
Improved Beam Search with Constrained Softmax
for NMT

Xiaoguang Hu huxiaoguang@baidu.com
Wei Li liwei08@baidu.com
Xiang Lan lanxiang@baidu.com
Hua Wu wu hua@baidu.com
Haifeng Wang wanghaifeng@baidu.com
Baidu Inc, Beijing, China

Abstract

We propose an improved beam search decoding algorithm with constrained softmax operations
for neural machine translation (NMT). NMT is a newly emerging approach to predict the best
translation by building a neural network instead of a log-linear model. It has achieved com-
parable translation quality to the existing phrase-based statistical machine translation systems.
However, how to perform efficient decoding for NMT is still challenging, especially for com-
mercial systems which provide real-time translation service. Unlike the standard beam search
algorithm, we use a priority queue to choose the best hypothesis for the next search, which
drastically reduces search space. Another time consuming factor is the softmax operation in
the output layer because of the large target vocabulary size. To solve this problem, we introduce
a limited word set of translation candidates to greatly reduce the computation complexity. Our
experiments show that, under the GPU environment, our method achieves a speed about 3.5
times faster than the well optimized baseline system without sacrificing the translation quality.
Our method translates about 117 words per second, beating the real-time translation require-
ments for practical MT systems.

1 Introduction

Neural network models have become increasingly popular in recent machine translation tasks.
Initially, the neural networks were designed for language models, such as neural network lan-
guage model (Bengio et al., 2003) and recurrent neural network language model (Mikolov
et al., 2010). Devlin et al. (2014) proposed a neural network joint model to improve transla-
tion by considering the source contexts jointly. The above work integrated the neural network
models into the traditional translation decoders as additional features in a log-linear framework
(Och and Ney, 2002). Rather than applying a neural network as a part of the existing system,
Cho et al. (2014) proposed a whole new RNN Encoder-Decoder approach which generates the
target translation with a neural network directly. Bahdanau et al. (2014) extended the above ap-
proach by allowing an RNN model to automatically (soft-)search for parts of a source sentence
to predict a target word, and achieved a translation performance comparable to the existing
state-of-the-art phrase-based systems (Koehn et al., 2003).

Although NMT shows high potential, its decoding efficiency is still challenging. Cho et al.
(2014) implemented a standard beam search decoding algorithm (Koehn, 2004) for an RNN

Proceedings of MT Summit XV, vol.1: MT Researchers' Track Miami, Oct 30 - Nov 3, 2015 | p. 297

Encoder-Decoder system published as GroundHog 1. The beam search algorithm successfully
reduces the search space from exponential size to polynomial size, and it is able to translate
about ten words per second. Even though the speed is acceptable for most research tasks, it is
not yet efficient enough to meet the requirement of commercial systems for providing real-time
translation service. Huang and Chiang (2007) proposed the forest rescoring algorithm which
succeed to accelerate the decoding by using cube pruning. The main improvement comes from
the reduction of language model calculation which is the most time-consuming part in both
phrase-based and syntax-based system. However, there is no separable language model feature
in NMT, which makes it difficult to use the cube pruning algorithm in NMT. Furthermore, we
found that one of the most time-consuming part in NMT decoding is the softmax operation over
the output layer because of the large vocabulary size. The hierarchical softmax (Mikolov et al.,
2011) and Noise-contrastive estimation (Gutmann and Hyvarinen, 2010) succeed to acceler-
ate softmax operation effectively both for training and predicting in the RNN language model.
However, they don’t work well for the decoding application. In the language model task, we
only need to compute the probability of the certain next word which we have known in ad-
vance. But in the decoding task, we have to compute all probabilities of candidates in the target
vocabulary to know which one is the best candidate.

