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Abstract

We present the IMS-TTT submission to
WMT14, an experimental statistical tree-
to-tree machine translation system based
on the multi-bottom up tree transducer in-
cluding rule extraction, tuning and decod-
ing. Thanks to input parse forests and
a “no pruning” strategy during decoding,
the obtained translations are competitive.
The drawbacks are a restricted coverage
of 70% on test data, in part due to ex-
act input parse tree matching, and a rela-
tively high runtime. Advantages include
easy redecoding with a different weight
vector, since the full translation forests can
be stored after the first decoding pass.

1 Introduction

In this contribution, we present an implementation
of a translation model that is based on `MBOT
(the multi bottom-up tree transducer of Arnold and
Dauchet (1982) and Lilin (1978)). Intuitively, an
MBOT is a synchronous tree sequence substitution
grammar (STSSG, Zhang et al. (2008a); Zhang et
al. (2008b); Sun et al. (2009)) that has discon-
tiguities only on the target side (Maletti, 2011).
From an algorithmic point of view, this makes the
MBOT more appealing than STSSG as demon-
strated by Maletti (2010). Formally, MBOT is
expressive enough to express all sensible trans-
lations (Maletti, 2012)1. Figure 2 displays sam-
ple rules of the MBOT variant, called `MBOT,

∗This work was supported by Deutsche Forschungsge-
meinschaft grants Models of Morphosyntax for Statistical
Machine Translation (Phase 2) and MA/4959/1–1.

1A translation is sensible if it is of linear size increase
and can be computed by some (potentially copying) top-down
tree transducer.

that we use (in a graphical representation of the
trees and the alignment). Recently, a shallow ver-
sion of MBOT has been integrated into the popular
Moses toolkit (Braune et al., 2013). Our imple-
mentation is exact in the sense that it does abso-
lutely no pruning during decoding and thus pre-
serves all translation candidates, while having no
mechanism to handle unknown structures. (We
added dummy rules that leave unseen lexical ma-
terial untranslated.) The coverage is thus limited,
but still considerably high. Source-side and target-
side syntax restrict the search space so that decod-
ing stays tractable. Only the language model scor-
ing is implemented as a separate reranker2. This
has several advantages: (1) We can use input parse
forests (Liu et al., 2009). (2) Not only is the out-
put optimal with regard to the theoretical model,
also the space of translation candidates can be ef-
ficiently stored as a weighted regular tree gram-
mar. The best translations can then be extracted
using the k-best algorithm by Huang and Chiang
(2005). Rule weights can be changed without the
need for explicit redecoding, the parameters of the
log-linear model can be changed, and even new
features can be added. These properties are espe-
cially helpful in tuning, where only the k-best al-
gorithm has to be re-run in each iteration. A model
in similar spirit has been described by Huang et al.
(2006); however, it used target syntax only (using
a top-down tree-to-string transducer backwards),
and was restricted to sentences of length at most
25. We do not make such restrictions.

The theoretical aspects of `MBOT and their use
in our translation model are presented in Section 2.
Based on this, we implemented a machine transla-
tion system that we are going to make available to

2Strictly speaking, this does introduce pruning into the
pipeline.
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the public. Section 4 presents the most important
components of our `MBOT implementation, and
Section 5 presents our submission to the WMT14
shared translation task.

2 Theoretical Model

In this section, we present the theoretical genera-
tive model that is used in our approach to syntax-
based machine translation: the multi bottom-up
tree transducer (Maletti, 2011). We omit the tech-
nical details and give graphical examples only to
illustrate how the device works, but refer to the lit-
erature for the theoretical background. Roughly
speaking, a local multi bottom-up tree transducer
(`MBOT) has rules that replace one nonterminal
symbol N on the source side by a tree, and a se-
quence of nonterminal symbols on the target side
linked to N by one tree each. These trees again
have linked nonterminals, thus allowing further
rule applications.

Our `MBOT rules are obtained automatically
from data like that in Figure 1. Thus, we (word)
align the bilingual text and parse it in both the
source and the target language. In this manner we
obtain sentence pairs like the one shown in Fig-
ure 1. To these sentence pairs we apply the rule
extraction method of Maletti (2011). The rules
extracted from the sentence pair of Figure 1 are
shown in Figure 2. Note the discontiguous align-
ment of went to ist and gegangen, resulting in dis-
contiguous rules.

