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Abstract

Randomized methods of significance test-
ing enable estimation of the probability
that an increase in score has occurred sim-
ply by chance. In this paper, we examine
the accuracy of three randomized meth-
ods of significance testing in the context
of machine translation: paired bootstrap
resampling, bootstrap resampling and ap-
proximate randomization. We carry out
a large-scale human evaluation of shared
task systems for two language pairs to
provide a gold standard for tests. Re-
sults show very little difference in accu-
racy across the three methods of signif-
icance testing. Notably, accuracy of all
test/metric combinations for evaluation of
English-to-Spanish are so low that there is
not enough evidence to conclude they are
any better than a random coin toss.

1 Introduction

Automatic metrics, such as BLEU (Papineni et
al., 2002), are widely used in machine translation
(MT) as a substitute for human evaluation. Such
metrics commonly take the form of an automatic
comparison of MT output text with one or more
human reference translations. Small differences
in automatic metric scores can be difficult to inter-
pret, however, and statistical significance testing
provides a way of estimating the likelihood that a
score difference has occurred simply by chance.
For several metrics, such as BLEU, standard sig-
nificance tests cannot be applied due to scores
not comprising the mean of individual sentence
scores, justifying the use of randomized methods.

Bootstrap resampling was one of the early ran-
domized methods proposed for statistical signifi-
cance testing of MT (Germann, 2003; Och, 2003;
Kumar and Byrne, 2004; Koehn, 2004), to assess

for a pair of systems how likely a difference in
BLEU scores occurred by chance. Empirical tests
detailed in Koehn (2004) show that even for test
sets as small as 300 translations, BLEU confidence
intervals can be computed as accurately as if they
had been computed on a test set 100 times as large.

Approximate randomization was subsequently
proposed as an alternate to bootstrap resam-
pling (Riezler and Maxwell, 2005). Theoretically
speaking, approximate randomization has an ad-
vantage over bootstrap resampling, in that it does
not make the assumption that samples are repre-
sentative of the populations from which they are
drawn. Both methods require some adaptation in
order to be used for the purpose of MT evalua-
tion, such as combination with an automatic met-
ric, and therefore it cannot be taken for granted
that approximate randomization will be more ac-
curate in practice. Within MT, approximate ran-
domization for the purpose of statistical testing is
also less common.

Riezler and Maxwell (2005) provide a compar-
ison of approximate randomization with bootstrap
resampling (distinct from paired bootstrap resam-
pling), and conclude that since approximate ran-
domization produces higher p-values for a set of
apparently equally-performing systems, it more
conservatively concludes statistically significant
differences, and recommend preference of approx-
imate randomization over bootstrap resampling
for MT evaluation. Conclusions drawn from ex-
periments provided in Riezler and Maxwell (2005)
are oft-cited, with experiments interpreted as ev-
idence that bootstrap resampling is overly opti-
mistic in reporting significant differences (Riezler
and Maxwell, 2006; Koehn and Monz, 2006; Gal-
ley and Manning, 2008; Green et al., 2010; Monz,
2011; Clark et al., 2011).

Our contribution in this paper is to revisit sta-
tistical significance tests in MT — namely, boot-
strap resampling, paired bootstrap resampling and
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approximate randomization — and find problems
with the published formulations. We redress these
issues, and apply the tests in statistical testing of
two language pairs. Using human judgments of
translation quality, we find only very minor differ-
ences in significance levels across the three tests,
challenging claims made in the literature about rel-
ative merits of tests.

2 Revisiting Statistical Significance Tests
for MT Evaluation

First, we revisit the formulations of bootstrap
resampling and approximate randomization al-
gorithms as presented in Riezler and Maxwell
(2005). At first glance, both methods appear to
be two-tailed tests, with the null hypothesis that
the two systems perform equally well. To facili-
tate a two-tailed test, absolute values of pseudo-
statistics are computed before locating the abso-
lute value of the actual statistic (original differ-
ence in scores). Using absolute values of pseudo-
statistics is not problematic in the approximate
randomization algorithm, and results in a reason-
able two-tailed significance test. However, the
bootstrap algorithm they provide uses an addi-
tional shift-to-zero method of simulating the null
hypothesis. The way in which this shift-to-zero
and absolute values of pseudo-statistics are ap-
plied is non-standard. Combining shift-to-zero
and absolute values of pseudo-statistics results
in all pseudo-statistics that fall below the mean
pseudo-statistic to be omitted from computation of
counts later used to compute p-values. The ver-
sion of the bootstrap algorithm, as provided in the
pseudo-code, is effectively a one-tailed test, and
since this does not happen in the approximate ran-
domization algorithm, experiments appear to com-
pare p-values from a one-tailed bootstrap test di-
rectly with those of a two-tailed approximate ran-
domization test. This inconsistency is not recog-
nized, however, and p-values are compared as if
both tests are two-tailed.

