

Improved Search Strategy for Interactive

Predictions in Computer-Assisted Translation

Fatemeh Azadi ft.azadi@aut.ac.ir
Department of Computer Engineering,
Amirkabir University of Technology, Tehran, Iran
Shahram Khadivi1 skhadivi@ebay.com
eBay Inc, Aachen, Germany

Abstract

The statistical machine translation outputs are not error-free and in a high quality yet. So in

the cases that we need high quality translations we definitely need the human intervention.

An interactive-predictive machine translation is a framework, which enables the collabora-

tion of the human and the translation system. Here, we address the problem of searching the

best suffix to propose to the user in the phrase-based interactive prediction scenario. By

adding the jump operation to the common edit distance based search, we try to overcome

the lack of some of the reorderings in the search graph which might be desired by the user.

The experiments results shows that this method improves the base method by 1.35% in

KSMR2, and if we combine the edit error in the proposed method with the translation scores

given by the statistical models to select the offered suffix, we could gain the KSMR im-

provement of about 1.63% compared to the base search method.

1. Introduction

Although the significant improvements achieved in the field of statistical machine translation,

the current models and therefore the systems which can be built from them are still far from

perfect. So, in order to achieve good or even acceptable translations, manual post editing is

needed. An alternative to this approach is given by the interactive predictive machine transla-

tion paradigm (Barrachina et al., 2009). Under this paradigm, translation is considered as an

iterative process where the human translator and the computer collaborates to generate the

final translation, and in this way both the human and the computer can help each other.

In the interactive predictive MT scenario, the system initially offers a translation for a

source sentence. From this translation, the user could mark a prefix as correct and begins to

type the rest of the target sentence as it’s desirable for him. By typing the single next charac-

ter (or maybe the full next word, according to the system settings) the interactive MT system

would suggest a new suffix that completes the user’s confirmed prefix with the new character

the user has just typed. This procedure continues iteratively until the user accepts the transla-

tion to be complete and correct.

One of the important issues in the development of interactive predictive MT systems is

the strategy to search and offer the best suffix that completes the prefix confirmed by the user.

One of the most common ways for phrase-based translation systems is to use the search graph

that is obtained once during the translation process, and complete each user’s confirmed pre-

1 This work has been done when the author was with Amirkabir University of Technology.
2 Keystroke and mouse-action ratio

Proceedings of MT Summit XV, vol.1: MT Researchers' Track Miami, Oct 30 - Nov 3, 2015 | p. 319

fix by searching the best path which has a prefix with highest matching to the user’s prefix,

and offering the rest of it to the user. The most important advantage of using the pre-built

search graph in each interaction is that it leads to an efficient response time for each interac-

tion.

The problem in searching the best system offer arises when the prefix confirmed by the

user is not producible by the statistical models of the translation system. That is it could not

be produced by any of the paths in the search graph, so that the interactive predictive MT sys-

tem could not offer any completion to the user. A common solution to this problem is that

instead of searching a path in the graph whose prefix matches exactly with the user’s prefix,

we search more freely, for a path which has the most similarity with the user’s prefix. Usual-

ly, the edit distance similarity measure is used for this purpose.

The search graph may not contain all of the possible reorderings for a certain set of

words, due to the weakness of translation and reordering models or the pruning done during

the generation of the search graph. So, the user’s desired translation might have a reordering

which doesn’t exist in any of the search graph paths and the search based on edit distance

could not perform well in these cases, since it aligns the user’s prefix and a prefix of each path

in the search graph monotonically and with no reordering.

In this paper we try to solve this problem for phrase-based interactive MT systems, by

adding the jump operation in computing edit distance, which allows jumping over some parts

in each path while aligning with the user’s prefix, and then offering those parts as the suffix to

the user; i.e. shifting some parts to a position after user’s prefix, so that it changes the reorder-

ing of the system’s translation.

Also, we compare and combine this method with another improvement done to the edit

distance based search in (Vakil and Khadivi, 2012), which uses the weighted sum of the edit

distance and the translation score for each path for selecting the best suffix.

In section 2 the related works done in the computer assisted translation field are re-

viewed. In section 3, we briefly explain the statistical framework for the interactive predictive

MT. Then in section 4, the searching algorithms for finding the best suffix are discussed and

the proposed method in this paper is presented. Finally, the experiments done for the evalua-

tion of our method is presented in section 5.

2. Related Work

Interactivity in CAT
3
 has been explored for a long time. Systems have been designed to inter-

act with human translators in order to solve different types of (lexical, syntactic, or semantic)

ambiguities (Slocum 1985; Whitelock et al. 1986).

