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Abstract
In this paper, we investigate a resampling approach for domain adaptation from a resource-rich
domain (patent domain) to a resource-scarce target domain (newspaper domain) in Statistical
Machine Translation (SMT). We propose two resampling methods for domain adaptation in
SMT: random resampling and resampling for instance weighting. The random resampling ran-
domly adds sentence pairs from the resource-rich parallel corpus to the target-domain parallel
corpus. Instance weighting is a method which provides a weight to each sample in the resource-
rich domain. The problem of instance weighting in SMT is how to provide a weight to each
sentence-pair. We approximate the instance weights by resampling sentence-pairs according to
the ratio of sentence-pair probabilities between the two domains. We also explore a method of
selecting samples that have instance weights larger than some threshold.

1 Introduction

In the last few decades, Statistical Machine Translation (SMT) has been widely studied in the
field of machine translation because SMT is mathematically well-defined in terms of the proba-
bilistic models it uses, and it can be learned automatically from large bilingual parallel corpora
by using publicly available SMT tools. One of the key issues in SMT is how to develop a
large parallel corpus. Developing a large-scale parallel corpus by hand is very expensive, and
in the past, SMT systems were usually trained with only tens of thousands sentence-pairs. In
the last decade, large-scale parallel corpora consisting of around millions of sentence pairs
were developed by using the methods for automatically acquiring parallel sentence-pairs from
comparable corpora (Utiyama and Isahara, 2003; Koehn, 2005; Callison-Burch et al., 2009).
For example, a large-scale Japanese-English patent parallel corpus consisting of around 3 mil-
lion sentence-pairs was automatically developed from patent documents (Utiyama and Isahara,
2003). The Europarl parallel corpus consists of around from 0.4 to 2 million sentence-pairs
for each language pair, which were extracted from the proceedings of the European Parliament
(Koehn, 2005). The French-English Gigaword (109) parallel corpus consists of around 22 mil-
lion sentence-pairs crawled from Canadian and European Internet pages (Callison-Burch et al.,
2009). These automatically acquired parallel corpora are large enough for SMT training if their
domain and the target domain are the same. However, in general, the target domains of machine
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translation are often different from the domains of the automatically acquired parallel corpora.
It is empirically known that translation quality drastically deteriorates when an SMT system
trained on one domain is applied to other domains (Foster et al., 2010). Therefore, domain
adaptation is needed from the domains of these automatically acquired parallel corpora to the
target domain.

This paper investigates a resampling approach for domain adaptation from the patent do-
main to the newspaper domain in SMT. We propose two resampling methods for domain adap-
tation in SMT: random resampling and resampling for instance weighting. The random resam-
pling method randomly adds sentence pairs from the large-scale parallel corpus to the target-
domain parallel corpus. Instance weighting (Jiang and Zhai, 2007) gives each sample a weight
calculated by dividing the probability of the sample in the target domain by the probability of
the sample in the large-scale data domain; i.e., the weight is an estimated frequency of the sam-
ple in the target domain. The problem of instance weighting in SMT is how to provide a weight
to each sentence-pair. As SMT tools have many complex components, wrapper methods which
do not modify the tools themselves are preferable. We approximate the instance weights by
resampling sentence-pairs according to a ratio of sentence-pair probabilities between the two
domains. We also explore a method of selecting samples that have instance weights larger than
some threshold.

2 Domain Adaptation

Domain adaptation, which is also called transfer learning, is a method for adapting the model or
data in a resource-rich domain to a resource-scarce target domain. The goal of domain adapta-
tion is to increase the performance of systems in the resource-scarce domain by leveraging the
model or data in the resource-rich domain. The resource-scarce domain is called the target do-
main or in-domain, and the resource-rich domain is called the source domain or out-domain. In
what follows, we call the data/model in the resource-scarce domain the in-domain data/model
and the data/model in the resource-rich domain the out-domain data/model.

