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Abstract

This paper describes the Dublin City
University terminology translation system
used for our participation in the query
translation subtask in the medical trans-
lation task in the Workshop on Statisti-
cal Machine Translation (WMT14). We
deployed six different kinds of terminol-
ogy extraction methods, and participated
in three different tasks: FR–EN and EN–
FR query tasks, and the CLIR task. We
obtained 36.2 BLEU points absolute for
FR–EN and 28.8 BLEU points absolute
for EN–FR tasks where we obtained the
first place in both tasks. We obtained 51.8
BLEU points absolute for the CLIR task.

1 Introduction

This paper describes the terminology translation
system developed at Dublin City University for
our participation in the query translation subtask at
the Workshop on Statistical Machine Translation
(WMT14). We developed six kinds of terminol-
ogy extraction methods for the problem of medi-
cal terminology translation, especially where rare
and new words are considered. We have several
motivations which we address before providing a
description of the actual algorithms undeprinning
our work.

First, terminology translation cannot be seen
just as a simple extension of the translation process
if we use an analogy from human translation. Ter-
minology translation can be considered as more
important and a quite different task than transla-
tion per se, so we need a considerably different
way of solving this particular problem. Bilingual
terminology selection has been claimed to be the
touchstone in human translation, especially where
scientific and legal translation are concerned. Ter-
minology selection is often the hardest and most

time-consuming process in the translation work-
flow. Depending on the particular requirements of
the use-case (Way, 2013), users may not object to
disfluent translations, but will invariably be very
sensitive to the wrong selection of terminology,
even if the meaning of the chosen terms is correct.
This is especially true if this selected terminology
does not match with that preferred by the users
themselves, in which case users are likely to ex-
press some kind of complaint; it may even be that
the entire translation is rejected as sub-standard or
inappropriate on such grounds.

Second, we look at how to handle new and rare
words. If we inspect the process of human trans-
lation more closely, it is easy to identify several
differences compared to the methods used in sta-
tistical MT (SMT). Unless stipulated by the client,
the selection of bilingual terminology can be a
highly subjective process. Accordingly, it is not
necessarily the bilingual term-pair with the highest
probability that is chosen by the human translator.
It is often the case that statistical methods often
forget about or delete less frequent n-grams, but
rely on more frequent n-grams using maximum
likelihood or Maximum A Priori (MAP) meth-
ods. If some terminology is highly suitable, a
human translator can use it quite freely. Further-
more, there are a lot of new words in reality for
which new target equivalents have to be created by
the translators themselves, so the question arises
as to how human translators actually select ap-
propriate new terminology. Transliteration, which
is often supported by many Asian languages in-
cluding Hindi, Japanese, and Chinese, is perhaps
the easiest things to do under such circumstances.
Slight modifications of alphabets/accented charac-
ters can sometimes successfully create a valid new
term, even for European languages.

The remainder of this paper is organized as fol-
lows. Section 2 describes our algorithms. Our
decoding strategy in Section 3. Our experimen-
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tal settings and results are presented in Section 4,
and we conclude in Section 5.

2 Our Methods

Apart from the conventional statistical approach to
extract bilingual terminology, this medical query
task reminds us of two frequently occurring prob-
lems which are often ignored: (i) “Can we forget
about terminology which occurs only once in a
corpus?”, and (ii) “What can we do if the termi-
nology does not occur in a corpus?” These two
problems require computationally quite different
approaches than what is usually done in the stan-
dard statistical approach. Furthermore, the medi-
cal query task in WMT14 provides a wide range of
corpora: parallel and monolingual corpora, as well
as dictionaries. These two interesting aspects mo-
tivate our extraction methods which we present in
this section, including one relatively new Machine
Learning algorithm of zero-shot learning arising
from recent developments in the neural network
community (Bengio et al., 2000; Mikolov et al.,
2013b).

2.1 Translation Model

Word alignment (Brown et al., 1993) and phrase
extraction (Koehn et al., 2003) can capture bilin-
gual word- and phrase-pairs with a good deal of
accuracy. We omit further details of these stan-
dard methods which are freely available elsewhere
in the SMT literature (e.g. (Koehn, 2010)).

2.2 Extraction from Parallel Corpora

(Okita et al., 2010) addressed the problem of
capturing bilingual term-pairs from parallel data
which might otherwise not be detected by the
translation model. Hence, the requirement in
Okita et al. is not to use SMT/GIZA++ (Och and
Ney, 2003) to extract term-pairs, which are the
common focus in this medical query translation
task.