In this work, in order to make the NMT system meet the real-time translation requirements,
we propose an improved beam search decoding algorithm with constrained softmax operation
over the output layer for the RNN Encoder-Decoder machine translation. We found that many
hypotheses can be pruned safely without affecting the final translation result, so that we ap-
ply a priority queue to choose the best hypothesis to be extended. Furthermore, we build a
limited word set of translation candidates which is used to effectively reduce the computation
complexity in softmax operation. The experimental results show that, our optimized algorithm
achieves a speed about 3.5 times faster than well optimized baseline system at the same level
of translation quality. The improved beam search with priority queue helps to reduce about
37.6% hypothesis extension operations which results in 1.7 times speedup. The constrained
softmax strategy succeeds to reduce the output layer size from 30,000 to about 300 which leads
to another 2.1 times speedup.

In section 2, we introduce the standard beam search algorithm of RNN Encoder-Decoder
approach in detail. In section 3, we present our improved beam search algorithm with con-
strained softmax operation. We describe our experimental settings in section 4 and report the
experimental results in section 5. Finally, we summarize our conclusions and future work in
section 6.

2 Neural Machine Translation

The end-to-end neural machine translation has been newly proposed in recent years. We first
introduce the general RNN Encoder-Decoder translation framework (Bahdanau et al., 2014),
and then we elaborate the standard beam search decoding algorithm for NMT in detail.

2.1 Preliminary Definitions
In the neural machine translation framework, a source sentence is represented as a sequence of
1-of-K coded word vectors

x = (x1, . . . , xTx), xi ∈ RKx

and a target sentence is also represented as a sequence of 1-of-K coded word vectors

y = (y1, . . . , yTy), yi ∈ RKy

1https://github.com/lisa-groundhog/GroundHog

Proceedings of MT Summit XV, vol.1: MT Researchers' Track Miami, Oct 30 - Nov 3, 2015 | p. 298

where Kx and Ky are the vocabulary sizes of source and target languages respectively. Tx and
Ty are the lengths of source and target sentences respectively.

Given an input sentence x and y, we define some important concepts and symbols in
advance.

• encoder: RNN to convert the input sentence x into a sequence of hidden states h.

• decoder: RNN to predict the probability distribution over yi ∈ RKy from the given context
vector and hidden states.

• hidden state: a vector from RNN hidden layer at a certain step t. Where t is defined as the
number of accepted or generated words right now. We use ht to represent the hidden state
for the encoder, and st for the decoder.

• context vector: a vector ct used to predict translation probability at step t generated from
h and st.

• hypothesis: a data structure used to store search states includes st−1, ct, yt, and the trans-
lation probability at step t.

• extend: an operation to construct several new hypotheses from a hypothesis with transla-
tion candidates generated from the decoder.

2.2 Encoder-Decoder Framework

Figure 1: RNN Encoder-Decoder Framework

Proceedings of MT Summit XV, vol.1: MT Researchers' Track Miami, Oct 30 - Nov 3, 2015 | p. 299

An RNN Encoder-Decoder translation system often contains an encoder and a decoder.
Figure 1 shows how this system works to translate a Chinese sentence into an English sentence.

Given a Chinese sentence x = ”beijing de chuzuche siji hen reqing” which means ”the
taxi driver in beijing is enthusiastic”, the encoder converts x into a series of hidden states
h = (h1, . . . , h6) sequentially via equation (1).

hj =

{
f(xj , hj−1) j > 0
0 j = 0

(1)

where hj ∈ Rn is a hidden state of the encoder after reading input word xj , n is the hidden
layer size of the encoder, and f is a nonlinear function which is sometimes complicated such
as in the long short term memory model (Hochreiter and Schmidhuber, 1997). Furthermore,
a bidirectional RNN (Schuster and Paliwal, 1997), which consists of forward and backward
RNNs, is used here.

Given the encoder hidden states h generated from x, and all the previously predicted his-
tory words (y1, . . . , yi−1), the decoder predicts the probability distribution over yi ∈ RKy . For
a translation candidate y, the translation probability is computed in equation (2).

p(y) =
T∏

i=1

p(yi|y1, . . . , yi−1,h) (2)

The translation history (y1, . . . , yi−1) is represented by hidden state si−1 and yi−1. The encoder
hidden states h is represented as ci. The output probability is computed in equation (3).

p(yi|y1, . . . , yi−1,h) = g(si−1, yi−1, ci) (3)

where g is a non-linear function, of which we will give an example later in section 3.2.