A major change in the interactive CAT technology was done within the TransType

project in (Foster et al. ,1997; Langlais et al., 2000). A new approach called Target-Text

Mediation was proposed, in which the focus of the interaction was shifted from the source

text to the production of the target text directly. This project with TransType2 (TT2) (Bender

et al., 2005; Tomás and Casacuberta 2006; Barrachina et al., 2009) proposed to embed an MT

system in an interactive scenario. This way, the human translator can ensure a high quality

output while the MT system ensures the significant gain of productivity.

Particularly the interactive-predictive machine translation paradigm was proposed in

(Barrachina et al., 2009). In this paradigm a statistical MT system uses the source sentence

and a prefix of it’s translation which is confirmed by the user to propose a suitable

continuation. And the text would be translated in an iterative process of interactions between

3 Computer Assisted Translation

Proceedings of MT Summit XV, vol.1: MT Researchers' Track Miami, Oct 30 - Nov 3, 2015 | p. 320

the user and the interactive MT system. The results showed that interactive MT can save a

significant amount of human effort. Also different translation models where tested in

(Barrachina et al., 2009), and the results showed that the phrased based models have a better

performance than the other ones.

After TT2 some sporadic works were done on developing CAT systems (Ortiz-

Martinez et al., 2009; Huang et al., 2012), but the more famous one was the Caitra system

(Koehn 2009; Koehn and Haddow, 2009). It was a web-based system, which could be

accessed online by the users. The search method used as the base method in this paper, which

will be discussed in section 4.1, is the method proposed and implemented in this system.

Recently two other CAT projects, CASMACAT
4
 and MATECAT

5
 were done, which

were committed to develop an open source workbench targeted both at researchers to

investigate novel and enhanced types of assistance and at professional translators for actual

use (Federico et al., 2014; Alabau et al., 2014). One of the goals of these projects was to gain

insight into the cognitive processes involved in human translation, by using eye tracking and

key logging. The cognitive analysis will determine what types of assistance are offered to the

translator, what information should be displayed on the screen, and what information should

be hidden as it would be distracting. Also they try to add the capability of the automatic

adaptation to the translated content to the CAT tools, which is not related to the subject of this

paper. Also the interactive-predictive CAT scenario when the user pronounce the correct

translation instead of typing it has been studied in (Vakil and Khadivi, 2012b).

The other work done to improve the searching methods for the interactive prediction is

(Vakil and Khadivi, 2012a), which tries to consider both the edit distance and the translation

score of each path in the search graph instead of just using the edit distance. This approach,

which is called the weighted edit distance, is discussed more in section 4.2.

Also in (Ortiz-Martínez, 2011) and (González-Rubio et al., 2013) a search approach is

proposed, which is somewhat alike the weighted edit distance approach. But they introduce a

unified statistical framework, which integrates all of the statistical models used in the

translation machine with the edit distance error, which is called error correction model here.

Also the proposed approach, models the edit distance as a Bernoulli process where each

character of the candidate string has a probability of being erroneous.

The jump operation that we used here is somehow like the shift operation used in

Translation Error Rate (Snover et al., 2006), which is an evaluation metrics for machine

translation and measures the number of edits required to change a system output into one of

the references.

3. Interactive-Predictive Machine Translation

In the interactive predictive machine translation paradigm, we want to produce a suffix which

is the best according to the user’s prefix and the source sentence. So in the statistical ap-

proach, we should maximize the probability of the suffix given the source sentence and the

confirmed prefix, as follows:

 ˆ arg max Pr(| ,)
s

s s p
t

t t s t

Where st is the suffix, pt is the user’s confirmed prefix, and s is the source sentence.

We can write the above equation as follows:

4 http://www.casmacat.eu/index.php
5 http://www.matecat.com/

Proceedings of MT Summit XV, vol.1: MT Researchers' Track Miami, Oct 30 - Nov 3, 2015 | p. 321

ˆ arg max Pr(, |) arg max Pr(,).Pr(| ,)
s s

s p s p s p s
t t

t t t s t t s t t

Noting that
p st t t , this equation would be very similar to the following, which is the

statistical machine translation’s equation.