A better comparison of p-values would first re-
quire doubling the values of the one-sided boot-
strap, leaving those of the two-sided approximate
randomization algorithm as-is. The results of the
two tests on this basis are extremely close, and
in fact, in two out of the five comparisons, those
of the bootstrap would have marginally higher p-
values than those of approximate randomization.
As such, it is conceivable to conclude that the ex-

periments actually show no substantial difference
in Type I error between the two tests, which is con-
sistent with results published in other fields of re-
search (Smucker et al., 2007). We also note that
the pseudo-code contains an unconventional com-
putation of mean pseudo-statistics, τB , for shift-
to-zero.

Rather than speculate over whether these is-
sues with the original paper were simply presen-
tational glitches or the actual basis of the experi-
ments reported on in the paper, we present a nor-
malized version of the two-sided bootstrap algo-
rithm in Figure 1, and report on the results of our
own experiments in Section 4. We compare this
method with approximate randomization and also
paired bootstrap resampling (Koehn, 2004), which
is widely used in MT evaluation. We carry out
evaluation over a range of MT systems, not only
including pairs of systems that perform equally
well, but also pairs of systems for which one
system performs marginally better than the other.
This enables evaluation of not only Type I error,
but the overall accuracy of the tests. We carry out
a large-scale human evaluation of all WMT 2012
shared task participating systems for two language
pairs, and collect sufficient human judgments to
facilitate statistical significance tests. This hu-
man evaluation data then provides a gold-standard
against which to compare randomized tests. Since
all randomized tests only function in combina-
tion with an automatic MT evaluation metric, we
present results of each randomized test across four
different MT metrics.

3 Randomized Significance Tests

3.1 Bootstrap Resampling

Bootstrap resampling provides a way of estimat-
ing the population distribution by sampling with
replacement from a representative sample (Efron
and Tibshirani, 1993). The test statistic is taken
as the difference in scores of the two systems,
SX − SY , which has an expected value of 0 under
the null hypothesis that the two systems perform
equally well. A bootstrap pseudo-sample consists
of the translations by the two systems (Xb, Yb) of
a bootstrapped test set (Koehn, 2004), constructed
by sampling with replacement from the original
test set translations. The bootstrap distribution
Sboot of the test statistic is estimated by calculat-
ing the value of the pseudo-statistic SXb

− SYb
for

each pseudo-sample.
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Set c = 0

Compute actual statistic of score differences SX − SY

on test data

Calculate sample mean τB = 1
B

B∑
b=1

SXb − SYb over

bootstrap samples b = 1, ..., B

For bootstrap samples b = 1, ..., B

Sample with replacement from variable tuples test
sentences for systems X and Y

Compute pseudo-statistic SXb − SYb on bootstrap data

If |SXb − SYb − τB | ≥ |SX − SY |
c = c+ 1

If c/B ≤ α
Reject the null hypothesis

Figure 1: Two-sided bootstrap resampling statisti-
cal significance test for automatic MT evaluation

Set c = 0

Compute actual statistic of score differences SX − SY

on test data

For random shuffles r = 1, ..., R

For sentences in test set

Shuffle variable tuples between systems X and Y
with probability 0.5

Compute pseudo-statistic SXr − SYr on shuffled data

If SXr − SYr ≥ SX − SY

c = c+ 1

If c/R ≤ α
Reject the null hypothesis

Figure 2: Approximate randomization statistical
significance test for automatic MT evaluation

The null hypothesis distribution SH0 can be es-
timated from Sboot by applying the shift method
(Noreen, 1989), which assumes that SH0 has the
same shape but a different mean than Sboot. Thus,
Sboot is transformed into SH0 by subtracting the
mean bootstrap statistic from every value in Sboot.

Once this shift-to-zero has taken place, the null
hypothesis is rejected if the probability of observ-
ing a more extreme value than the actual statistic
is lower than a predetermined p-value α, which is
typically set to 0.05. In other words, the score dif-
ference is significant at level 1− α.