2.3 Standard Beam Search
We describe the beam search algorithm implemented in GroundHog as in Algorithm 1.
Given the encoder, decoder and input sentence x, we try to find the best translation ŷ =
argmaxy p(y|x). A group of stacks are used to store hypotheses during searching. Beam size
N is used to control the search space by extending only the top-N hypotheses in the current
stack. With the above settings, the translation y is generated word by word from left to right.
We define complete hypothesis as hypothesis which outputs EOS, where EOS is a special target
word indicating the end of sentence.

As compared to the standard decoding algorithm (Koehn, 2004) in phrase-based machine
translation, there are some differences. Firstly, a hypothesis is always of less score than the
hypothesis from which it extended. Because after every extension in NMT, the total score will
always be multiplied with a probability which is less than 1. But in phrase-based system, the
score of a extension is not always less than 1 because the features such as word penalty score
and phrase penalty score may be greater than 1 in the log-linear framework. Secondly, the stop
conditions are different. The phrase-based system will stop searching when all the words in
the source sentence are translated. In NMT, there is no exactly word alignment information to
tell which word is translated or not. It will stop searching when it has generated N complete
hypotheses.

3 Improved Beam Search

In this section, we introduce our improvement over the standard beam search algorithm for
NMT. We observed that not all the hypothesis extensions are necessary, and some extensions

Proceedings of MT Summit XV, vol.1: MT Researchers' Track Miami, Oct 30 - Nov 3, 2015 | p. 300

Algorithm 1 Standard Beam Search
1: function STANDARDSEARCH(enc, dec,x,y)
2: define stacks s
3: define set c
4: create initial hypo and put it into s[0]
5: i← 0
6: N ← beam size
7: while s[i] 6= ∅ do
8: for all h ∈ s[i] do
9: extend new hypos from h

10: put new hypos into s[i+ 1]
11: end for
12: prune s[i+ 1] to keep N − c.size hypos
13: move complete hypo in s[i+ 1] to c
14: i← i+ 1
15: end while
16: y← trace back from best h ∈ c
17: end function

of inferior hypotheses could be skipped safely without affecting the translation results. Further-
more, we found that the operation to compute the softmax score over the output layer is very
slow because the target vocabulary size Ky is often large. We can accelerate beam search by
reducing the vocabulary size in advance with translation knowledge learned from the phrase-
based model.

3.1 Hypotheses Extension with Priority Queue

The standard beam search algorithm extends the hypotheses from left to right stack by stack
as shown in Figure 2 part (a). At certain step t, all the hypotheses in the stack before t have
to be extended. Actually, not all the extended hypotheses will succeed to generate a complete
hypothesis with EOS, because plenty of extended hypotheses will be pruned in the future.

Figure 2: (a) standard beam search (b) improved beam search; � extended hypothesis, 4 best
hypothesis to be extended, ◦ unextended hypothesis

Proceedings of MT Summit XV, vol.1: MT Researchers' Track Miami, Oct 30 - Nov 3, 2015 | p. 301

In our improved beam search algorithm, we use a priority queue q to record the best hy-
potheses of each stack as shown in Figure 2 part (b). In a stack, there are at most N hypotheses,
which are ranked in descending order by their translation probabilities. If there is any unex-
tended hypothesis in a stack, the one with the highest translation probability will be inserted
into queue q. With above settings, the improved beam search works as shown in Algorithm 2.

• Firstly, we define the stacks s and priority queue q to manage hypotheses, and we create
the initial hypothesis and insert it into s[0] and q.

• Secondly, we select the best hypothesis in the queue q which is the initial hypothesis by
now, and extend at most N new hypotheses from the initial hypothesis. We insert new
hypotheses into s[1] in descending order, then insert the best hypothesis in s[1] into queue
q. We update the queue q by eliminating the initial hypothesis.