The application of those rules is illustrated in
Figure 3 (a pre-translation is a pair consisting of a
source tree and a sequence of target trees). While
it shows a synchronous derivation, our main use
case of `MBOT rules is forward application or in-
put restriction, that is the calculation of all target
trees that can be derived given a source tree. For
a given synchronous derivation d, the source tree
generated by d is s(d), and the target tree is t(d).
The yield of a tree is the string obtained by con-
catenating its leaves.

Apart from `MBOT application to input trees,
we can even apply `MBOT to parse forests and
even weighted regular tree grammars (RTGs)
(Fülöp and Vogler, 2009). RTGs offer an ef-
ficient representation of weighted forests, which
are sets of trees such that each individual tree is
equipped with a weight. This representation is
even more efficient than packed forests (Mi et al.,
2008) and moreover can represent an infinite num-

ber of weighted trees. The most important prop-
erty that we utilize is that the output tree language
is regular, so we can represent it by an RTG (cf.
preservation of regularity (Maletti, 2011)). In-
deed, every input tree can only be transformed into
finitely many output trees by our model, so for a
given finite input forest (which the output of the
parser is) the computed output forest will also be
finite and thus regular.

3 Translation Model

Given a source language sentence e and corre-
sponding weighted parse forest F (e), our trans-
lation model aims to find the best corresponding
target language translation ĝ;3 i.e.,

ĝ = arg maxg p(g|e) .

We estimate the probability p(g|e) through a log-
linear combination of component models with pa-
rameters λm scored on the derivations d such that
the source tree of d is in the parse forest of e and
the yield of the target tree reads g. With

D(e, g) = {d | s(d) ∈ F (e) and yield(t(d)) = g},

we thus have: 4

p(g|e) ∝
∑

d∈D(e,g)

11∏
m=1

hm(d)λm

Our model uses the following features hm(·) for a
derivation:
(1) Translation weight normalized by source root

symbol
(2) Translation weight normalized by all root

symbols
(3) Translation weight normalized by leaves on

the source side
(4) Lexical translation weight source→ target
(5) Lexical translation weight target→ source
(6) Target side language model: p(g)
(7) Number of words in g
(8) Number of rules used in the derivation
(9) Number of gaps in the target side sequences
(10) Penalty for rules that have more lexical ma-

terial on the source side than on the target side
or vice versa (absolute value)

3Our main translation direction is English to German.
4While this is the clean theoretical formulation, we make

two approximations to D(e, g): (1) The parser we use returns
a pruned parse forest. (2) We only sum over derivations with
the same target sentence that actually appear in the k-best list.
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Figure 1: Aligned parsed sentences.
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Figure 2: Extracted rules.

(11) Input parse tree probability assigned to s(t)
by the parser of e

The rule weights required for (1) are relative
frequencies normalized over all extracted rules
with the same root symbol on the left-hand side. In
the same fashion the rule weights required for (2)
are relative frequencies normalized over all rules
with the same root symbols on both sides. The
lexical weights for (4) and (5) are obtained by mul-
tiplying the word translations w(gi|ej) [respec-
tively, w(ej |gi)] of lexically aligned words (gi, ej)
across (possibly discontiguous) target side se-
quences.5 Whenever a source word ej is aligned
to multiple target words, we average over the word
translations:6

h4(d)

=
∏

lexical item
e occurs in s(d)

average {w(g|e) | g aligned to e}

4 Implementation

Our implementation is very close to the theoretical
model and consists of several independent compo-

5The lexical alignments are different from the links used
to link nonterminals.

6If the word ej has no alignment to a target word, then
it is assumed to be aligned to a special NULL word and this
alignment is scored.

nents, most of which are implemented in Python.
The system does not have any dependencies other
than the need for parsers for the source and tar-
get language, a word alignment tool and option-
ally an implementation of some tuning algorithm.
A schematic depiction of the training and decod-
ing pipeline can be seen in Figure 4.

Rule extraction From a parallel corpus of
which both halves have been parsed and word
aligned, multi bottom-up tree transducer rules are
extracted according to the procedure laid out in
(Maletti, 2011). In order to handle unknown
words, we add dummy identity translation rules
for lexical material that was not present in the
training data.