The classical algorithm of (Kupiec, 1993) used
in (Okita et al., 2010) counts the statistics of ter-
minology c(etermi , ftermj |st) on the source and
the target sides which jointly occur in a sentence
st after detecting candidate terms via POS tag-
ging, which are then summed up over the entire
corpus

∑N
t=1 c(etermi , ftermj |st). Then, the al-

gorithm adjusts the length of etermi and ftermj .
It can be said that this algorithm captures term-
pairs which occur rather frequently. However, this

apparent strength can also be seen in disadvanta-
geous terms since the search for terminology oc-
curs densely in each of the sentences which in-
creases the computational complexity of this algo-
rithm, and causes the method to take a consider-
able time to run. Furthermore, if we suppose that
most frequent term-pairs are to be extracted via a
standard translation model (as described briefly in
the previous section), our efforts to search among
frequent pairs is not likely to bring about further
gain.

It is possible to approach this in a reverse man-
ner: “less frequent pairs can be outstanding term
candidates”. Accordingly, if our aim changes to
capture only those less frequent pairs, the situation
changes dramatically. The number of terms we
need to capture is considerably decreased. Many
sentences do not include any terminology at all,
and only a relatively small subset of sentences in-
cludes a few terms, such that term-pairs become
sparse with regard to sentences. Term-pairs can
be found rather easily if a candidate term-pair co-
occurs on the source and the target sides and on
the condition that the items in the term-pair actu-
ally correspond with one another.

This condition can be easily checked in various
ways. One way is to translate the source side of
the targeted pairs with the alignment option in the
Moses decoder (Koehn et al., 2007), which we did
in this evaluation campaign. Another way is to use
asupervised aligner, such as the Berkeley aligner
(Haghighi et al., 2009), to align the targeted pairs
and check whether they are actually aligned or not.

We assume two predefined sets of terms at
the outset, Eterm = {eterm1 , . . . , etermn} and
Fterm = {fterm1 , . . . , ftermn}. We search for
possible alignment links between the term-pair
only when they co-occur in the same sentence.
One obvious advantage of this approach is the
computational complexity which is fairly low.

Note that the result of (Okita et al., 2010)
shows that the frequency-based approach of (Ku-
piec, 1993) worked well for NTCIR patent termi-
nology (Fujii et al., 2010), which otherwise would
have been difficult to capture via the traditional
SMT/GIZA++ method. In contrast, however, this
did not work well on the Europarl corpus (Koehn,
2005).
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2.3 Terminology Dictionaries
Terminology dictionaries themselves are obvi-
ously among the most important resources for
bilingual term-pairs. In this medical query transla-
tion subtask, two corpora are provided for this pur-
pose: (i) Unified Medical Language System cor-
pus (UMLS corpus),1 and (ii) Wiki entries.2

2.4 Extraction from Terminology
Dictionaries: lower-order n-grams

Terminology dictionaries provide reliable higher-
order n-gram pairs. However, they do not often
provide the correspondences between the lower-
order n-grams contained therein. For example, the
UMLS corpus provides a term-pair of “abdominal
compartment syndrome ||| syndrome du compar-
timent abdominal” (EN|||FR). However, such ter-
minology dictionaries often do not explicitly pro-
vide the correspondent pairs “abdominal ||| ab-
dominal” (EN|||FR) or “syndrome ||| syndrome”
(EN|||FR). Clearly, these terminology dictionaries
implicitly provide the correspondent pairs. Note
that UMLS and Wiki entries provide terminol-
ogy dictionaries. Hence, it is possible to obtain
some suggestion by higher order n-gram models if
we know their alignments between words on the
source and target sides. Algorithm 1 shows the
overall procedure.

Algorithm 1 Lower-order n-gram extraction algo-
rithm

1: Perform monolingual word alignment for
higher-order n-gram pairs.

2: Collect only the reliable alignment pairs (i.e.
discard unreliable alignment pairs).

3: Extract the lower-order word pairs of our in-
terest.

2.5 Extraction from Monolingual Corpora:
Transliteration and Abbreviation

Monolingual corpora can be used in various ways,
including:

1. Transliteration: Many languages support the
fundamental mechanism of between Euro-
pean and Asian languages. Japanese even
supports a special alphabet – katakana – for
this purpose. Chinese and Hindi also per-
mit transliteration using their own alphabets.

1http://www.nlm.nih.gov/research/umls/.
2http://www.wikipedia.org.

However, even among European languages,
this mechanism makes it possible to find
possible translation counterparts for a given
term. In this query task, we did this only
for the French-to-English direction and only
for words containing accented characters (by
rule-based conversion).