Figure 3 provides a one-sided implementation
of bootstrap resampling, whereH0 is that the score
of System X is less than or equal to the score of

Set c = 0

Compute actual statistic of score differences SX − SY

on test data

Calculate sample mean τB = 1
B

B∑
b=1

SXb − SYb over

bootstrap samples b = 1, ..., B

For bootstrap samples b = 1, ..., B

Sample with replacement from variable tuples test
sentences for systems X and Y

Compute pseudo-statistic SXb − SYb on bootstrap data

If SXb − SYb − τB ≥ SX − SY

c = c+ 1

If c/B ≤ α
Reject the null hypothesis

Figure 3: One-sided Bootstrap resampling statisti-
cal significance test for automatic MT evaluation

Set c = 0

For bootstrap samples b = 1, ..., B

If SXb < SYb

c = c+ 1

If c/B ≤ α
Reject the null hypothesis

Figure 4: Paired bootstrap resampling randomized
significance test

System Y . Figure 5 includes a typical example of
bootstrap resampling applied to BLEU, for a pair
of systems for which differences in scores are sig-
nificant, while Figure 6 shows the same for ME-
TEOR but for a pair of systems with no significant
difference in scores.

3.2 Approximate Randomization

Unlike bootstrap, approximate randomization
does not make any assumptions about the popula-
tion distribution. To simulate a distribution for the
null hypothesis that the scores of the two systems
are the same, translations are shuffled between the
two systems so that 50% of each pseudo-sample
is drawn from each system. In the context of ma-
chine translation, this can be interpreted as each
translation being equally likely to have been pro-
duced by one system as the other (Riezler and
Maxwell, 2005).

The test statistic is taken as the difference in
scores of the two systems, SX − SY . If there is
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Figure 5: Pseudo-statistic distributions for a typical pair of systems with close BLEU scores for each
randomized test (System F vs. System G).
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Figure 6: Pseudo-statistic distributions of METEOR with randomized tests (System D vs. System A).

a total of S sentences, then a total of 2S shuffles is
possible. If S is large, instead of generating all 2S

possible combinations, we instead generate sam-
ples by randomly permuting translations between
the two systems with equal probability. The distri-
bution of the test statistic under the null hypoth-
esis is approximated by calculating the pseudo-
statistic, SXr − SYr , for each sample. As before,
the null hypothesis is rejected if the probability of
observing a more extreme value than the actual
test statistic is lower than α.

Figure 2 provides a one-sided implementation
of approximate randomization for MT evaluation,
where the null hypothesis is that the score of Sys-
tem X is less than or equal to the score of System
Y . Figure 5 shows a typical example of pseudo-
statistic distributions for approximate randomiza-
tion for a pair of systems with a small but signifi-
cant score difference according to BLEU, and Fig-
ure 6 shows the same for METEOR applied to a

pair of systems where no significant difference is
concluded.

3.3 Paired Bootstrap Resampling

Paired bootstrap resampling (Koehn, 2004) is
shown in Figure 4. Unlike the other two random-
ized tests, this method makes no attempt to simu-
late the null hypothesis distribution. Instead, boot-
strap samples are used to estimate confidence in-
tervals of score differences, with confidence inter-
vals not containing 0 implying a statistically sig-
nificant difference.

We compare what takes place with the two other
tests, by plotting differences in scores for boot-
strapped samples, SXb

− SYb
, as shown in Fig-

ure 5 for BLEU and Figure 6 for METEOR. Instead
of computing counts with reference to the actual
statistic, the line through the origin provides the
cut-off for counts.
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Figure 7: Human evaluation pairwise significance tests for Spanish-to-English systems (colored cells
denote scores for System row being significantly greater than System column .

4 Evaluation

In order to evaluate the accuracy of the three ran-
domized significance significance tests, we com-
pare conclusions reached in a human evaluation
of shared task participant systems. We carry out
a large-scale human evaluation of all participating
systems from WMT 2012 (Callison-Burch et al.,
2012) for the Spanish-to-English and English-to-
Spanish translation tasks. Large numbers of hu-
man assessments of translations were collected us-
ing Amazon’s Mechanical Turk, with strict qual-
ity control filtering (Graham et al., 2013). A to-
tal of 82,100 human adequacy assessments and
62,400 human fluency assessments were collected.
After the removal of quality control items and
filtering of judgments from low-quality workers,
this resulted in an average of 1,280 adequacy and
1,013 fluency assessments per system for Spanish-
to-English (12 systems), and 1,483 adequacy and
1,534 fluency assessments per system for English-
to-Spanish (11 systems). To remove bias with re-
spect to individual human judge preference scor-
ing severity/leniency, scores provided by each hu-
man assessor were standardized according to the
mean and standard deviation of all scores provided
by that individual.