ˆ arg max Pr().Pr(|)
t

t t s t

The main difference between these two is that in the interactive MT the search process

is restricted to those target sentences that contains
pt as prefix. This implies that we can use

the same MT models if the search procedures are adequately modified (Och et al., 2003).
One of the most common ways, that we used here, for searching the best suffix in the

interactive MT is to use the search graph that is obtained once during the translation process,

and complete each user’s confirmed prefix by searching the best path which has a prefix

which matches to the user’s prefix, and offering the rest of it to the user. The most important

advantage of using the pre-built search graph in each interaction is that it leads to an efficient

response time for each interaction. However, there’s not always a path in the search graph

whose prefix matches exactly with the user’s prefix, so some mechanisms should be chosen

the search for a path which has the most similarity with the user’s prefix. A common approach

is to use the edit distance measure which will be discussed in the next section.

4. Searching Algorithms for the Interactive Prediction

In this section, we first introduce the searching strategy based on the edit distance, which is

presented in (Koehn, 2009), and is used as our base search algorithm. Then we try to improve

this algorithm in two ways; first by adding the edit distance error as a weighted model to the

translation scores computed for each path by the decoder, and using this score for selecting

the best path, as in (Vakil and Khadivi 2012). And in the second method we add a jump oper-

ation to the computation of the edit distance, to consider the reorderings which are not in the

search graph but might match with the user’s prefix.

4.1. Searching Based on Edit Distance

According to (Koehn, 2009), for giving a completed translation offer to the user, we should

find a hypothesis (or node) in the graph whose generated partial translation has the minimum

edit distance with the confirmed prefix; This approach is called edit distance-based search.

The edit distance between two strings is defined as the minimum number of edits needed to

transform one string into the other, while the allowable edit operations are insertion, deletion,

or substitution (Levenshtein, 1966). Although these operations could be done at character or

word level, the word level distance makes more sense for our purpose, as performing one or

more character level operations on a word might change the whole meaning of that word, and

the number of operations done is not matter.

In this method the prediction is the optimal completion path that matches the user’s

prefix with minimal edit distance, and if there were more than one such paths, the one with

highest translation score will be chosen. This approach is based on the assumption that a hy-

pothesis with minimum edit distance with the confirmed prefix has the continuation which is

more likely to be consistent with the remained part of the user’s desired translation.

This search method has shortcomings, as the search graph may not contain all of the

reordering possibilities of words due to the pruning that is applied during the generation of the

search graph. Since the edit distance only includes the insertion, deletion and substitution op-

Proceedings of MT Summit XV, vol.1: MT Researchers' Track Miami, Oct 30 - Nov 3, 2015 | p. 322

erations, it could not be able to consider the difference in reorderings between the user prefix

and any of the translation hypotheses in the search graph. Thus, it’s only able to find those

hypotheses which have a similar reordering of words to the user’s prefix. In order to solve this

problem we discuss two approaches in the next sections.

4.2. Searching Based on Weighted Edit Distance

This approach which is presented in (Vakil and Khadivi, 2012), is based on the fact that the

paths in the search graph that have higher translation scores according to the translation and

language models, are more probable to be better translations in terms of both semantics and

syntax. However, these better translation hypotheses might not sometimes have lowest edit

distance with the user’s prefix due to the different reordering of words they have. Thus, using

the edit distance alone for selecting the best path, regardless of its translation score, would

select another path in the graph that might be an unfavourable translation.

To clarify this, consider the example shown in Table 1. We have the user’s desired

translation and two translation hypotheses samples, extracted from the search graph with their

translation scores, for a specific sentence. Assume that the prefix confirmed up to now by the

user is «Newton is one of the greatest scientists w», and the system should now offer a con-

tinuation for it.

Table 1. Example 1; the user's desired translation and system’s translation hypotheses

User’s desired translation : Newton is one of the greatest scientists who

discovered gravity

Translation hypothesis 1 : one of the greatest scientists is Newton who

discovered gravity

Score: -5.25

Translation hypothesis 2 : Newton gravity one of the greatest discovered

which is the greatest

Score:-10.23

For offering the rest of the translation by the method based on the edit distance, the

translation hypothesis whose prefix has less edit distance with the confirmed prefix, should be

chosen.

The least edit distance for each of the hypotheses is shown in Table 2. The first hy-

pothesis needs 2 insert operations and 2 delete operations, and the second hypothesis needs

just 2 substitutions to match the user’s prefix. So the second hypothesis which is not a good

translation at all would be chosen, and the completion offered to the user would be «hich is

the greatest», which is obviously not desired. Instead, if we consider the translation scores

along with the edit distances the first hypothesis could be chosen that has a much better offer

for the continuation.

