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Abstract

We describe the two systems submit-
ted by the DCU-Symantec team to Task
1.1. of the WMT 2013 Shared Task on
Quality Estimation for Machine Transla-
tion. Task 1.1 involve estimating post-
editing effort for English-Spanish trans-
lation pairs in the news domain. The
two systems use a wide variety of fea-
tures, of which the most effective are the
word-alignment, n-gram frequency, lan-
guage model, POS-tag-based and pseudo-
references ones. Both systems perform at
a similarly high level in the two tasks of
scoring and ranking translations, although
there is some evidence that the systems are
over-fitting to the training data.

1 Introduction

The WMT 2013 Quality Estimation Shared Task
involve both sentence-level and word-level qual-
ity estimation (QE). The sentence-level task con-
sist of three subtasks: scoring and ranking transla-
tions with regard to post-editing effort (Task 1.1),
selecting among several translations produced by
multiple MT systems for the same source sentence
(Task 1.2), and predicting post-editing time (Task
1.3). The DCU-Symantec team enter two systems
to Task 1.1. Given a set of source English news
sentences and their Spanish translations, the goals
are to predict the HTER score of each translation
and to produce a ranking based on HTER for the
set of translations. A set of 2,254 sentence pairs
are provided for training.

On the ranking task, our system DCU-SYMC
alltypes is second placed out of thirteen sys-
tems and our system DCU-SYMC combine is
ranked fifth, according to the Delta Average met-
ric. According to the Spearman rank correlation,
our systems are the joint-highest systems. In the

scoring task, the DCU-SYMC alltypes system
is placed sixth out of seventeen systems accord-
ing to Mean Absolute Error (MAE) and third ac-
cording to Root Mean Squared Error (RMSE). The
DCU-SYMC combine system is placed fifth ac-
cording to MAE and second according to RMSE.

In this system description paper, we describe the
features, the learning methods used, the results for
the two submitted systems and some other systems
we experiment with.

2 Features

Our starting point for the WMT13 QE shared task
was the feature set used in the system we submit-
ted to the WMT12 QE task (Rubino et al., 2012).
This feature set, comprising 308 features in to-
tal, extended the 17 baseline features provided by
the task organisers to include 6 additional sur-
face features, 6 additional language model fea-
tures, 17 additional features derived from the
MT system components and the n-best lists, 138
features obtained by part-of-speech tagging and
parsing the source sentences and 95 obtained by
part-of-speech tagging the target sentences, 21
topic model features, 2 features produced by a
grammar checker1 and 6 pseudo-source (or back-
translation) features.

We made the following modifications to this
2012 feature set:
• The pseudo-source (or back-translation) fea-

tures were removed, as they did not con-
tribute useful information to our system last
year.
• The language model and n-gram frequency

feature sets were extended in order to cover
1 to 5 gram sequences, as well as source and
target ratios for these feature values.
• The word-alignment feature set was also

extended by considering several thresholds

1http://www.languagetool.org/
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when counting the number of target words
aligned with source words.
• We extracted 8 additional features from the

decoder log file, including the number of dis-
carded hypotheses, the total number of trans-
lation options and the number of nodes in the
decoding graph.
• The set of topic model features was reduced

in order to keep only those that were shown
to be effective on three quality estimation
datasets (the details can be found in (Rubino
et al. (to appear), 2013)). These features en-
code the difference between source and target
topic distributions according to several dis-
tance/divergence metrics.
• Following Soricut et al. (2012), we employed

pseudo-reference features. The source sen-
tences were translated with three different
MT systems: an in-house phrase-based SMT
system built using Moses (Koehn et al.,
2007) and trained on the parallel data pro-
vided by the organisers, the rule-based sys-
tem Systran2 and the online, publicly avail-
able, Bing Translator3. The obtained trans-
lations are compared to the target sentences
using sentence-level BLEU (Papineni et al.,
2002), TER (Snover et al., 2006) and the Lev-
enshtein distance (Levenshtein, 1966).
• Also following Soricut et al. (2012), one-

to-one word-alignments, with and without
Part-Of-Speech (POS) agreement, were in-
cluded as features. Using the alignment in-
formation provided by the decoder, we POS
tagged the source and target sentences with
TreeTagger (Schmidt, 1994) and the publicly
available pre-trained models for English and
Spanish. We mapped the tagsets of both lan-
guages by simplifying the initial tags and ob-
tain a reduced set of 8 tags. We applied that
simplification on the tagged sentences before
checking for POS agreement.

3 Machine Learning

In this section, we describe the learning algo-
rithms and feature selection used in our experi-
ments, leading to the two submitted systems for
the shared task.

