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Abstract

This paper describes LIMSI participation
to the WMT’14 Shared Task on Qual-
ity Estimation; we took part to the word-
level quality estimation task for English
to Spanish translations. Our system re-
lies on a random forest classifier, an en-
semble method that has been shown to
be very competitive for this kind of task,
when only a few dense and continuous fea-
tures are used. Notably, only 16 features
are used in our experiments. These fea-
tures describe, on the one hand, the qual-
ity of the association between the source
sentence and each target word and, on the
other hand, the fluency of the hypothe-
sis. Since the evaluation criterion is the
f1 measure, a specific tuning strategy is
proposed to select the optimal values for
the hyper-parameters. Overall, our system
achieves a 0.67 f1 score on a randomly ex-
tracted test set.

1 Introduction

This paper describes LIMSI submission to the
WMT’14 Shared Task on Quality Estimation. We
participated in the word-level quality estimation
task (Task 2) for the English to Spanish direction.
This task consists in predicting, for each word in
a translation hypothesis, whether this word should
be post-edited or should rather be kept unchanged.

Predicting translation quality at the word level
raises several interesting challenges. First, this is
a (relatively) new task and the best way to for-
mulate and evaluate it has still to be established.
Second, as most works on quality estimation have
only considered prediction at the sentence level, it
is not clear yet which features are really effective
to predict quality at the word and a set of base-
line features has still to be found. Finally, sev-
eral characteristic of the task (the limited number

of training examples, the unbalanced classes, etc.)
makes the use of ‘traditional’ machine learning al-
gorithms difficult. This papers describes how we
addressed this different issues for our participation
to the WMT’14 Shared Task.

The rest of this paper is organized as follows.
Section 2 gives an overview of the shared task data
that will justify some of the design decisions we
made. Section 3 describes the different features
we have considered and Section 4, the learning
methods used to estimate the classifiers parame-
ters. Finally the results of our models are pre-
sented and analyzed in Section 5.

2 World-Level Quality Estimation

WMT’14 shared task on quality estimation num-
ber 2 consists in predicting, for each word of a
translation hypothesis, whether this word should
be post-edited (denoted by the BAD label) or
should be kept unchanged (denoted by the OK la-
bel). The shared task organizers provide a bilin-
gual dataset from English to Spanish1 made of
translations produced by three different MT sys-
tems and by one human translator; these transla-
tions have then been annotated with word-level la-
bels by professional translators. No additional in-
formation about the systems used, the derivation
of the translation (such as the lattices or the align-
ment between the source and the best translation
hypothesis) or the tokenization applied to identify
words is provided.

The distributions of the two labels for the dif-
ferent systems is displayed in Table 1. As it
could be expected, the class are, overall, unbal-
anced and the systems are of very different qual-
ity: the proportion of BAD and OK labels highly
depends on the system used to produce the transla-
tion hypotheses. However, as our preliminary ex-
periments have shown, the number of examples is

1We did not consider the other language pairs.
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too small to train a different confidence estimation
system for each system.

The distribution of the number of BAD labels
per sentence is very skewed: on average, one word
out of three (precisely 35.04%) in a sentence is la-
beled as BAD but the median of the distribution of
the ratio of word labeled BAD in a sentence is 20%
and its standard deviation is pretty high (34.75%).
Several sentences have all their words labeled as
either OK or BAD, which is quite surprising as the
sentences of the corpus for Task 2 have been se-
lected because there were ‘near miss translations’
that is to say translations that should have con-
tained no more that 2 or 3 errors.

Another interesting finding is that the propor-
tion of word to post-edit is the same across the
different parts-of-speech (see Table 2).2

Table 1: Number of examples and distribution of
labels for the different systems on the training set

System #sent. #words % OK % BAD

1 791 19,456 75.48 24.52
2 621 14,620 59.11 40.89
3 454 11,012 59.76 40.24
4 90 2,296 36.85 63.15

Total 1,956 47,384 64.90 35.10

Table 2: Distribution of labels according to the
POS on the training set

POS % in train % BAD

NOUN 23.81 35.02
ADP 15.06 35.48
DET 14.90 32.88

VERB 14.64 41.26
PUNCT 10.92 27.26

ADJ 6.61 35.68
CONJ 5.04 30.77
PRON 4.58 43.15
ADV 4.39 36.56

As the classes are unbalanced, prediction per-
formance will be evaluated in terms of precision,
recall and f1 score computed on the BAD label.
More precisely, if the number of true positive (i.e.