Table 2. The least edit distance between each hypothesis and user's prefix in example 1

 # of edits

1 Newton is one of the greatest scientists is Newton w|ho discovered gravity 4

2 Newton gravity
is
 one of the greatest discovered

scientists
 w|hich is the greatest 2

As the previous example shows, using only the edit distance to find the best path may

lead to a hypothesis which has low quality according to the translation and language models.

To overcome this problem, in this approach the total score for each path that a prefix of it

matches with the user’s prefix, would be a weighted summation of the edit distance with the

Proceedings of MT Summit XV, vol.1: MT Researchers' Track Miami, Oct 30 - Nov 3, 2015 | p. 323

translation scores obtained by the statistical models, and in the search process we look for a

hypothesis with best total score.

4.3. Edit Distance with Jump Operation

The weighted edit distance approach somehow overcomes the problem of lack of some reor-

derings in the search graph indirectly in some cases. In order to targeting this problem and

resolving it directly, in this paper we propose another method that gives more freedom to the

edit distance based searching by adding another operation, called jump operation.

To better explain the aim of adding jump operation and the effect that it could have on

the system’s offers, consider the example shown in Table 3. In this example, alike the previ-

ous one we have the user’s desired translation and two system’s translation hypotheses, ex-

cept that here both hypotheses are good enough translations.

Table 3. Example 2; the user's desired translation and system’s translation hypotheses

desired translation : Newton who discovered gravity is one of the

greatest scientists

Translation hypothesis 1: one of the greatest scientists is Newton who

discovered gravity

Score:-5.25

Translation hypothesis 2: Newton is one of the greatest scientists who

discovered gravity

Score:-5.62

Assume that the user’s confirmed prefix is «Newton who discovered », and the system

should now give an offer. For this purpose the minimum edit distance between the confirmed

prefix and any prefix of each of the translation hypotheses should be computed, which is

shown in Table 4.

Table 4. The least edit distance between each hypothesis and user's prefix in example 2

 edits

1

one
Newton

 of
who

 the
discovered

 |greatest scientists is Newton who discovered gravity 3

2 Newton is
who

 one
discovered

 |of the greatest scientists who discovered gravity 2

According to Table 4, if we use only the edit distance, the second hypothesis will be

chosen and the system’s offer would be “of the greatest scientists who discovered gravity”.

Also if we use the weighted edit distance method, the first hypothesis might be selected due to

its better translation score, and the system might offer “greatest scientists is Newton who dis-

covered gravity”. But obviously none of these offers are desirable by the user.

This problem caused by the fact that we consider the alignment between the user’s pre-

fix and the prefix of the hypothesis is monotone and with no reordering, while due to the

weakness of translation and reordering models and also the pruning done during the genera-

tion of the search graph, many of the reordering possibilities might not be produced or might

get low scores and be pruned. So in some cases, the part that the user translates at the begin-

ning is at the end or at the middle of the system’s translations. In these cases, if we could shift

the parts of the hypothesis that match with the user’s prefix to the beginning of the sentence

and arranged the remained parts in a good order (as more than one segments might be re-

mained, that needs concatenating to make a single segment), we could propose a better offer.

For instance, in the hypothesis 2 of the above example, if we could shift “who discovered

Proceedings of MT Summit XV, vol.1: MT Researchers' Track Miami, Oct 30 - Nov 3, 2015 | p. 324

gravity“ after the word “Newton” at the beginning of it, we could get the user’s desired trans-

lation.

For this purpose, we define jump operation in the edit distance. With this operation we

can jump from some parts of each translation hypothesis and after matching the user’s prefix

completely, we collect the parts that we jumped over with the last remained part and arrange

them in a good order to generate the system’s offer.

As using the jump operation without any limitations enlarges the search space expo-

nentially, we just allow one jump with variable length over multiple edges in each path in the

search graph. This is equivalent to allowing just one jump over some contiguous phrases in

each system’s translations. Also the jump operation could add an error to the edit distance

value. Different amounts of errors considered for the jump operation, which will be discussed

in the experiments, but the best was adding one unit of error for each jump with any length.

In the above example we can match “Newton” in user’s prefix and hypothesis 2, then

by jumping from “is one of the greatest scientists”, we match the part “who discovered” with

the rest of the user’s prefix, and the part “gravity” will remain at the end of the hypothesis. So,

with just one jump operation we could match the user’s prefix and the hypothesis.

The subject which is left is how to arrange the jumped over and remained parts to gen-

erate the final offer. As we could have at most one jumped over part and one ending part, we

consider the two permutations of attaching these two parts; i.e. first the jumped over part

comes and then the end part, or first the end part comes and then the jumped over part. Then

for selecting between these two states we use language model, and the one whose language

model score according to the user’s prefix is more will be chosen.