• After that, we select the best hypothesis h in the queue q which is of stack index i, and
extend at most N new hypotheses from h. We insert new hypotheses into stack s[i+ 1] in
descending order, and prune the inferior hypotheses to make sure the number of hypotheses
is less thanN . For stack s[i] and s[i+1], we update the hypotheses in queue q to make sure
that q contains only the best unextended hypothesis of each stack. We adjust the queue q
to be in the priority order.

• We repeat the process until the best hypothesis h to be extended in the queue is a complete
hypothesis. It’s safe to stop searching and output the best translation ŷ by tracing back
from h, because h is associated with the highest translation probability among any other
unextended hypotheses by now, and no hypothesis in the searching space with beam sizeN
will get higher translation probability than h in the future since p(yi|y1, . . . , yi−1,h) ≤ 1.

Instead of extending the hypothesis stack by stack sequentially, our improved beam search
algorithm only extend the best unextended hypothesis in all stacks. The standard algorithm
stops searching after generating N complete hypotheses, while our algorithm stops when a
complete hypothesis h is selected to be extended. Because h is better than any other hypotheses
in q, and the hypothesis in q is better than any other unextended hypotheses in the same stack,
and the unextended hypotheses in the stack is better than any other hypotheses extended from
it in the future. Therefore our algorithm extends less hypotheses without changing translation
result. All the unextended hypotheses inferior to h will not be extended. Considering other
breadth-first searching algorithms with a queue such as the classical Dijksta’s algorithm, the
size of the queue grows exponentially. In our algorithm, there is at most one hypothesis in the
priority queue for each stack, and it costs less memory and more efficient to manage the queue.

Furthermore, we find that it’s unfair to compare the translation probabilities of hypotheses
in the priority queue directly. Because the hypotheses with longer translation often tend to
get lower probability. We design a parameter α to alleviate the influence of translation length,
which is similar to the weight of word penalty feature in the phrase based system.

p̃(y|x) = p(y|x)
1

1+α×(i−1) (4)

Where i ≥ 1 is the stack index of current hypothesis. If α = 0, then p̃ = p; if α = 1 the p̃ is
the geometry average of p over i. The lower the α is, the less hypothesis will be pruned. After
normalization, the translation result will be changed.

3.2 Constrained Softmax Over Output Layer
For a hypothesis extension, the decoder predicts the next word probability p(yi|si−1, yi−1, ci)
by executing RNN feed forward operation. This procedure comprises some matrix multiplica-
tion operations and a final softmax operation over the output layer as shown in Figure 3. Here,

Proceedings of MT Summit XV, vol.1: MT Researchers' Track Miami, Oct 30 - Nov 3, 2015 | p. 302

Algorithm 2 Improved Beam Search
1: function IMPROVEDSEARCH(enc, dec,x,y)
2: define stacks s
3: define priority queue q
4: create initial hypo and put it into s[0], q
5: N ← beam size
6: h← find the best hypo in q
7: while h is not complete hypo do
8: i← get stack index of h
9: extend new hypos from h

10: put new hypos into s[i+ 1]
11: prune s[i+ 1] to keep N hypos
12: UPDATEQUEUE(q, s[i])
13: UPDATEQUEUE(q, s[i+ 1])
14: h← find the best hypo in q
15: end while
16: y← trace back from h
17: end function
18: function UPDATEQUEUE(q,s)
19: h← q ∩ s . hypo both in q and s
20: if ∃ best unextended hypo uh ∈ s then
21: replace h with uh in q
22: else . no unextended hypo in s
23: delete h from q
24: end if
25: adjust q to be a priority queue
26: end function

we compute word probability using the same g function proposed by Bahdanau et al. (2014) as
follows.

p(yi|si−1, yi−1, ci) ∝ exp (yᵀi Woui) (5)

ui = [max (ũi,2j−1, ũi,2j)]
ᵀ
j=1,...,l (6)

ũi = Uosi−1 + VoEyi−1 + Coci (7)

Where Wo ∈ RKy×l, Uo ∈ R2l×n, Vo ∈ R2l×m and Co ∈ R2l×2n are weight matrices. And l
is the size of maxout hidden layer ti; n is the size of hidden layer si; m is the word embedding
dimensionality of Eyi−1.