2Systran Enterprise Server version 6
3http://www.bing.com/translator

3.1 Primary Learning Method

To estimate the post-editing effort of translated
sentences, we rely on regression models built us-
ing the Support Vector Machine (SVM) algorithm
for regression ε-SVR, implemented in the LIB-
SVM toolkit (Chang and Lin, 2011). To build
our final regression models, we optimise SVM
hyper-parameters (C, γ and ε) using a grid-search
method with 5-fold cross-validation for each pa-
rameter triplet. The parameters leading to the best
MAE, RMSE and Pearson’s correlation coefficient
(r) are kept to build the model.

3.2 Feature Selection on Feature Types

In order to reduce the feature and obtain more
compact models, we apply feature selection on
each of our 15 feature types. Examples of feature
types are language model features or topic model
features. For each feature type, we apply a feature
subset evaluation method based on the wrapper
paradigm and using the best-first search algorithm
to explore the feature space. The M5P (Wang
and Witten, 1997) regression tree algorithm im-
plemented in the Weka toolkit (Hall et al., 2009)
is used with default parameters to train and eval-
uate a regression model for each feature subset
obtained with best-first search. A 10-fold cross-
validation is performed for each subset and we
keep the features leading to the best RMSE. We
use M5P regression trees instead of ε-SVR be-
cause grid-search with the latter is too computa-
tionally expensive to be applied so many times.
Using feature selection in this way, we obtain 15
reduced feature sets that we combine to form the
DCU-SYMC alltypes system, containing 102
features detailed in Table 1.

3.3 Feature Binarisation

In order to aid the SVM learner, we also experi-
ment with binarising our feature set, i.e. convert-
ing our features with various feature value ranges
into features whose values are either 1 or 0. Again,
we employ regression tree learning. We train
regression trees with M5P and M5P-R4 (imple-
mented in the Weka toolkit) and create a binary
feature for each regression rule found in the trees
(ignoring the leaf nodes). For example, a binary
feature indicating whether the Bing TER score is
less than or equal to 55.685 is derived from the

4We experiment with J48 decision trees as well, but this
method did not outperform regression tree methods.
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Backward LM
Source 1-gram perplexity.
Source & target 1-grams perplexity ratio.
Source & target 3-grams and 4-gram perplexity ratio.
Target Syntax
Frequency of tags: ADV, FS, DM, VLinf, VMinf, semicolon, VLger, NC, PDEL, VEfin, CC, CCNEG, PPx, ART, SYM,
CODE, PREP, SE and number of ambiguous tags
Frequency of least frequent POS 3-gram observed in a corpus.
Frequency of least frequent POS 4-gram and 6-gram with sentence padding (start and end of sentence tags) observed in a
corpus.
Source Syntax
Features from three probabilistic parsers. (Rubino et al., 2012).
Frequency of least frequent POS 2-gram, 4-gram and 9-gram with sentence padding observed in a corpus.
Number of analyses found and number of words, using a Lexical Functional Grammar of English as described in Rubino
et al. (2012).
LM
Source unigram perplexity.
Target 3-gram and 4-gram perplexity with sentence padding.
Source & target 1-gram and 5-gram perplexity ratio.
Source & target unigram log-probability.
Decoder
Component scores during decoding.
Number of phrases in the best translation.
Number of translation options.
N -gram Frequency
Target 2-gram in second and third frequency quartiles.
Target 3-gram and 5-gram in low frequency quartiles.
Number of target 1-gram seen in a corpus.
Source & target 1-grams in highest and second highest frequency quartile.
One-to-One Word-Alignment
Count of O2O word alignment, weighted by target sentence length.
Count of O2O word alignment with POS agreement, weighted by count of O2O, by source length, by target length.
Pseudo-Reference
Moses translation TER score.
Bing translation number of words and TER score.
Systran sBLEU, number of substitutions and TER score.
Surface
Source number of punctuation marks and average words occurrence in source sentence.
Target number of punctuation marks, uppercased letters and binary value if the last character of the sentence is a punctuation
mark.
Ratio of source and target sentence lengths, average word length and number of punctuation marks over sentence lengths.
Topic Model
Cosine distance between source and target topic distributions.
Jensen-Shannon divergence between source and target topic distributions.
Word Alignment
Averaged number of source words aligned per target words with p(s|t) thresholds: 1.0, 0.75, 0.5, 0.25, 0.01
Averaged number of source words aligned per target words with p(s|t) = 0.01 weighted by target words frequency
Averaged number of target words aligned per source word with p(t|s) = 0.01 weighted by source words frequency
Ratio of source and target averaged aligned words with thresholds: 1.0 and 0.1, and with threshold: 0.75, 0.5, 0.25 weighted
by words frequency