For the above example, the two sentences “Newton who discovered is one of the

greatest scientists gravity” and “Newton who discovered gravity is one of the greatest scien-

tists” will be scored with the language model, and as the second one is more well-formed the

final offer to the user would be “gravity is one of the greatest scientists”.

The pseudocode of the search algorithm based on weighted edit distance with jump

operation is shown in Figure 1. The base of this implementation is like the edit distance ap-

proach presented in (Koehn, 2009). This algorithm associates backpointers with each hypoth-

esis (or node) in the graph that point back to the lowest error path with which it can be

reached. Each backpointer saves the number of edit distance errors, the translation score and

the position in the user’s prefix that the edit distance is computed up to there till the back-

pointer’s associated hypothesis. As each hypothesis may match the confirmed prefix at differ-

ent positions, there are multiple backpointers for each hypothesis.

For adding the jump operation a variable named jumpState added to backpointers,

which shows the state of the jump operation till that backpointer. If no jump had been oc-

curred until this point of the path, this variable is zero, if in the previous step of the back-

pointer’s path a jump happened, this variable should be 1 (means the jump could continue in

the next step or terminate here), and if a jump had been done and finished before this back-

pointer in its path, the jumpState value would be 2.

The algorithm starts from the first node (empty hypothesis) and iterates over the nodes

in the search graph in the topological order. When examining each node’s backpointers, all

forward transitions (edges of the search graph) are examined using a string edit distance be-

tween the remaining prefix and the words in the transition target phrase (line 10). This may

consume the remaining prefix, and possibly lead to a new best path whose total score is better

than the best total score found so far (lines 11-18). Otherwise, new backpointers for the for-

ward states are created (lines 19-21).

Proceedings of MT Summit XV, vol.1: MT Researchers' Track Miami, Oct 30 - Nov 3, 2015 | p. 325

Figure 1. The Pseudocode for searching based on weighted edit distance with jump operation

Also, for each forward transition of a specific backpointer, the jumpState of that back-

pointer will be checked and if it is 0 or 1 it means that a jump could be done over that forward

transition. Therefore, this operation performs and the new backpointer for this case is also

created and added to the forward state’s backpointers (lines 7-9).

The ProcessJump function, shown in Figure 2, will make the new backpointer for per-

forming the jump operation at each state. The error which is considered for this case is one if

it is the beginning of a jump, and zero otherwise; i.e. for each jump with any length, 1 unit of

error is considered (line 5).

Also, the ProcessMatch function will make the new backpointers for each case of

matching a part of user’s prefix with the translation phrase produced at the processing transi-

tion, at each stage. The jumpState for the new backpointer will remain zero if the previous

backpointer’s jumpState was zero (means that the jump operation could be performed later in

the path), and it would be 2 otherwise (which means the jump operation was performed be-

fore, its finished and could no longer be used in the rest of this path) (line 6).

Input: user prefix (u), search graph (g), weight of edit distance error (α)

Output: best completion offer

1. bestTotalScore , {}bestPath
2. Add backpointer (Score=0.0, Error=0, prefixMatched=0, jumpState=0) to start state

3. for all state s G in topologically increasing order do

4. for all backpointer b of state s do

5. if . . * . bestTotalScore b Score s forwardScore b Error then

6. for all transition t from state s do

7. if . 0 || . 1 b jumpState b jumpState then

8. ProcessJump(S, b, t)

9. end if
10. Compute edit distance matrix for end part of u after b.prefixMatched and t.phrase

11. for all matches m in matrix that consumed all of u do

12. new score c = b.Score + t.Score + t.toState.forwardScore

13. new error e = b.Error + m.Error

14. if *c e bestTotalScore then

15. set this as bestPath

16. *bestTotalScore c e

17. end if

18. end for

19. for all matches m in matrix that consumed all of t.phrase do

20. ProcessMatch(S, b, t, m)

21. end for

22. end for

23. end if

24. end for

25. end for

26. return the best ordering for jumped part and the end part in bestPath using LM

Proceedings of MT Summit XV, vol.1: MT Researchers' Track Miami, Oct 30 - Nov 3, 2015 | p. 326

Figure 2. The Pseudocode for adding a jump operation

Figure 3. The Pseudocode for adding a match case

5. Experiments

In this section, we discuss the experiments done to evaluate the searching algorithms present-

ed in the previous section for interactive prediction.