Translation model building Given a set of
rules, translation weights (see above) are com-
puted for each unique rule. The translation model
is then converted into a source, a weight and a tar-
get model. The source model (an RTG represented
in an efficient binary format) is used for decod-
ing and maps input trees to trees over rule iden-
tifiers representing derivations. The weight model
and the target model can be used to reconstruct the
weight and the target realization of a given deriva-
tion.
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Figure 3: Synchronous rule application.

Figure 4: Our machine translation system.
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Decoder The decoder transforms a forest of in-
put sentence parse trees to a forest of transla-
tion derivations by means of forward application.
These derivations are trees over the set of rules
(represented by rule identifiers). One of the most
useful aspects of our model is the fact that decod-
ing is completely independent of the weights, as
no pruning is performed and all translation candi-
dates are preserved in the translation forest. Thus,
even after decoding, the weight model can be
changed, augmented by new features, etc.; even
the target model can be changed, e.g. to support
parse tree output instead of string output. In all
of our experiments, we used string output, but it is
conceivable to use other realizations. For instance,
a syntactic language model could be used for out-
put tree scoring. Also, recasing is extremely easy
when we have part-of-speech tags to base our de-
cision on (proper names are typically uppercase,
as are all nouns in German).

Another benefit of having a packed representa-
tion of all candidates is that we can easily check
whether the reference translation is included in the
candidate set (“force decoding”). The freedom to
allow arbitrary target models that rewrite deriva-
tions is related to current work on interpreted reg-
ular tree grammars (Koller and Kuhlmann, 2011),
where arbitrary algebras can be used to compute a
realization of the output tree.

k-best extractor From the translation derivation
RTGs, a k-best list of derivations can be extracted
(Huang and Chiang, 2005) very efficiently. This
is the only step that has to be repeated if the rule
weights or the parameters of the log-linear model
change. The derivations are then mapped to tar-
get language sentences (if several derivations re-
alize the same target sentence, their weights are
summed) and reranked according to a language
model (as was done in Huang et al. (2006)). This
is the only part of the pipeline where we deviate
from the theoretical log-linear model, and this is
where we might make search errors. In principle,
one could integrate the language model by inter-
section with the translation model (as the stateful
MBOT model is closed under intersection with fi-
nite automata), but this is (currently) not computa-
tionally feasible due to the size of models.

Tuning Minimum error rate training (Och,
2003) is implemented using Z-MERT7 (Zaidan,

7http://cs.jhu.edu/˜ozaidan/zmert/

2009). A set of source sentences has to be (forest-
)parsed and decoded; the translation forests are
stored on disk. Then, in each iteration of Z-MERT,
it suffices to extract k-best lists from the transla-
tion forests according to the current weight vector.

5 WMT14 Experimental setup

We used the training data that was made avail-
able for the WMT14 shared translation task on
English–German8. It consists of three parallel cor-
pora (1.9M sentences of European parliament pro-
ceedings, 201K sentences of newswire text, and
2M sentences of web text) and additional mono-
lingual news data for language model training.

The English half of the parallel data was parsed
using Egret9 which is a re-implementation of the
Berkeley parser (Petrov et al., 2006). For the Ger-
man parse, we used the BitPar parser (Schmid,
2004; Schmid, 2006). The BitPar German gram-
mar is highly detailed, which makes the syntac-
tic information contained in the parses extremely
useful. Part-of-speech tags and category label are
augmented by case, number and gender informa-
tion, as can be seen in the German parse tree in
Figure 1. We only kept the best parse for each
sentence during training. After parsing, we pre-
pared three versions of the German corpus: a)
RAW, with no morphological post-processing; b)
UNSPLIT, using SMOR, a rule-based morpho-
logical analyser (Schmid et al., 2004), to reduce
words to their base form; c) SPLIT, using SMOR
to reduce words to their base form and split com-
pound nouns. After translation, compounds were
merged again, and words were re-inflected. Pre-
vious experiments using SMOR to lemmatise and
split compounds in phrase-based SMT showed im-
proved translation performances, see (Cap et al.,
2014a) for details.