Actually, we find that the matrix multiplication to compute the softmax over the out-
put layer is often the most time-consuming operation. For most translation tasks, the size
of output layer (Ky ≥ 10, 000) is usually over ten times larger than sizes of other layers
(l, n,m ≤ 1, 000). The computation time complexity is close to O(l × Ky). If we can re-
duce Ky , the hypothesis extension will become faster. RNN with output layer factorized by
class layer (Mikolov et al., 2011) and Noise-contrastive estimation (Gutmann and Hyvari-
nen, 2010) is able to accelerate softmax operation effectively both for training and predicting
in RNNLM application. However, unlike estimating the translation probability for only one
certain target word yi, we have to estimate the probability distribution for all target words to get
the best candidate.

Given an input source sentence x, we note that the number of possible translation candi-
dates Tx is much smaller compared to the target vocabulary size Ky . Instead of calculating the

Proceedings of MT Summit XV, vol.1: MT Researchers' Track Miami, Oct 30 - Nov 3, 2015 | p. 303

Figure 3: Deep Output Layer of RNN Decoder

translation probability for every word in the target vocabulary, we only calculate the probability
for a limited set of target candidates which are relevant to the given x. The problem is how
to get such a candidate set. Intuitively, we can make use of the word alignment information
generated with IBM model (Brown et al., 1993). And we found that there are often too many
candidates especially for the common words, which makes the improvement limited.

Actually, we can get more accurate translation candidates from the phrase pairs of the
phrase-based translation model (Koehn et al., 2003). Firstly, we train a phrase-based translation
model with the word aligned bilingual sentence pairs. Then we segment the input sentence x
into a number of continuous source phrases. Next, we search the corresponding target phrases
for all source phrases from the phrase-based translation model, namely phrase table. After that,
we build a candidate word set by enumerating all the words in the target phrases. Finally, we
constrain the softmax operation with the candidate word set for all the hypothesis extension of
x.

One disadvantage of above approach is that it is too costly to load the whole phrase table
into memory. Fortunately, we can reduce the memory cost by pruning phrase table carefully.
The phrase table filtering techniques have been widely used in machine translation. Instead of
considering both the phrase coverage and translation features in the filtering technique, our sys-
tem only considers the word coverage, which is much easier to implement. We investigated the
histogram pruning (Zens et al., 2012) and length-based pruning method to reduce the memory
used in our system. For histogram pruning, we preserves the X target phrases with highest
probability for each source phrase. For length-based pruning, we prune the phrase pairs which
contain more than X words in source or target side. Where X is the threshold. We found that
even the basic length-based pruning method works well enough in our task.

4 Experimental Settings

In this section, we evaluate the improved beam search algorithm on the task of Chinese-to-
English translation.

4.1 Dataset
In this paper, we use Chinese-to-English bilingual corpora from LDC which is a subset of
corpus for NIST08 task, containing 67M Chinese words and 74M English words, to train our
models. No monolingual corpus are used to help the model training. The NIST MT03 Chinese-
to-English test set is used as the development set, and NIST MT08 Chinese-to-English test set
is used to evaluate our translation results. The development set is used to choose the best RNN

Proceedings of MT Summit XV, vol.1: MT Researchers' Track Miami, Oct 30 - Nov 3, 2015 | p. 304

model in history, because the performance of RNN model will fluctuate during training.

4.2 Toolkits
The open source SMT system Moses 2 (Koehn et al., 2007) is used to train a phrase-based
machine translation system. The phrase table trained with Moses will be used to constrain
the softmax translation. We use the open source RNN Encoder-Decoder toolkits GroundHog
which is implemented with Theano (Bergstra et al., 2010; Bastien et al., 2012) to train a neural
machine translation model. It is re-implemented with C++ in the GPU Environment and named
NetTrans, which is well optimized and faster than GroundHog which is implemented in Python.
Given the same model, there is no translation differences between GroundHog and NetTrans.
We will report our experimental results on NetTrans instead of GroundHog.