5.1. Evaluation Metrics

The common way for evaluating the performance of the interactive predictive machine trans-

lation systems automatically is to estimate the effort of a human translator to produce correct

translations using that system. For this purpose, the translating process of the user is simulated

using a set of reference translations as the desired translations in the user’s mind.

In this simulation, for each given source sentence in the test set, the translation is pro-

duced by the interactive MT system at the first step. Then it’s compared with the reference

ProcessJump(state S, backpointer b, transition t)

1. reached state . s t toState

2. create new backpointer b

3. . b BackState S

4. . . . b Score b Score t Score (the translation score till here)

5. . . . 0 ?1 : 0b Error b Error b jumpState (number of errors till state s’)

6. . . b prefixMatched b prefixMatched

 (the index in the user’s prefix that the edit distance error is computed till there)

7. . 1b jumpState

8. b . 1backpointer of state s with prefixMatched equals b prefixMatched and jumpState equal to

9. if b not defined or . * . . * .)b Score b Error b Score b Error

10. set b newbackpointer for state s instead of b

11. end if

ProcessMatch(state S, backpointer b, transition t, match m)

1. reached state .s t toState

2. create new backpointer b

3. . b BackState S

4. . . . b Score b Score t Score , . . . b Error b Error m Error

5. . . b prefixMatched m prefixMatched

6. . . 0 ? 0 : 2b jumpState b jumpState

7.

 .

 .

b backpointer for state s with prefixMatched equals b prefixMatched

and jumpState equal to b jumpState

8. if b not defined . * . . * . b Score b Error b Score b Error

9. set b newbackpointer for state s instead of b

10. end if

Proceedings of MT Summit XV, vol.1: MT Researchers' Track Miami, Oct 30 - Nov 3, 2015 | p. 327

given for that source sentence, and the character-level longest common prefix of them will be

computed. Afterwards, the first non-matching character is replaced by the corresponding ref-

erence character and then the system offers a new completion for the given prefix. This pro-

cess is iterated until a full match with the reference is obtained. Each time a part of the new

system’s offer is accepted by the user and it expands the prefix, a mouse action is done, and

each time the new character is added to the prefix from the reference a keystroke is consid-

ered to be done by the user.

The measure used here for evaluation is KSMR
6
, which is the overall number of inter-

actions, i.e. keystrokes and mouse-actions, done to translate the whole test set divided by the

number of running characters in the reference translations.

5.2. Translation System Description

In this work, we use a Farsi to English phrase-based translation system to evaluate our pro-

posed method. We use Giza++ (Och and Ney, 2003), to train the translation models and Mo-

ses Toolkit
7
 (Koehn et al., 2007) as the MT decoder, as well as the SRILM

8
 (Stolcke, 2002)

tools to build the language model. The interactive system is implemented as a server using

Moses decoder, which gets a new source sentence or the user’s confirmed prefix each time

and gives the continuation offer to the client, while the client simulates the user’s interactions.

The statistics of the corpora used for training the translation system (Jabbari et al.,

2012) and the test set is shown in Table 5.

Table 5. The statistics of the training and testing corpora

Corpora # of Sentences # of Running Words # of Lexicons

Train
Farsi

2164408
37356049 394697

English 36770830 314372

Test
Farsi

200
4524

English 4431

5.3. Results

In our experiments, at first we evaluate each of the search methods discussed in section 4, to

compare their performance, and to study the effect of each improvements done to the base-

line. For the weighted edit distance method, the weight of the edit distance error is tuned on a

development set and is finally set to -0.5. Also for the jump operation error, three different

cases are considered; number of words we jumped over, number of phrases we jumped over

and 1. The results of the KSMR and the average response time for each interaction are given

in Table 6 for each of the methods.

6 Keystroke and mouse-action ratio
7 https://github.com/moses-smt/mosesdecoder
8 http://www.speech.sri.com/projects/srilm/

Proceedings of MT Summit XV, vol.1: MT Researchers' Track Miami, Oct 30 - Nov 3, 2015 | p. 328

Table 6. Evaluation results of different search methods

Searching Method KSMR (%) Average Response Time (s)

Edit Distance Method 31.78 0.21

Adding Jump to

Edit Distance

Method

Jump Error = # of

Words
31.62 0.93

Jump Error = # of

Phrases
31.23 1.09

Jump Error = 1 30.43 1.67

Weighted Edit Distance Method 31.36 0.27

Adding Jump to

Weighted Edit

Distance Method

Jump Error = # of

Words
30.31 1.1

Jump Error = # of

Phrases
30.2 1.42

Jump Error = 1 30.15 1.65

As the results shows, using the weighted sum of edit distance error and translation

scores makes 0.42% improvements in KSMR and no significant growth in response time,

compared to the base edit distance method.