We then trained three 5-gram language models
on monolingual data using KenLM10 (Heafield,
2011; Heafield et al., 2013 to appear) for the
three setups. For SPLIT and UNSPLIT, we were
only able to use the German side of the parallel
data, since parsing is a prerequisite for our mor-
phological post-processing and we did not have
the resources to parse more data. For RAW, we
additionally used the monolingual German data

8http://www.statmt.org/wmt14/
translation-task.html

9https://sites.google.com/site/
zhangh1982/egret

10http://kheafield.com/code/kenlm/
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system BLEU BLEU-cased TER
RAW 17.0 16.4 .770
UNSPLIT 16.4 15.8 .773
SPLIT 16.3 15.7 .773

Table 1: BLEU and TER scores of the submitted
systems.

that was distributed for the shared task. Word
alignment for all three setups was achieved using
GIZA++11. As usual, we discarded sentence pairs
where one sentence was significantly longer than
the other, as well as those that were too long or too
short.

For tuning, we chose the WMT12 test set (3,003
sentences of newswire text), available as part
of the development data for the WMT13 shared
translation task. Since our system had limited cov-
erage on this tuning set, we limited ourselves to
the first a subset of sentences we could translate.

When translating the test set, our models used
parse trees delivered by the Egret parser. After
translation, recasing was done by examining the
output syntax tree, using a simple heuristics look-
ing for nouns and sentence boundaries. Since cov-
erage on the test set was also limited, we used the
systems as described in (Cap et al., 2014b)12 as a
fallback to translate sentences that our system was
not able to translate.

6 Results

We report the overall translation quality, as listed
on http://matrix.statmt.org/, mea-
sured using BLEU (Papineni et al., 2002) and
TER (Snover et al., 2006), in Table 1.

We assume that the poor performance of UN-
SPLIT and SPLIT compared to RAW is due to the
fact that we use a significantly smaller language
model (as explained above) for these two settings.
A detailed analysis will follow after the end of the
manual evaluation period.

7 Conclusion and further work

We presented our submission to the WMT14
shared translation task based on a novel, promising
“full syntax, no pruning” tree-to-tree approach to
statistical machine translation, inspired by Huang

11https://code.google.com/p/giza-pp/
12We use raw as described in (Cap et al., 2014b) as a fall-

back for RAW, RI for UNSPLIT and CoRI for SPLIT.

et al. (2006). There are, however, still major draw-
backs and open problems associated with our ap-
proach. Firstly, the coverage can still be signifi-
cantly improved. In these experiments, our model
was able to translate only 70% of the test sen-
tences. To some extent, this number can be im-
proved by providing more training data. Also,
more rules can be extracted if we not only use the
best parse for rule extraction, but multiple parse
trees, or even switch to forest-based rule extrac-
tion (Mi and Huang, 2008). Finally, the size of the
input parse forest plays a role. For instance, if we
only supply the best parse to our model, transla-
tion will fail for approximately half of the input.

However, there are inherent coverage limits.
Since our model is extremely strict, it will never
be able to translate sentences whose parse trees
contain structures it has never seen before, since
it has to match at least one input parse tree ex-
actly. While we implemented a simple solution to
handle unknown words, the issue with unknown
structures is not so easy to solve without breaking
the otherwise theoretically sound approach. Pos-
sibly, glue rules can help.

The second drawback is runtime. We were
able to translate about 15 sentences per hour on
one processor. Distributing the translation task
on different machines, we were able to translate
the WMT14 test set (10k sentences) in roughly
four days. Given that the trend goes towards par-
allel programming, and considering the fact that
our decoder is written in the rather slow language
Python, we are confident that this is not a major
problem. We were able to run the whole pipeline
of training, tuning and evaluation on the WMT14
shared task data in less than one week. We are cur-
rently investigating whether A* k-best algorithms
(Pauls and Klein, 2009; Pauls et al., 2010) can help
to guide the translation process while maintaining
optimality.

Thirdly, currently the language model is not in-
tegrated, but implemented as a separate rerank-
ing component. We are aware that this might in-
troduce search errors, and that an integrated lan-
guage model might improve translation quality
(see e.g. Chiang (2007) where 3–4 BLEU points
are gained by LM integration). Some research on
this topic already exists, e.g. (Rush and Collins,
2011) who use dual decomposition, and (Aziz et
al., 2013) who replace intersection with an upper
bound which is easier to compute.
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