2.1 Related Work
Domain adaptation can be classified into two types of adaptation: model adaptation and instance
weighting (Foster and Kuhn, 2007; Jiang and Zhai, 2007). In the model adaptation, models are
learned from the in-domain data and the out-domain data separately, and then a mixture model is
developed by mixing the in-domain model and the out-domain model so that the mixture model
performs better for the in-domain data. Foster and Kuhn (2007) proposed model adaptation
for SMT. They used a log-linear model for the mixture model learned by using MERT (Och,
2003) with other log-linear parameters. They also proposed four distance metrics to measure
the weight for each model; TF/IDF, LSA, perplexity, and EM . The mixture model learned by
using MERT is also used as a baseline in (Foster et al., 2010). Moore and Lewis (2010) used
perplexity for language model adaptation.

Instance weighting can be further classified into the metrics approach, weight optimiza-
tion approach, and covariate shift approach. The metrics approach gives each sample a weight
representing the distance between the sample as an in-domain sample and the sample as an
out-domain sample. There have been several studies on the metrics approach in SMT, wherein
the metrics used were the cross-entropy (Yasuda et al., 2008) or cross-entropy difference (Ax-
elrod et al., 2011, 2012) for a sentence-pair. In the metrics approach, sentence-pairs in the
out-domain corpus are selected if their metrics is closer than some threshold. Yasuda et al.
(2008) also used model adaptation in addition to the metrics approach. In the weight optimiza-
tion approach, a weight is assigned to each sentence/phrase in the training corpus, and these
weights are optimized so as to maximize the objective function for the in-domain development
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corpus (Matsoukas et al., 2009; Foster et al., 2010). Matsoukas et al. (2009)’s model was origi-
nally proposed for data selection, not for domain adaptation, but it can also be applied to domain
adaptation. The covariate shift approach (Shimodaira, 2000; Jiang and Zhai, 2007; Xia et al.,
2013, 2014) gives each sample a weight calculated by dividing the in-domain probability of
the sample by the out-domain probability of the sample; i.e., the weight is an estimated fre-
quency of the sample in the target domain. Most of the previous studies on instance weighting
directly incorporate the weights into the objective function or select the samples having weights
higher than some threshold. Our method is also based on instance weighting, but our method is
designed for SMT and uses resampling for estimating the probability ratio.

The most similar approach to our method is that of Gascó et al. (2012). They proposed
the resampling method for domain adaptation for SMT. The difference between our method
and theirs is that we use the covariate shift approach using both in-domain probabilities and
out-domain probabilities, whereas they use only the in-domain probabilities.

2.2 Instance Weighting for SMT
Given parallel sentence pairs (si, ti)

N
i=1 as a training data set, where si is a sentence in the

source language and ti is a sentence in the target language, the parameter estimation for SMT
in the maximum likelihood estimation framework is defined as follows.

θ̂ = arg max
θ

∑
s∈S

∑
t∈T

p(s, t) log p(t|s; θ)

≈ arg max
θ

∑
s∈S

∑
t∈T

p̃(s, t) log p(t|s; θ) = arg max
θ

N∑
i=1

log p(ti|si; θ)
(1)

where S is the source language, T is the target language, and p̃ is an empirical distribution. The
instance weighting is derived as follows (Jiang and Zhai, 2007).

θ̂ = arg max
θ

∑
s∈S

∑
t∈T

pin(s, t) log p(t|s; θ)

= arg max
θ

∑
s∈S

∑
t∈T

pin(s, t)

pout(s, t)
pout(s, t) log p(t|s; θ)

≈ arg max
θ

N∑
i=1

pin(si, ti)

pout(si, ti)
log p(ti|si; θ)

(2)

where pin is the in-domain probabilities and pout is the out-domain probabilities. Instance
weighting gives each sentence pair a weight calculated by dividing the in-domain probability
of the sentence pair by the out-domain probability of the sentence pair; i.e., the weight is an
estimated in-domain frequency of the sentence pair.

3 Random Resampling for SMT

In domain adaptation, there are two simple and strong baseline methods: one which trains a
model only on the in-domain data set and one which trains a model on the union of the in-
domain and out-domain data sets (Daume III, 2007). The baseline method using both data sets
is strong, but in our experiments it was worse than the baseline method using only the in-domain
data set. We think that this deterioration is caused by adding too many data samples from the
out-domain data set to the in-domain data set.
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To solve the problem of the baseline methods mentioned above, we introduced a random
resampling method (He and Garcia, 2009) for domain adaptation in SMT. Resampling was orig-
inally studied to solve the imbalanced data problem in binary classification, but it can also be
applied to domain adaptation. There are two methods for random resampling: oversampling
and undersampling (He and Garcia, 2009). Both methods use both an in-domain corpus and
out-domain corpus as a training data set by default. Oversampling increases the size of the
in-domain corpus by copying randomly selected sentences in the in-domain corpus. It may
add the same sentences in the in-domain corpus many times but it increases the weights for
the in-domain sentences in the objective function compared to the out-domain sentences. Un-
dersampling decreases the weights for the out-domain corpus by removing randomly selected
sentences in the out-domain corpus. In the experiments, we used undersampling as the random
resampling method.