Also, adding the jump operation to the edit distance method shows that it could im-

proves its KSMR up to 1.35%, when the jump error is set to one regardless of the jump

length. The results of the other settings for jump error are not as good as considering it to be

one, which shows assuming it to be the number of words or phrases that we jumped over is a

high error, which prevents some long jumps that might be useful.

Furthermore, when we combine weighted edit distance method with jump operation,

we get 1.21% improvements in KSMR, in comparison to the weighted method itself, and

1.63% improvements compared to the base edit distance method. This shows that these two

improving methods do not have much overlap in the cases that they improve the baseline sys-

tem.

Despite the improvements in KSMR, the response time while we add the jump opera-

tion increases significantly. This increase can be expected as the number of backpointers cre-

ated in the search process grows with adding jump operation, and the search space becomes

much greater. For solving this issue we limit the jump operation more, by putting a threshold

for the maximum amount of phrases (edges in the graph) that we could jump over. In the next

experiment, the effect of this threshold is studied, and the results are shown in Table 7.

As the results in Table 7 shows, if we assume that the response time below 1 second is

acceptable, then by selecting the threshold equal to 5, we can gain about 0.82% improvement

in KSMR from the weighted edit distance method without jump and 1.24% improvement

compared to the base edit distance method.

Proceedings of MT Summit XV, vol.1: MT Researchers' Track Miami, Oct 30 - Nov 3, 2015 | p. 329

Table 7. Results of the effect of limiting the jump length

Searching Method

KSMR (%) Average Response Time (s)

Adding Jump to

Weighted Edit

Distance Method

Maximum

Jump Length

1 31.16 0.79

2 30.92 0.8

3 30.71 0.9

4 30.64 0.93

5 30.54 0.96

6 30.41 1.04

8 30.27 1.13

10 30.23 1.23

∞ 30.15 1.65

6. Conclusions and Future Work

In this paper we aimed to improve a common search method used for the interactive predic-

tion in the computer assisted translation systems, which searches for a path in the search

graph, whose prefix has least edit distance with the user’s confirmed prefix.

As the reordering of words which is desired by the user might not be in the search

graph, the simple edit distance method has the problem of not considering the differences in

reorderings between the system’s translation and the user’s prefix. In order to solve this prob-

lem, we propose adding a jump operation to the edit distance, which allows jumping over a

contiguous sequence of phrases in a system’s translation while matching the user’s prefix with

that translation, and then add the part that it jumped over to the continuation offer of the sys-

tem.

The results show that adding jump to the edit distance improved the KSMR measure

by 1.35%. Also, we show that this method does not have much overlap with another method

which has been proposed for this purpose and used the weighted sum of edit distance and

translation scores to select the best offer. Combining these two methods improved the base

edit distance method by 1.63% in KSMR.

However, adding jump operation increases the average response time of the system in

each interaction. This is because of the significant increase in the number of backpointers

generated in the search process. We limit the length of the jumps to reduce the response time.

Instead, the mechanisms could be presented to prune the inappropriate backpointers, and pre-

vent them from further processing, so that we could increase the response speed with less re-

duction in KSMR

Proceedings of MT Summit XV, vol.1: MT Researchers' Track Miami, Oct 30 - Nov 3, 2015 | p. 330

References

Alabau, V., Buck, C., Carl, M., Casacuberta, F., Garcıa-Martınez, M., Germann, U., et. al. (2014).

Casmacat: A computer-assisted translation workbench. In Proceedings of the 14th Conference of

the European Chapter of the Association for Computational Linguistics. 25-28.

Barrachina, S., Bender, O., Casacuberta, F., Civera, J., Cubel, E., Khadivi, S., Lagarda, A., Ney, H.,

Tomás, J., Vidal, E. and Vilar, J. M. (2009). Statistical approaches to computer-assisted transla-

tion. Computational Linguistics 35, no. 1: 3-28.

Bender, O., Hasan, S., Vilar, D., Zens, R., and Ney, H. (2005). Comparison of generation strategies for

interactive machine translation. Proceedings of the 10th Annual Conference of the European Asso-

ciation for Machine Translation (EAMT 05). 33-40.

Federico, M., Bertoldi, N., Cettolo, M., Negri, M., Turchi, M., Trombetti, M., et. al. (2014). The Mate-

Cat tool. In Proceedings of COLING. 129-132.