4.3 Settings
We train a phrase-based model from the bilingual corpus with Moses using ”grow-diag-
final” word alignments. We train two RNN encoder-decoder models (set Kx=Ky=30,000 and
Kx=Ky=60,000 separately) with GroundHog toolkit written with Theano by using the default
settings proposed by Bahdanau et al. (2014). A multilayer network with a single maxout
(Goodfellow et al., 2013) hidden layer is used to compute the conditional probability of each
target word. The size of a hidden layer n is 1000, the word embedding dimensionality m is 620
and the size of maxout hidden layer in the deep output l is 500. We use a minibatch stochastic
gradient descent (SGD) algorithm together with Adadelta (Zeiler, 2012) to train all the RNN
models. Each SGD update direction is computed using a mini-batch of 50 sentences. The
training time for each model is approximately 22 days. We set beam size N = 10 for beam
search decoding. We run both the training and decoding programs on a machine with GPU
cards (NVIDIA Tesla K10).

5 Results and Analysis

5.1 Baseline
In this section, we report the translation results of Moses, GroundHog and NetTrans. Our ex-
perimental results in table 1 shows that the NetTrans runs about 3 times faster than GroundHog
with the same translation results. GroundHog is implemented with Theano, which is a very
flexible toolkit for general deep learning tasks. NetTrans is well designed especially for the
RNN Encoder-Decoder framework on the GPU architecture with pure C++. In NetTrans, we
execute the operations between the same matrices continuously to avoid additional GPU initial-
ization and we use memory pool to avoid allocating memory frequently and store the matrix in
memory continuously.

System BLEU Speed (words/sec)
Moses 24.19 -

GroundHog 24.50 11.2
NetTrans 24.50 33.4

Table 1: Baseline Systems

5.2 Improved Beam Search with Constrained Softmax
We describe our experimental settings as follows. Baseline is the standard beam search algo-
rithm implemented in NetTrans. Priority represents the improved beam search algorithm with

2http://www.statmt.org/moses/

Proceedings of MT Summit XV, vol.1: MT Researchers' Track Miami, Oct 30 - Nov 3, 2015 | p. 305

priority queue, and the parameter α (0 ≤ α ≤ 1) is set as in Equation (4). CandX repre-
sents the histogram pruning with threshold X . Our experimental results under different Alpha
(0 ≤ α ≤ 1) are shown in Figure 4. Curve Priority tells the results of improved beam search
with the priority queue. Curves Cand50 3, Cand20 4 report the results of constrained soft-
max with different CandX. As shown in Figure 4, both improved beam search and constrained
softmax can accelerate the decoding speed effectively.

(a) BLEU Score with Different α

(b) Translation Speed (words/second) with Different α

Figure 4: Results of Improved Beam Search

As shown in Table 2, our method achieves a speed more than 3.5 times faster than the base-
line at the same level of translation quality with α=0.2. The improved beam search with pri-
ority queue achieves in 1.7 times speedup by reducing 37.6% hypothesis extension operations.
The hypothesis extension times both for our method and the baseline method (exto and extb)
are counted respectively. The pruning ratio is computed with equation (extb − exto)/extb.
The results show that the speed acceleration with different α is roughly consistent with the
pruning ratio. The constrained softmax strategy leads to another 2.1 times speedup by re-
ducing the output layer size from 30,000 to about 300. Theoretically, the speedup should be
Ky ×n/max{n×n,Ky ×n} and thus 30 times faster with hidden layer dimension n = 1000.
Actually, the standard softmax costs about half of the decoding time under the GPU environ-
ment. After constraining it with a candidate word set, it makes the constrained softmax no

3We use the default settings in Moses that performs well for phrase-based MT with CandX=50.
4We use a reduced candidate set to examine how different candidate sizes affects translation quality

Proceedings of MT Summit XV, vol.1: MT Researchers' Track Miami, Oct 30 - Nov 3, 2015 | p. 306

longer the bottleneck of translation. At the same level of translation speed, our method per-
forms more than 1 BLEU scores better than the method to reduce the beam size N from 10 to 3
directly.