Significance tests were carried out over the
scores for each pair of systems separately for
adequacy and fluency assessments using the
Wilcoxon rank-sum test. Figure 7 shows pairwise
significance test results for fluency, adequacy and
the combination of the two tests, for all pairs of
Spanish-to-English systems. Combined fluency
and adequacy significance test results are con-
structed as follows: if a system’s adequacy score is

significantly greater than that of another, the com-
bined conclusion is that it is significantly better,
at that significance level. Only when a tie in ad-
equacy scores occurs are fluency judgments used
to break the tie. In this case, p-values from signifi-
cance tests applied to fluency scores of that system
pair are used. For example, in Figure 7, adequacy
scores of System B are not significantly greater
than those of Systems C, D and E, while fluency
scores for System B are significantly greater than
those of the three other systems. The combined re-
sult for each pair of systems is therefore taken as
the p-value from the corresponding fluency signif-
icance test.

We use the combined human evaluation pair-
wise significant tests as a gold standard against
which to evaluate the randomized methods of sta-
tistical significance testing. We evaluate paired
bootstrap resampling (Koehn, 2004) and bootstrap
resampling as shown in Figure 3 and approxi-
mate randomization as shown in Figure 2, each
in combination with four automatic MT metrics:
BLEU (Papineni et al., 2002), NIST (NIST, 2002),
METEOR (Banerjee and Lavie, 2005) and TER

(Snover et al., 2006).

4.1 Results and Discussion

Figure 8 shows the outcome of pairwise random-
ized significance tests for each metric for Spanish-
to-English systems, and Table 1 shows numbers of
correct conclusions and accuracy of each test.

When we compare conclusions made by the
three randomized tests for Spanish-to-English sys-
tems, there is very little difference in p-values for
all pairs of systems. For both BLEU and NIST,
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Paired Bootst. Resamp. Bootst. Resamp. Approx. Rand.

α Conc. Acc.(%) Conc. Acc. (%) Conc. Acc. (%)

0.05

BLEU 53 80.3 [68.7, 89.1] 53 80.3 [68.7, 89.1] 53 80.3 [68.7, 89.1]

NIST 54 81.8 [70.4, 90.2] 54 81.8 [70.4, 90.2] 54 81.8 [70.4, 90.2]

METEOR 52 78.8 [67.0, 87.9] 52 78.8 [67.0, 87.9] 52 78.8 [67.0, 87.9]

TER 52 78.8 [67.0, 87.9] 52 78.8 [67.0, 87.9] 52 78.8 [67.0, 87.9]

0.01

BLEU 51 77.3 [65.3, 86.7] 51 77.3 [65.3, 86.7] 51 77.3 [65.3, 86.7]

NIST 51 77.3 [65.3, 86.7] 51 77.3 [65.3, 86.7] 51 77.3 [65.3, 86.7]

METEOR 53 80.3 [68.7, 89.1] 53 80.3 [68.7, 89.1] 53 80.3 [68.7, 89.1]

TER 51 77.3 [65.3, 86.7] 51 77.3 [65.3, 86.7] 51 77.3 [65.3, 86.7]

0.001

BLEU 48 72.7 [60.4, 83.0] 48 72.7 [60.4, 83.0] 48 72.7 [60.4, 83.0]

NIST 48 72.7 [60.4, 83.0] 48 72.7 [60.4, 83.0] 48 72.7 [60.4, 83.0]

METEOR 53 80.3 [68.7, 89.1] 53 80.3 [68.7, 89.1] 52 78.8 [67.0, 87.9]

TER 50 75.8 [63.6, 85.5] 51 77.3 [65.3, 86.7] 52 78.8 [67.0, 87.9]

Table 1: Accuracy of randomized significance tests for Spanish-to-English MT with four automatic
metrics, based on the WMT 2012 participant systems.

Paired Bootst. Resamp. Bootst. Resamp. Approx. Rand.