2We used FreeLing (http:nlp.lsi.upc.edu/
freeling/) to predict the POS tags of the translation
hypotheses and, for the sake of clarity, mapped the 71 tags
used by FreeLing to the 11 universal POS tags of Petrov et
al. (2012).

BAD word predicted as BAD), false positive (OK

word predicted as BAD) and false negative (BAD

word predicted as OK) are denoted tpBAD, fpBAD

and fnBAD, respectively, the quality of a confidence
estimation system is evaluated by the three follow-
ing metrics:

pBAD =
tpBAD

tpBAD + fpBAD

(1)

rBAD =
tpBAD

tpBAD + fnBAD
(2)

f1 =
2 · pBAD · rBAD

pBAD + rBAD
(3)

3 Features

In our experiments, we used 16 features to de-
scribe a given target word ti in a translation hy-
pothesis t = (tj)

m
j=1. To avoid sparsity issues we

decided not to include any lexicalized information
such as the word or the previous word identities.
As the translation hypotheses were generated by
different MT systems, no white-box features (such
as word alignment or model scores) are consid-
ered. Our features can be organized in two broad
categories:

Association Features These features measure
the quality of the ‘association’ between the source
sentence and a target word: they characterize the
probability for a target word to appear in a transla-
tion of the source sentence. Two kinds of associa-
tion features can be distinguished.

The first one is derived from the lexicalized
probabilities p(t|s) that estimate the probability
that a source word s is translated by the target
word tj . These probabilities are aggregated using
an arithmetic mean:

p(tj |s) =
1
n

n∑
i=1

p(tj |si) (4)

where s = (si)
n
i=1 is the source sentence (with an

extra NULL token). We assume that p(tj |si) = 0 if
the words tj and si have never been aligned in the
train set and also consider the geometric mean of
the lexicalized probabilities, their maximum value
(i.e. maxs∈s p(tj |s)) as well as a binary feature
that fires when the target word tj is not in the lex-
icalized probabilities table.

The second kind of association features relies
on pseudo-references, that is to say, translations
of the source sentence produced by an indepen-
dent MT system. Many works have considered
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pseudo-references to design new MT metrics (Al-
brecht and Hwa, 2007; Albrecht and Hwa, 2008)
or for confidence estimation (Soricut and Echi-
habi, 2010; Soricut and Narsale, 2012) but, to the
best of our knowledge, this is the first time that
they are used to predict confidence at the word
level.

Pseudo-references are used to define 3 binary
features which fire if the target word is in the
pseudo-reference, in a 2-gram shared between the
pseudo-reference and the translation hypothesis or
in a common 3-gram, respectively. The lattices
representing the search space considered to gen-
erate these pseudo-references also allow us to es-
timate the posterior probability of a target word
that quantifies the probability that it is part of the
system output (Gispert et al., 2013). Posteriors ag-
gregate two pieces of information for each word in
the final hypothesis: first, all the paths in the lat-
tice (i.e. the number of translation hypotheses in
the search space) where the word appears in are
considered; second, the decoder scores of these
paths are accumulated in order to derive a confi-
dence measure at the word level. In our experi-
ments, we considered pseudo-references and lat-
tices produced by the n-gram based system de-
veloped by our team for last year WMT evalu-
ation campaign (Allauzen et al., 2013), that has
achieved very good performance.

Fluency Features These features measure the
‘fluency’ of the target sentence and are based on
different language models: a ‘traditional’ 4-gram
language model estimated on WMT monolingual
and bilingual data (the language model used by
our system to generate the pseudo-references); a
continuous-space 10-gram language model esti-
mated with SOUL (Le et al., 2011) (also used by
our MT system) and a 4-gram language model
based on Part-of-Speech sequences. The latter
model was estimated on the Spanish side of the
bilingual data provided in the translation shared
task in 2013. These data were POS-tagged with
FreeLing (Padró and Stanilovsky, 2012).