System BLEU Speed Ratio
Baseline 24.50 33.4 -
α=0 24.50 41.11 14.6%
α=0.2 24.29 55.4 37.6%

α=0.2,Cand50 24.29 111.6 42.8%
α=0.2,Cand20 24.44 117.2 45.1%
Beam Size=3 23.37 104.4 66.6%

Table 2: Optimized Search with Pruning Ratio

5.3 Constrained Candidates Selection

We define PhraseX as the length-based pruning with threshold X . Cands is the average word
size of translation candidates set for a given sentence. Coverage represents the recall ratio of the
real candidates generated by the baseline RNN system (α=0.2). Memory means the additional
memory used to store the whole phrase table for candidates selection.

As shown in Table 3, the Coverage decreases when reducing CandX, while Coverage al-
most remains the same when reducing PhraseX. For example, when we only select those phrase
pairs whose length is less than or equal to 2 (PhraseX=2), the coverage is almost the same as
that when PhraseX=7. We find that our method works well with very limited memory (170MB)
in setting Cand50 and Phrase2. This result is consistent with that for phrase-based SMT sys-
tem, where phrase pairs with 2 or 3 words are frequently used and the target candidates of the
source phrase is set to 50 by default. Moreover, with such setting, the translation quality is not
degraded in BLEU score metrics. This result shows that our method for constrained candidate
selection is effective to speed up the decoder without degrading of translation quality and with
limited memory.

Selection Cands Coverage Memory
Cand5,Phrase7 83.8 87.3% 2.26GB
Cand10,Phrase7 126.6 91.4% 2.29GB
Cand20,Phrase7 195.4 94.0% 2.31GB

Cand50,Phrase7 352.5 96.2% 2.33GB
Cand50,Phrase3 350.9 96.2% 571MB

Cand50,Phrase2 337.6 96.1% 170MB
Cand50,Phrase1 276.3 95.3% 12MB

Table 3: Constrained Candidates Selection

5.4 The Effect of Vocabulary Size

We train a RNN Encoder-Decoder model with the target word size set toKy=60,000, to examine
how our method affects the decoding speed under different settings. As shown in Table 4, as
the vocabulary size becomes larger, our approach performs even better, achieving a speed about
5.6 times faster than the baseline. The result is consistent with our intuition.

Proceedings of MT Summit XV, vol.1: MT Researchers' Track Miami, Oct 30 - Nov 3, 2015 | p. 307

System BLEU Speed (words/sec)
Baseline 24.35 21.3
α=0 24.35 27.1
α=0.2 24.19 38.6

Cand50 24.05 113.8
Cand20 24.41 119.8

Table 4: Results of Vocabulary Size = 60,000

6 Conclusion and Future Work

In this paper, we propose an improved beam search decoding algorithm with constrained soft-
max operation for the neural network translation. It accelerates the translation speed more than
3.5 times compared to the standard beam search algorithm as in our well optimized baseline
while keeping the same translation quality. Our experiments show that the improved beam
search algorithm and the constrained softmax operation over the output layer are very effective
for neural network translation.

In the future, we will try to accelerate the training for NMT using constrained softmax
strategy. Furthermore, we will try to reduce the searching errors by selecting more accurate
bilingual translation candidates.

Acknowledgments
This work is supported by the National Basic Research Program of China (973 program No.
2014CB340505).

References

Bahdanau, D., Cho, K., and Bengio, Y. (2014). Neural machine translation by jointly learning to align and
translate. In arXiv:1409.0473 [cs.CL].

Bastien, F., Lamblin, P., Pascanu, R., Bergstra, J., Goodfellow, I., Bergeron, A., Bouchard, N., Varde-
Farley, D., and Bengio, Y. (2012). Theano: new features and speed improvements. In Deep Learning
and Unsupervised Feature Learning NIPS 2012 Workshop.