α Conc. Acc.(%) Conc. Acc. (%) Conc. Acc. (%)

0.05

BLEU 34 61.8 [47.7, 74.6] 34 61.8 [47.7, 74.6] 34 61.8 [47.7, 74.6]

NIST 32 58.2 [44.1, 71.3] 32 58.2 [44.1, 71.3] 32 58.2 [44.1, 71.3]

METEOR 31 56.4 [42.3, 69.7] 31 56.4 [42.3, 69.7] 31 56.4 [42.3, 69.7]

TER 32 58.2 [44.1, 71.3] 32 58.2 [44.1, 71.3] 32 58.2 [44.1, 71.3]

0.01

BLEU 33 60.0 [45.9, 73.0] 33 60.0 [45.9, 73.0] 33 60.0 [45.9, 73.0]

NIST 32 58.2 [44.1, 71.3] 32 58.2 [44.1, 71.3] 32 58.2 [44.1, 71.3]

METEOR 31 56.4 [42.3, 69.7] 32 58.2 [44.1, 71.3] 32 58.2 [44.1, 71.3]

TER 30 54.5 [40.6, 68.0] 30 54.5 [40.6, 68.0] 30 54.5 [40.6, 68.0]

0.001

BLEU 33 60.0 [45.9, 73.0] 33 60.0 [45.9, 73.0] 33 60.0 [45.9, 73.0]

NIST 33 60.0 [45.9, 73.0] 32 58.2 [44.1, 71.3] 32 58.2 [44.1, 71.3]

METEOR 32 58.2 [44.1, 71.3] 32 58.2 [44.1, 71.3] 32 58.2 [44.1, 71.3]

TER 30 54.5 [40.6, 68.0] 30 54.5 [40.6, 68.0] 31 56.4 [42.3, 69.7]

Table 2: Accuracy of randomized significance tests for English-to-Spanish MT with four automatic
metrics, based on the WMT 2012 participant systems.

all three randomized methods produce p-values
so similar that when α thresholds are applied, all
three tests produce precisely the same set of pair-
wise conclusions for each metric. When tests are
combined with METEOR and TER, similar results
are observed: at the α thresholds of 0.05 and 0.01,
precisely the same conclusions are drawn for both
metrics combined with each of the three tests, and
at most a difference of two conclusions at the low-

est α level.
Table 2 shows the accuracy of each test on the

English-to-Spanish data, showing much the same
set of conclusions at all α levels. For BLEU and
NIST, all three tests again produce precisely the
same conclusions, at p < 0.01 there is at most a
single different conclusion for METEOR, and only
at the lowest p-value level is there a single differ-
ence for TER.
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Figure 8: Automatic metric pairwise randomized significance test results for Spanish-to-English systems
(colored cells denote scores for System row significantly greater than System column).

Finally, we examine which combination of met-
ric and test is most accurate for each language
pair at the conventional significance level of p <
0.05. For Spanish-to-English evaluation, NIST

combined with any of the three randomized tests

is most accurate, making 54 out of 66 (82%) cor-
rect conclusions. For English-to-Spanish, BLEU

in combination with any of the three randomized
tests, is most accurate at 62%. For both language
pairs, however, differences in accuracy for metrics
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are not significant (Chi-square test).
For English-to-Spanish evaluation, an accuracy

as low as 62% should be a concern. This level
of accuracy for significance testing – only making
the correct conclusion in 6 out of 10 tests – acts
as a reminder that no matter how sophisticated the
significance test, it will never make up for flaws in
an underlying metric. When we take into account
the fact that lower confidence limits all fall below
50%, significance tests based on these metrics for
English-to-Spanish are effectively no better than a
random coin toss.

5 Conclusions

We provided a comparison of bootstrap resam-
pling and approximate randomization significance
tests for a range of automatic machine trans-
lation evaluation metrics. To provide a gold-
standard against which to evaluate randomized
tests, we carried out a large-scale human evalua-
tion of all shared task participating systems for the
Spanish-to-English and English-to-Spanish trans-
lation tasks from WMT 2012. Results showed for
many metrics and significance levels that all three
tests produce precisely the same set of conclu-
sions, and when conclusions do differ, it is com-
monly only by a single contrasting conclusion,
which is not significant. For English-to-Spanish
MT, the results of the different MT evaluation met-
ric/significance test combinations are not signifi-
cantly higher than a random baseline.
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