All these language models have been used to de-
fine two different features :

• the probability of the word of interest p(tj |h)
where h = tj−1, ..., tj−n+1 is the history
made of the n− 1 previous words or POS

• the ratio between the probability of
the sentence and the ‘best’ probabil-

ity that can be achieved if the target
word is replaced by any other word (i.e.
maxv∈V p(t1, ..., tj−1, v, tj+1, ..., tm) where
the max runs over all the words of the
vocabulary).

There is also a feature that describes the back-off
behavior of the conventional language model: its
value is the size of the largest n-gram of the trans-
lation hypothesis that can be estimated by the lan-
guage model without relying on back-off probabil-
ities.

Finally, there is a feature describing, for each
word that appears more than once in the train set,
the probability that this word is labeled BAD. This
probability is simply estimated by the ratio be-
tween the number of times this word is labeled
BAD and the number of occurrences of this word.

It must be noted that most of the features we
consider rely on models that are part of a ‘clas-
sic’ MT system. However their use for predicting
translation quality at the word-level is not straight-
forward, as they need to be applied to sentences
with a given unknown tokenization. Matching the
tokenization used to estimate the model to the one
used for collecting the annotations is a tedious and
error-prone process and some of the prediction er-
rors most probably result from mismatches in tok-
enization.

4 Learning Methods

4.1 Classifiers

Predicting whether a word in a translation hypoth-
esis should be post-edited or not can naturally be
framed as a binary classification task. Based on
our experiments in previous campaigns (Singh et
al., 2013; Zhuang et al., 2012), we considered ran-
dom forest in all our experiments.3

Random forest (Breiman, 2001) is an ensem-
ble method that learns many classification trees
and predicts an aggregation of their result (for in-
stance by majority voting). In contrast with stan-
dard decision trees, in which each node is split
using the best split among all features, in a ran-
dom forest the split is chosen randomly. In spite
of this simple and counter-intuitive learning strat-
egy, random forests have proven to be very good
‘out-of-the-box’ learners. Random forests have
achieved very good performance in many similar

3we have used the implementation provided by
scikit-learn (Pedregosa et al., 2011).
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tasks (Chapelle and Chang, 2011), in which only
a few dense and continuous features are available,
possibly because of their ability to take into ac-
count complex interactions between features and
to automatically partition the continuous features
value into a discrete set of intervals that achieves
the best classification performance.

As a baseline, we consider logistic regres-
sion (Hastie et al., 2003), a simple linear model
where the parameters are estimated by maximiz-
ing the likelihood of the training set.

These two classifiers do not produce only a class
decision but yield an instance probability that rep-
resents the degree to which an instance is a mem-
ber of a class. As detailed in the next section,
thresholding this probability will allow us to di-
rectly optimize the f1 score used to evaluate pre-
diction performance.

4.2 Optimizing the f1 Score

As explained in Section 2, quality prediction will
be evaluated in terms of f1 score. The learn-
ing methods we consider can not, as most learn-
ing method, directly optimize the f1 measure dur-
ing training, since this metric does not decompose
over the examples. It is however possible to take
advantage of the fact that they actually estimate a
probability to find the largest f1 score on the train-
ing set.

Indeed these probabilities are used with a
threshold (usually 0.5) to produce a discrete (bi-
nary) decision: if the probability is above the
threshold, the classifier produces a positive out-
put, and otherwise, a negative one. Each thresh-
old value produces a different trade-off between
true positives and false positives and consequently
between recall and precision: as the the threshold
becomes lower and lower, more and more exam-
ple are assigned to the positive class and recall in-
crease at the expense of precision.

Based on these observations, we propose the
following three-step method to optimize the f1
score on the training set:

1. the classifier is first trained using the ‘stan-
dard’ learning procedure that optimizes either
the 0/1 loss (for random forest) or the likeli-
hood (for the logistic regression);

2. all the possible trade-offs between recall
and precision are enumerated by varying
the threshold; exploiting the monotonicity of

thresholded classifications,4 this enumeration
can be efficiently done in O (n · log n) and
results in at most n threshold values, where n
is the size of the training set (Fawcett, 2003);

3. all the f1 scores achieved for the different
thresholds found in the previous step are eval-
uated; there are strong theoretical guaran-
tees that the optimal f1 score that can be
achieved on the training set is one of these
values (Boyd and Vandenberghe, 2004).