Bengio, Y., Ducharme, R., Vincent, P., and Janvin, C. (2003). A neural probabilistic language model.
Journal of Machine Learning Research 3, pages 1137–1155.

Bergstra, J., Breuleux, O., Bastien, F., Lamblin, P., Pascanu, R., Desjardins, G., Turian, J., Warde-Farley,
D., and Bengio, Y. (2010). Theano: a cpu and gpu math expression compiler in python. In Proceedings
of the Python for Scientific Computing Conference (SciPy).

Brown, P. F., Pietra, S. A. D., Pietra, V. J. D., and Mercer, R. L. (1993). The mathematics of statistical
machine translation: Parameter estimation. Computational Linguistics, 19(2):263–311.

Cho, K., van Merrienboer, B., Bahdanau, D., and Bengio, Y. (2014). On the properties of neural machine
translation: Encoderdecoder approaches. In Proceedings of Eighth Workshop on Syntax, Semantics and
Structure in Statistical Translation (SSST-8), pages 103–111, Doha, Qatar.

Devlin, J., Zbib, R., Huang, Z., Lamar, T., Schwartz, R., and Makhoul, J. (2014). Fast and robust neural
network joint models for statistical machine translation. In Proceedings of the 52nd Annual Meeting of
the Association for Computational Linguistics, pages 1370–1380, Baltimore, Maryland, USA.

Proceedings of MT Summit XV, vol.1: MT Researchers' Track Miami, Oct 30 - Nov 3, 2015 | p. 308

Goodfellow, I. J., Warde-Farley, D., Mirza, M., Courville, A., and Bengio, Y. (2013). Maxout networks.
In Proceedings of The 30th International Conference on Machine Learning, pages 1319–1327.

Gutmann, M. and Hyvarinen, A. (2010). Noise-contrastive estimation: A new estimation principle for
unnormalized statistical models. In Proceedings of the 13th International Conference on Artificial
Intelligence and Statistics (AISTATS).

Hochreiter, S. and Schmidhuber, J. (1997). Long short-term memory. Neural Computation, pages 9(8),
1735–1780.

Huang, L. and Chiang, D. (2007). Forest rescoring: Faster decoding with integrated language models. In
Proceedings of ACL.

Koehn, P. (2004). Pharaoh: a beam search decoder for phrase-based statistical machine translation models.
In Proceedings of the Sixth Conference of the Association for Machine Translation in the Americas,
pages 115–124.

Koehn, P., Hoang, H., Birch, A., Callison-Burch, C., Federico, M., Bertoldi, N., Cowan, B., Shen, W.,
Moran, C., Zens, R., Dyer, C., Bojar, O., Constantin, A., and Herbst, E. (2007). Moses: Open source
toolkit for statistical machine translation. In ACL 2007 demonstration session.

Koehn, P., Och, F. J., and Marcu, D. (2003). Statistical phrase-based translation. In Proceedings of
HLT-NAACL 2003, pages 127–133.

Mikolov, T., Karafiat, M., Burget, L., Cernocky, J. H., and Khudanpur, S. (2010). Recurrent neural network
based language model. In Proceedings of Interspeech.

Mikolov, T., Kombrink, S., Burget, L., Cernocky, J. H., and Khudanpur, S. (2011). Extensions of recurrent
neural network language model. In Proceedings of ICASSP.

Och, F. J. and Ney, H. (2002). Discriminative training and maximum entropy models for statistical machine
translation. In Proceedings of ACL.

Schuster, M. and Paliwal, K. K. (1997). Bidirectional recurrent neural networks. IEEE Transactions on
Signal Processing, pages 45(11), 2673–2681.

Zeiler, M. D. (2012). Adadelta: An adaptive learning rate method. In arXiv:1212.5701 [cs.LG].

Zens, R., Stanton, D., and Xu, P. (2012). A systematic comparison of phrase table pruning techniques.
page 972983.

Proceedings of MT Summit XV, vol.1: MT Researchers' Track Miami, Oct 30 - Nov 3, 2015 | p. 309