Table 1: Features selected with the wrapper approach using best-first search and M5P. These features are
included in the submitted system alltypes.
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Feature to which threshold t is applied t (≤)
Target 1-gram backward LM log-prob. −35.973
Target 3-gram backward LM perplexity 7144.99
Probabilistic parsing feature 3.756
Probabilistic parsing feature 57.5
Frequency of least frequent POS 6-gram 0.5
Source 3-gram LM log-prob. 65.286
Source 4-gram LM perplexity with padding 306.362
Target 2-gram LM perplexity 176.431
Target 4-gram LM perplexity 426.023
Target 4-gram LM perplexity with padding 341.801
Target 5-gram LM perplexity 112.908
Ratio src&trg 5-gram LM log-prob. 1.186
MT system component score −50
MT system component score −0.801
Source 2-gram frequency in low quartile 0.146
Ratio src&trg 2-gram in high freq. quartile 0.818
Ratio src&trg 3-gram in high freq. quartile 0.482
O2O word alignment 15.5
Pseudo-ref. Moses Levenshtein 19
Pseudo-ref. Moses TER 21.286
Pseudo-ref. Bing TER 16.905
Pseudo-ref. Bing TER 23.431
Pseudo-ref. Bing TER 37.394
Pseudo-ref. Bing TER 55.685
Pseudo-ref. Systran sBLEU 0.334
Pseudo-ref. Systran TER 36.399
Source average word length 4.298
Target uppercased/lowercased letters ratio 0.011
Ratio src&trg average word length 1.051
Source word align., p(s|t) > 0.75 11.374
Source word align., p(s|t) > 0.1 485.062
Source word align., p(s|t) > 0.75 weighted 0.002
Target word align., p(t|s) > 0.01 weighted 0.019
Word align. ratio p > 0.25 weighted 1.32

Table 2: Features selected with the M5P-R M50
binarisation approach. For each feature, the cor-
responding rule indicates the binary feature value.
These features are included in the submitted sys-
tem combine in addition to the features presented
in Table 1.

regression rule Bing TER score ≤ 55.685.
The primary motivation for using regression

tree learning in this way was to provide a quick
and convenient method for binarising our feature
set. However, we can also perform feature selec-
tion using this method by experimenting with vari-
ous minimum leaf sizes (Weka parameter M ). We
plot the performance of the M5P and M5P-R (opti-
mising towards correlation) over the parameter M
and select the best three values of M . To experi-
ment with the effect of smaller and larger feature
sets, we further include parameters of M that (a)
lead to an approximately 50% bigger feature set
and (b) to an approximately 50% smaller feature
set.

Our DCU-SYMC combine system was built
by combining the DCU-SYMC alltypes fea-
ture set, reduced using the best-first M5P wrap-

per approach as described in subsection 3.2, with
a binarised set produced using an M5P regres-
sion tree with a minimum of 50 nodes per leaf.
This latter configuration, containing 34 features
detailed in Table 2, was selected according to the
evaluation scores obtained during cross-validation
on the training set using ε-SVR, as described in
the next section. Finally, we run a greedy back-
ward feature selection algorithm wrapping ε-SVR
on both DCU-SYMC alltypes and DCU-SYMC
combine in order to optimise our feature sets for
the SVR learning algorithm, removing 6 and 2 fea-
tures respectively.

4 System Evaluation and Results

In this section, we present the results obtained with
ε-SVR during 5-fold cross-validation on the train-
ing set and the final results obtained on the test
set. We selected two systems to submit amongst
the different configurations based on MAE, RMSE
and r. As several systems reach the same perfor-
mance according to these metrics, we use the num-
ber of support vectors (noted SV) as an indicator
of training data over-fitting. We report the results
obtained with some of our systems in Table 3.

The results show that the submitted sys-
tems DCU-SYMC alltypes and DCU-SYMC
combine lead to the best scores on cross-
validation, but they do not outperform the system
combining the 15 feature types without feature se-
lection (15 types). This system reaches the best
scores on the test set compared to all our systems
built on reduced feature sets. This indicates that
we over-fit and fail to generalise from the training
data.

Amongst the systems built using reduced fea-
ture sets, the M5P-R M80 system, based on the
tree binarisation approach using M5P-R, yields
the best results on the test set on 3 out of 4 offi-
cial metrics. These results indicate that this sys-
tem, trained on 16 features only, tends to estimate
HTER scores more accurately on the unseen test
data. The results of the two systems based on
the M5P-R binarisation method are the best com-
pared to all the other systems presented in this
Section. This feature binarisation and selection
method leads to robust systems with few features:
31 and 16 for M5P-R M50 and M5P-R M80 re-
spectively. Even though these systems do not lead
to the best results, they outperform the two sub-
mitted systems on one metric used to evaluate the
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Cross-Validation Test
System nb feat MAE RMSE r SV MAE RMSE DeltaAvg Spearman
15 types 442 0.106 0.138 0.604 1194.6 0.126 0.156 0.108 0.625
M5P M50 34 0.106 0.138 0.600 1417.8 0.135 0.167 0.102 0.586
M5P M130 4 0.114 0.145 0.544 750.6 0.142 0.173 0.079 0.517
M5P-R M50 31 0.106 0.137 0.610 655.4 0.135 0.166 0.100 0.591
M5P-R M80 16 0.107 0.139 0.597 570.6 0.134 0.165 0.106 0.597
alltypes? 96 0.104 0.135 0.624 1130.6 0.135 0.171 0.101 0.589
combine? 134 0.104 0.134 0.629 689.8 0.134 0.166 0.098 0.588