2. Abbreviation: It is often the case that abbre-
viations should be resolved in the same lan-
guage. If the translation includes some ab-
breviation, such as “C. difficile”, this needs
to be investigated exhaustively in the same
language. However, in the specific domain
of medical terminology, it is quite likely that
possible phrase matches will be successfully
identified.

2.6 Extraction from Monolingual Corpora:
Zero-Shot Learning

Algorithm 2 Algorithm to connect two word em-
bedding space

1: Prepare the monolingual source and target
sentences.

2: Prepare the dictionary which consists of U
entries of source and target sentences among
non-stop-words.

3: Train the neural network language model on
the source side and obtain the continuous
space real vectors of X dimensions for each
word.

4: Train the neural network language model on
the target side and obtain the continuous space
real vectors of X dimensions for each word.

5: Using the real vectors obtained in the above
steps, obtain the linear mapping between the
dictionary in two continuous spaces using
canonical component analysis (CCA).

Another interesting terminology extraction
method requires neither parallel nor comparable
corpora, but rather just monolingual corpora on
both sides (possibly unrelated to each other) to-
gether with a small amount of dictionary entries
which provide already known correspondences
between words on the source and target sides
(henceforth, we refer to this as the ‘dictionary’).
This method uses the recently developed zero-shot
learning (Palatucci et al., 2009) using neural net-
work language modelling (Bengio et al., 2000;
Mikolov et al., 2013b). Then, we train both sides
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with the neural network language model, and use
a continuous space representation to project words
to each other on the basis of a small amount of
correspondences in the dictionary. If we assume
that each continuous space is linear (Mikolov et
al., 2013c), we can connect them via linear projec-
tion (Mikolov et al., 2013b). Algorithm 2 shows
this situation.

In our experiments we use U the same as the
entries of Wiki and X as 50. Algorithm 3 shows
the algorithm to extract the counterpart of OOV
words.

Algorithm 3 Algorithm to extract the counterpart
of OOV words.

1: Prepare the projection by Algorithm 2.
2: Detect unknown words in the translation out-

puts.
3: Do the projection of it (the source word) into

the target word using the trained linear map-
pings in the training step.

3 Decoding Strategy

We deploy six kinds of extraction methods: (1)
translation model, (2) extraction from parallel cor-
pora, (3) terminology dictionaries, (4) lower-order
n-grams, (5) transliteration and abbreviation, and
(6) zero-shot learning. Among these we deploy
four of them – (2), (4), (5) and (6) – in a limited
context, while the remaining two are used with-
out any context, mainly owing to time constraints;
only when we did not find the correspondent pairs
via (1) and (3), did we complement this by the
other methods.

The detected bilingual term-pairs using (1) and
(3) can be combined using various methods. One
way is to employ a method similar to (confu-
sion network-based) system combination (Okita
and van Genabith, 2011; Okita and van Genabith,
2012). First we make a lattice: if we regard one
candidate of (1) and two candidates in (3) as trans-
lation outputs where the words of two candidates
in (3) are connected using an underscore (i.e. one
word), we can make a lattice. Then, we can deploy
monotonic decoding over them. If we do this for
the devset and then apply it to the test set, we can
incorporate a possible preference learnt from the
development set, i.e. whether the query transla-
tor prefers method (1) or UMLS/Wiki translation.
MERT process and language model are applied in

a similar manner with (confusion network-based)
system combination (cf. (Okita and van Genabith,
2011)).

We note also that a lattice structure is useful for
handling grammatical coordination. Since queries
are formed by real users, reserved words for
database query such as “AND” (or “ET” (FR)) and
“OR” (or “OU” (FR)) are frequently observed in
the test set. Furthermore, there is repeated use of
“and” more than twice, for example “douleur ab-
nominal et Helicobacter pylori et cancer”, which
makes it very difficult to detect the correct coor-
dination boundaries. The lattice on the input side
can express such ambiguity at the cost of splitting
the source-side sentence in a different manner.

4 Experimental Results

The baseline is obtained in the following way. The
GIZA++ implementation (Och and Ney, 2003) of
IBM Model 4 is used as the baseline for word
alignment: Model 4 is incrementally trained by
performing 5 iterations of Model 1, 5 iterations of
HMM, 3 iterations of Model 3, and 3 iterations
of Model 4. For phrase extraction the grow-diag-
final heuristics described in (Koehn et al., 2003) is
used to derive the refined alignment from bidirec-
tional alignments. We then perform MERT (Och,
2003) which optimizes parameter settings using
the BLEU metric (Papineni et al., 2002), while a 5-
gram language model is derived with Kneser-Ney
smoothing (Kneser and Ney, 1995) trained using
SRILM (Stolcke, 2002). We use the whole train-
ing corpora including the WMT14 translation task
corpora as well as medical domain data. UMLS
and Wikipedia are used just as training corpora for
the baseline.