4 Resampling for Instance Weighting in SMT

We propose a resampling method for instance weighting in SMT. We approximate the proba-
bility ratio in Equation 2 with in-domain and out-domain language models as follows.

θ̂ = arg max
θ

N∑
i=1

pin(si, ti)

pout(si, ti)
log p(ti|si; θ) ≈ arg max

θ

N∑
i=1

pin(ti)

pout(ti)
log p(ti|si; θ) (3)

where pin(ti) is an in-domain language model and pout(ti) is an out-domain language model.
Both language models are defined as n-gram language models.

In the experiments, we used 5-gram models with Kneser-Ney smoothing for the n-gram
language models. 5-gram models with Kneser-Ney smoothing was learned by using the SRILM
tool kit (Stolcke et al., 2011). We calculate the probability of a sentence w1w2. . .wn as follows.

p(w1w2. . .wn) ≈
n∏

j=1

p(wj |wj−4wj−3wj−2wj−1) (4)

where p(wj |wj−4wj−3wj−2wj−1) represents 5-gram probabilities. Given a sentence t, pin(t)
and pout(t) are calculated by using 5-gram models learned from the in-domain parallel corpus
and the out-domain parallel corpus, respectively.

Given a sentence t, let w(t) be the weight pin(t)/pout(t) in Equation 3. The weight w(t)
for sentence t represents the in-domain frequency of t. In our resampling method, a sentence
pair (s, t) in the out-domain corpus is selected with the probability of w(t) if w(t) is less than
1. A sentence pair (s, t) is always selected if w(t) ≥ 1. Theoretically, a sentence pair should
be resampled multiple times if w(t) is greater than 1, but we resample the sentence only once
because w(t) can be an extremely large number. Formally, we have the modified resampling
number w′(t) for sentence t as follows.

w(t) =
pin(t)

pout(t)
, w′(t) =

{
w(t) if w(t) < 1

1 otherwise
(5)

In the same way as the previous methods that select sentences using thresholds, we also
experimented with the sample selection approach by using thresholds and the weight w(t) in
Equation 5. In this approach, a sentence pair (s, t) is selected if the weight w(t) is greater than
a threshold. All sentence pairs that satisfy this condition in the out-domain parallel corpus are
selected.
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Table 1: Specification of English-Japanese parallel corpora
domain training set development set test set

(# of sentence-pairs) (# of sentence-pairs) (# of sentence-pairs)
patent 3,166,284 - -
newspaper 130,000 500 10,000

Table 2: Results
BLEU (%)

baseline (in-domain) 13.93
baseline (in-domain + out-domain) 12.67
random resampling 14.24
instance weighting (resampling) 14.15
instance weighting (w. thresholds) 14.47

5 Experiments

We evaluated the performance of the random resampling method and the resampling method
for instance weighting in English-Japanese SMT.

5.1 Settings

In the experiments, we regarded the newspaper domain as the target domain (in-domain) and the
patent domain as the resource-rich domain (out-domain). We used a English-Japanese patent
parallel corpus consisting of 3,166,284 sentence pairs; the same one was used for the shared
task in NTCIR10 (PatentMT) (Goto et al., 2013). We also used the English-Japanese newspaper
parallel corpus, JENAAD (Utiyama and Isahara, 2003). JENAAD consists of 150,000 sentence
pairs extracted from the comparable corpora: the Yomiuri Shimbun and the Daily Yomiuri.
Table 1 shows the details of the data sets. The language models were learned as 5-gram models
with Kneser-Ney smoothing by using the SRILM tool kit (Stolcke et al., 2011). The in-domain
language model was learned from the training corpus in the newspaper parallel corpus, and the
out-domain language model was learned from the training corpus in the patent parallel corpus.