Foster, G., Isabelle, P., and Plamondon, P. (1997). Target-Text Mediated Interactive Machine

Translation. Machine Translation 12, no. 1-2: 175-194.

González-Rubio, J., Ortiz-Martínez, D., Benedí, J., and Casacuberta. F. (2013) Interactive Machine

Translation using Hierarchical Translation Models. EMNLP. 244-254.

Huang, C., Yang, P., Chen, K., and Chang, J.S. (2012). TransAhead: a computer-assisted translation and

writing tool. Proceedings of the 2012 Conference of the North American Chapter of the Associa-

tion for Computational Linguistics: Human Language Technologies. Association for Computa-

tional Linguistics, 352-356.

Jabbari, F., Bakhshaei, S., Mohammadzadeh Ziabary, S. M., and Khadivi, S. (2012). Developing an

Opendomain English-Farsi Translation System Using AFEC: Amirkabir Bilingual Farsi-English

Corpus. Association for MachineTranslation in the Americas (AMTA).

Koehn, P. (2009). A process study of computer-aided translation. Machine Translation 23, no. 4: 241-

263.

Koehn, P., and Haddow, B. (2009). Interactive assistance to human translators using statistical machine

translation methods. MT Summit XII.

Koehn, P., et al. (2007) Moses: Open source toolkit for statistical machine translation. Proceedings of

the 45th annual meeting of the ACL on interactive poster and demonstration sessions. Association

for Computational Linguistics. 177-180.

Langlais, P., Foster, G., and Lapalme, G. (2000). TransType: a computer-aided translation typing sys-

tem. Proceedings of the 2000 NAACL-ANLP Workshop on Embedded machine translation sys-

tems-Volume 5. Association for Computational Linguistic. 46-51.

Levenshtein, V. (1966). Binary codes capable of correcting deletions, insertions, and reversals. Soviet

physics doklady 10, no. 8: 707-710.

Och, F.J., and Ney, H. (2003). A systematic comparison of various statistical alignment models. Compu-

tational linguistics 29, no. 1: 19-51.

Proceedings of MT Summit XV, vol.1: MT Researchers' Track Miami, Oct 30 - Nov 3, 2015 | p. 331

Och, F.J., Zens, R., and Ney, H. (2003). Efficient search for interactive statistical machine translation.

Proceedings of the tenth conference on European chapter of the Association for Computational

Linguistics-Volume 1. Association for Computational Linguistics. 387-393.

Ortiz-Martínez, D. (2011). Advances in Fully-Automatic and Interactive Phrase-Based Statistical Ma-

chine Translation. PhD thesis, Universitat Politècnica de València.

Ortiz-Martınez, D., Garcıa-Varea, I., and Casacuberta, F. (2009). Interactive machine translation based

on partial statistical phrase-based alignments. RECENT ADVANCES IN NATURAL LANGUAGE

PROCESSING. 330-336.

Slocum, J. (1985). A survey of machine translation: its history, current status, and future prospects.

Computational linguistics 11, no. 1 (1985): 1-17.

Snover, M., Dorr, B., Schwartz, R., Micciulla, L., and Makhoul, J. (2006). A Study of Translation Edit

Rate with Targeted Human Annotation. Proceedings of Association for Machine Translation in the

Americas.

Stolcke, A. (2002). SRILM-an extensible language modeling toolkit. Proc. Intl. Conf. on Spoken

Language Processing, vol. 2, pp. 901-904, Denver.

Tomás, J., and Casacuberta, F. (2006). Statistical phrase-based models for interactive computer-assisted

translation. Proceedings of the COLING/ACL on Main conference poster sessions. Association for

Computational Linguistics. 835-841.

Vakil, Z., and Khadivi, S. (2012a). A New Search Approach for Interactive-Predictive Computer-

Assisted Translation. COLING (Posters). 1261-1270.

Vakil, Z., and Khadivi, S. (2012b). Interactive-predictive speech-enabled computer-assisted translation.

International Workshop on Spoken Language Translation (IWSLT). 237-243.

Whitelock, P. J., Wood M. M., Chandler, B. J., Holden, N., and Horsfall, H. J. (1986) Strategies for

interactive machine translation: the experience and implications of the UMIST Japanese project.

Proceedings of the 11th coference on Computational linguistics. Association for Computational

Linguistics. 329-334.

Proceedings of MT Summit XV, vol.1: MT Researchers' Track Miami, Oct 30 - Nov 3, 2015 | p. 332