For the extraction from parallel corpora (cf.
Section 2.2), we used Genia tagger (Tsuruoka and
Tsujii, 2005) and the Berkeley parser (Petrov and
Klein, 2007). For the zero-shot learning (cf. Sec-
tion 2.6) we used scikit learn (Pedregosa et al.,
2011), word2vec (Mikolov et al., 2013a), and a
recurrent neural network (Mikolov, 2012). Other
tools used are in-house software.

Table 2 shows the results for the FR–EN query
task. We obtained 36.2 BLEU points absolute,
which is an improvement of 6.3 BLEU point ab-
solute (21.1% relative) over the baseline. Table
3 shows the results for the EN–FR query task.
We obtained 28.8 BLEU points absolute, which
is an improvement of 8.7 BLEU points abso-
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lute (43% relative) over the baseline. Our sys-
tem was the best system for both of these tasks.
These improvements over the baseline were sta-
tistically significant by a paired bootstrap test
(Koehn, 2004).

Query task FR–EN
Our method baseline

BLEU 36.2 29.9
BLEU cased 30.9 26.5
TER 0.340 0.443

Table 1: Results for FR–EN query task.

extraction LM MERT BLEU (cased)
(1) - (6) all Y 30.9
(1), (2), (3) all Y 30.3
(1), (3), (6) all Y 30.1
(1), (3), (4) all Y 29.1
(1), (3), (5) all Y 29.0
(1) and (3) all Y 29.0
(1) and (3) medical Y 27.5
(1) and (3) WMT Y 27.0
(1) and (3) medical N 25.1
(1) and (3) WMT N 24.3
(1) medical Y 25.9
(1) WMT Y 25.0

Table 2: Table shows the effects of extraction
methods, language model and MERT process. All
the measurements are by BLEU (cased). In this
table, “medical” indicates a language model built
on all the medical corpora while “WMT” indicates
a language model built on all the non-medical cor-
pora. Note that some sentence in testset can be
considered as non-medical domain. Extraction
methods (1) - (6) correspond to those described in
Section 2.1 - 2.6.

Table 4 shows the results for CLIR task. We
obtained 51.8 BLEU points absolute, which is an
improvement of 9.4 BLEU point absolute (22.2%
relative) over the baseline. Although CLIR task al-
lowed 10-best lists, our submission included only
1-best list. This resulted in the score of P@5 of
0.348 and P@10 of 0.346 which correspond to
the second place, despite a good result in terms
of BLEU. This is since unlike BLEU score P@5
and P@10 measure whether the whole elements
in reference and hypothesis are matched or not.
We noticed that our submission included a lot of

Query task EN–FR
Our method baseline

BLEU 28.8 20.1
BLEU cased 27.7 18.7
TER 0.483 0.582

Table 3: Results for EN–FR query task.

near miss sentences only in terms of capitaliza-
tion: “abnominal pain and Helicobacter pylori and
cancer” (reference) and “abnominal pain and heli-
cobacter pylori and cancer” (submission). These
are counted as incorrect in terms of P@5 and
P@10.3 Noted that after submission we obtained
the revised score of P@5 of 0.560 and P@10 of
0.560 with the same method but with 2-best lists
which handles the capitalization varieties.

CLIR task FR–EN
Our method baseline

BLEU 51.8 42.2
BLEU cased 46.0 38.3
TER 0.364 0.398
P@5 0.348 (0.560∗) –
P@10 0.346 (0.560∗) –
NDCG@5 0.306 –
NDCG@10 0.307 –
MAP 0.2252 –
Rprec 0.2358 –
bpref 0.3659 –
relRet 1524 –

Table 4: Results for CLIR task.

5 Conclusion

This paper provides a description of the Dublin
City University terminology translation system for
our participation in the query translation subtask
in the medical translation task in the Workshop on
Statistical Machine Translation (WMT14). We de-
ployed six different kinds of terminology extrac-
tion methods. We obtained 36.2 BLEU points ab-
solute for FR–EN, and 28.8 BLEU points abso-
lute for EN–FR tasks, obtaining first place on both
tasks. We obtained 51.8 BLEU points absolute for
the CLIR task.

3The method which incorporates variation in capitaliza-
tion in its n-best lists outperforms the best result in terms of
P@5 and P@10.
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