We used GIZA++ 1.0.7 for word alignment, SRILM 1.5.12 for learning n-gram language
models, Moses for SMT (Koehn et al., 2007) and MERT for tuning. The value of distortion
limit was infinite. We used Mecab 0.98 with ipadic 2.7.0 for tokenizing Japanese sentences.
We used BLEU for measuring translation accuracy. We evaluated SMT only in a direction from
English to Japanese.

In the experiments, we also evaluated the SMT trained with only the in-domain parallel
corpus and the SMT trained with the union of the in-domain parallel corpus and the out-domain
parallel corpus as baseline methods.

5.2 Results

Table 2 shows the experimental results. “baseline (in-domain)” indicates the baseline method
using only the in-domain corpus. “baseline (in-domain + out-domain)” indicates the base-
line method trained on the union of the in-domain corpus and the out-domain corpus. In this
experiment, we used undersampling in the random resampling method. “instance weighting
(resampling)” means the resampling method for instance weighting. “instance weighting (w.
threshold)” means the instance weighting method that selects the sentence pairs having larger
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Table 3: Change in BLEU with the size of resampled data
# of added random instance weighting

sentence resampling (w. threshold)
pairs (BLEU (%)) (BLEU (%))

baseline (in-domain) 0 13.93 -
5,525 13.74 -

10,000 13.73 14.47
20,000 14.10 13.50
40,000 13.51 14.01

resampling 80,000 14.24 13.65
130,000 13.58 14.06
500,000 13.22 13.44

1,000,000 12.83 12.77
2,000,000 12.92 12.76

baseline (in-domain + out-domain) 3,166,284 12.67 -

weights than a threshold12. The resampling method for instance weighting selected 5,525 sen-
tence pairs from the out-domain parallel corpus. As seen in the table, the random resampling
and instance weighting achieved better BLEU scores than the baseline methods. The instance
weighting with thresholds achieved the best BLEU, but the resampling method for instance
weighting also achieved comparative results, using fewer out-domain sentence pairs. The ran-
dom resampling method was also comparable to instance weighting with thresholds.

Table 3 shows the change in BLEU with the number of added sentence pairs in the random
resampling method and the instance weighting method with thresholds. In the results of the
random resampling method, the best result was achieved with 80,000 sentence pairs, and BLEU
increased by 0.31 from the baseline. In the results of the instance weighting method with
thresholds, the best result was achieved with 10,000 sentence pairs, and BLEU increased by
0.54 from the baseline. The number of sentence pairs selected by the resampling method for
instance weighting, 5,525 sentence pairs, was close to the number of sentence pairs selected
by the instance weighting method with thresholds. This means that the resampling method for
instance weighting provided a good estimation for the weights without brute-force searching
for the threshold.

6 Conclusion

We investigated a resampling approach for domain adaptation from the patent domain to the
newspaper domain in SMT. The random resampling method randomly selects sentence pairs
from the out-domain parallel corpus. The resampling method for instance weighting selects
sentence pairs according to the ratio of sentence-pair probabilities between the two domains.
Instance weighting selects the sentence pairs that are likely to be the in-domain sentence pairs
from the out-domain parallel corpus. We also explored instance weighting with thresholds,
which selects all the sentence pairs having higher weights than a threshold. In this study, n-
gram language models were used for calculating the in-domain and out-domain probabilities

1As an implementation issue, we first sorted the sentence pairs in the out-domain corpus in descending order of their
weights. Then we selected the sentence pairs which had high weights.

2However, in the experiments, the number of added sentences in the random resampling method and the thresholds
in instance weighting with thresholds were wrongly determined by using the test set. So, the true BLEU scores of the
random resampling method and instance weighting with thresholds might be lower than the BLEU scores in Table 2.
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for sentence pairs. In the experiments, instance weighting with thresholds achieved the best
results, but both random resampling and resampling for instance weighting also achieved com-
parable results. Though the BLEU score of the resampling method for instance weighting was
worse than other two methods, the number of resampled sentence pairs was very close to that
of the instance weighting method with thresholds. The advantage of the resampling method
for instance weighting is that it does not require tuning for finding the thresholds while other
methods need a tuning process.
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