Figure 1 shows how f1 score varies with the deci-
sion threshold and allows to assess the difference
between the optimal value of the threshold and its
default value (0.5).

Figure 1: Evolution of the f1 score with respect to
the threshold used to transform probabilities into
binary decisions

5 Experiments

The features and learning strategies described in
the two previous sections were evaluated on the
English to Spanish datasets. As no official devel-
opment set was provided by the shared task orga-
nizers, we randomly sampled 200 sentences from
the training set and use them as a test set through-
out the rest of this article. Preliminary experiments
show that the choice of this test has a very low im-
pact on the classification performance. The dif-
ferent hyper-parameters of the training algorithm

4Any instance that is classified positive with respect to a
given threshold will be classified positive for all lower thresh-
olds as well.
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Table 3: Prediction performance for the two learn-
ing strategies considered

Classifier thres. rBAD pBAD f1

Random forest 0.43 0.64 0.69 0.67
Logistic regression 0.27 0.51 0.72 0.59

were chosen by maximizing classification perfor-
mance (as evaluated by the f1 score) estimated on
150 sentences of the training set kept apart as a
validation set.

Results for the different learning algorithms
considered are presented in Table 3. Random for-
est clearly outperforms a simple logistic regres-
sion, which shows the importance of using non-
linear decision functions, a conclusion at pair with
our previous results (Zhuang et al., 2012; Singh et
al., 2013).

The overall performance, with a f1 measure of
0.67, is pretty low and in our opinion, not good
enough to consider using such a quality estimation
system in a computer-assisted post-edition con-
text. However, as shown in Table 4, the prediction
performance highly depends on the POS category
of the words: it is quite good for ‘plain’ words
(like verb and nouns) but much worse for other
categories.

There are two possible explanations for this
observation: predicting the correctness of some
morpho-syntaxic categories may be intrinsically
harder (e.g. for punctuation the choice of which
can be highly controversial) or depend on infor-
mation that is not currently available to our sys-
tem. In particular, we do not consider any in-
formation about the structure of the sentence and
about the labels of the context, which may explain
why our system does not perform well in predict-
ing the labels of determiners and conjunctions. In
both cases, this result brings us to moderate our
previous conclusions: as a wrong punctuation sign
has not the same impact on translation quality as a
wrong verb, our system might, regardless of its f1
score, be able to provide useful information about
the quality of a translation. This also suggests that
we should look for a more ‘task-oriented’ metric.

Finally, Figure 2 displays the importance of the
different features used in our system. Random
forests deliver a quantification of the importance
of a feature with respect to the predictability of the
target variable. This quantification is derived from

Table 4: Prediction performance for each POS tag

System f1

VERB 0.73
PRON 0.72
ADJ 0.70

NOUN 0.69
ADV 0.69

overall 0.67
DET 0.62
ADP 0.61
CONJ 0.57

PUNCT 0.56

the position of a feature in a decision tree: fea-
tures used in the top nodes of the trees, which con-
tribute to the final prediction decision of a larger
fraction of the input samples, play a more impor-
tant role than features used near the leaves of the
tree. It appears that, as for our previous experi-
ments (Wisniewski et al., 2013), the most relevant
feature for predicting translation quality is the fea-
ture derived from the SOUL language model, even
if other fluency features seem to also play an im-
portant role. Surprisingly enough, features related
to the pseudo-reference do not seem to be useful.
Further experiments are needed to explain the rea-
sons of this observation.

6 Conclusion

In this paper we described the system submitted
for Task 2 of WMT’14 Shared Task on Quality
Estimation. Our system relies on a binary clas-
sifier and consider only a few dense and contin-
uous features. While the overall performance is
pretty low, a fine-grained analysis of the errors of
our system shows that it can predict the quality of
plain words pretty accurately which indicates that
a more ‘task-oriented’ evaluation may be needed.
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Do, Marco Dinarelli, Thomas Lavergne, Aurélien
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