbs, which shatters sentence struc-
ture. One cause of this problem is the failure of the
IBM Models to properly align the German verb to
its English equivalent, since it is often dislocated
with respect to English word order. Further prob-
lems appear when the main verb is not reordered in
the target sentence, which can result in lower lan-
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newstest2012 newstest2013
System Grammar size BLEU glue rule tree depth BLEU glue rule tree depth
Baseline 55,310,162 23.21 5.42 4.03 26.27 4.23 3.80
Left binarized 57,151,032 23.17 7.79 4.09 26.13 6.57 3.85
Realigned vb 53,894,112 23.26 4.88 4.19 26.26 3.73 3.96

Table 6: Cased BLEU scores for various German-English systems.

System Vb drop
rules

Vb Count
nt2012

Vb Count
nt2013

Baseline 1,038,597 9,216 8,418
Realigned

verbs 391,231 9,471 8,614

Reference
translation - 9,992 9,207

Table 7: Statistics about verb dropping.

guage model scores and BLEU scores. However
the syntax models handle the reordering of verbs
better than phrase-based models.

In an experiment we investigated how the num-
ber of verbs dropped by the translation rules can
be reduced. In order to reduce the number of
verb dropping rules we looked at unaligned verbs
and realigned them before rule extraction. An un-
aligned verb in the source sentence was aligned
to the verb in the target sentence for which IBM
model 1 predicted the highest translation probabil-
ity. The third row in Table 6 shows the results of
this experiment. While there is no change in BLEU

score the number of glue rules applied is lower.
Further analysis shows in Table 7 that the number
of verb dropping rules in the grammar is almost
three times lower and that there are more trans-
lated verbs in the output when realigning verbs.

4 Conclusion

We describe in detail the syntax-based machine
translation systems that we developed for four Eu-
ropean language pairs. We achieved competitive
results, especially for the language pairs involving
German.
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