Table 3: Results obtained with different regression models, during cross-validation on the training set
and on the test set, depending on the feature selection method. Systems marked with ? were submitted
for the shared task.

scoring task and two metrics to evaluate the rank-
ing task.

On the systems built using reduced feature sets,
we observe a difference of approximately 0.03pt
absolute between the MAE and RMSE scores ob-
tained during cross-validation and those on the test
set. Such a difference can be related to train-
ing data over-fitting, even though the feature sets
obtained with the tree binarisation methods are
small. For instance, the system M5P M130 is
trained on 4 features only, but the difference be-
tween cross-validation and test MAE scores is
similar to the other systems. We see on the fi-
nal results that our feature selection methods is an
over-fitting factor: by selecting the features which
explain well the training set, the final model tends
to generalise less. The selected features are suited
for the specificities of the training data, but are less
accurate at predicting values on the unseen test set.

5 Discussion

Training data over-fitting is clearly shown by the
results presented in Table 3, indicated by the per-
formance drop between results obtained during
cross-validation and the ones obtained on the test
set. While this drop may be related to data over-
fitting, it may also be related to the use of differ-
ent machine learning methods for feature selec-
tion (M5P and M5P-R) and for building the fi-
nal regression models (ε-SVR). In order to ver-
ify this aspect, we build two regression models
using M5P, based on the feature sets alltypes
and combine. Results are presented in Table 4
and show that, for the alltypes feature set, the
RMSE, DeltaAvg and Spearman scores are im-
proved using M5P compared to SVM. For the
combine feature set, the scoring results (MAE

and RMSE) are better using SVM, while the rank-
ing results are similar for both machine learning
methods.

The performance drop between the results on
the training data (or a development set) and the
test data was also observed by the highest ranked
participants in the WMT12 QE shared task. To
compare our system without feature selection to
the winner of the previous shared task, we eval-
uate the 15 types system in Table 3 using the
WMT12 QE dataset. The results are presented in
Table 5. We can see that similar MAEs are ob-
tained with our feature set and the WMT12 QE
winner, whereas our system gets a higher RMSE
(+0.01). For the ranking scores, our system is
worse using the DeltaAvg metric while it is bet-
ter on Spearman coefficient.

6 Conclusion

We presented in this paper our experiments for the
WMT13 Quality Estimation shared task. Our ap-
proach is based on the extraction of a large ini-
tial feature set, followed by two feature selection
methods. The first one is a wrapper approach us-
ing M5P and a best-first search algorithm, while
the second one is a feature binarisation approach
using M5P and M5P-R. The final regression mod-
els were built using ε-SVR and we selected two
systems to submit based on cross-validation re-
sults.

We observed that our system reaching the best
scores on the test set was not a system trained on
a reduced feature set and it did not yield the best
cross-validation results. This system was trained
using 442 features, which are the combination of
15 different feature types. Amongst the systems
built on reduced sets, the best results are obtained
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System nb feat MAE RMSE DeltaAvg Spearman
alltypes 96 0.135 0.165 0.104 0.604
combine 134 0.139 0.169 0.098 0.587

Table 4: Results obtained with the two feature sets contained in our submitted systems using M5P to
build the regression models instead of ε-SVR.

System nb feat MAE RMSE DeltaAvg Spearman
WMT12 winner 15 0.61 0.75 0.63 0.64
15 types 442 0.61 0.76 0.60 0.65

Table 5: Results obtained on WMT12 QE dataset with our best system (15 types) compared to WMT12
QE highest ranked team, in the Likert score prediction task.

using the feature binarisation approach M5P-R
80, which contains 16 features selected from our
initial set of features. The tree-based feature bina-
risation is a fast and flexible method which allows
us to vary the number of features by optimising the
leaf size and leads to acceptable results with a few
selected features.

Future work involves a deeper analysis of the
over-fitting effect and an investigation of other
methods in order to outperform the non-reduced
feature set. We are also interested in finding a ro-
bust way to optimise the leaf size parameter for
our tree-based feature binarisation method, with-
out using cross-validation on the training set with
an SVM algorithm.
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