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Abstract
Typical MT training involves several stages, including word alignment, rule extraction, trans-
lation model estimation, and parameter tuning. In this paper, different from the traditional
pipeline, we investigate the possibility of end-to-end MT training, and propose a framework
which combines rule induction and parameter tuning in one single module. Preliminary exper-
iments show that our learned model achieves comparable translation quality to the traditional
MT training pipeline.

1 Introduction

Typically, as shown in Figure 1(a), traditional machine translation (MT) training involves a long
pipeline of several stages, including word alignment (by GIZA++), rule extraction, translation
model (TM) estimation (by max-likelihood), and parameter tuning by MERT (Och, 2003), PRO
(Hopkins and May, 2011), or MIRA (Watanabe et al., 2007; Chiang et al., 2008). This cascaded
procedure inevitably propagates errors downstream, while at the same time making MT training
overly complicated.
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Figure 1: Three approaches to MT training. (a) the standard pipeline; (b) ideal end-to-end MT
training; (c) our work, in between (a) and (b), combines rule induction, TM estimation, and
parameter tuning in one module.

In this paper, instead of following the traditional training pipeline, we explore the pos-
sibility of end-to-end MT training, which would ideally induce a full model with translation
∗Work done while Prof. Liang Huang was in City University of New York.
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rules at the same time (as shown in Figure 1 (b)). Practically, it is a big challenge, because the
search space would be too prohibitive if we consider all possible rules from scratch without any
constraints from word alignment.

To make this idea computationally affordable, we take a step back and propose a joint
learning framework to do rule induction and parameter tuning together, shown in Figure 1
(c). Instead of knowing nothing at the beginning, we use word translation probabilities from
GIZA++ to compute the lexical translation probabilities of phrase pairs, which is an effective
feature guiding us to select good translation rules. Note that even with these probabilities, this
is still a non-trival problem, since the joint learner still needs to deal with the entire space of all
possible translation rules and all possible decoding derivations.

For simplicity reasons we use phrase-based translation. Final experiments show that the
joint learned model achieves comparable performance to the conventional training pipeline in a
small scale. To our best knowledge, this is the first time, although on small data, verifying that
it is possible to do effective end-to-end MT training. The most significant contribution of this
paper lies in this point. We believe this will be a promising direction to MT research.

2 Joint Framework for Rule Induction and Parameter Tuning

Algorithm 1 gives our joint framework in detail. We start with an empty rule set R = ∅, and
for each sentence pair (x, y) where x is the source input and y the target translation, we try
forced decoding finding all derivations that can map x to y (line 5), using all possible phrase
pairs from (x, y). This is because without a rule set to start with, theoretically any portion of x
could map to any portion of y and the learner needs to figure out which phrase pairs make more
sense. Here f(·) and e(·) return the source and target projection of a derivation respectively.
This forced decoding, although much more constrained than real decoding, is still intractable,
and we have to resort to beam search similar to those employed in real decoding, i.e., the set D
in line 5 is the “best-scoring” subset of all possible forced derivations .

Algorithm 1 Joint rule induction and param. tuning.
1: R← ∅ . initial rule set
2: w← 0 . initial parameters
3: repeat
4: for each sentence pair (x, y) in bitext do
5: D(x, y)← {d | f(d)=x, e(d)=y} . forced decoding
6: R← R ∪ {r | r ∈ d, d ∈ D(x, y)} . add new rules

7: recalculate conditional probs for each r ∈ R

8: for each sentence pair (x, y) in bitext do
9: d′ ← argmax

d:f(d)=x

w ·Φ(x, d) . real decoding

10: if e(d′) 6= y then . wrong translation?
11: d∗ ← argmax

d∈D(x,y)

w ·Φ(x, d) . best gold deriv.

12: w← w + Φ(x, d∗)−Φ(x, d′) . update model

13: until converged

After forced decoding we collect translation rules in the forced derivations and add them to
standing rule set R (line 6). Then we recalculate the rule conditional probabilities (line 7, TM
estimation). After that we perform real decoding, trying to find the best translation (line 9) 1 .

1At first, since all the weights are set to 0, all derivations have the same score 0. Both the best-scoring forced
derivation and real decoding derivation are selected randomly

Proceedings of MT Summit XV, vol.1:  MT Researchers' Track Miami, Oct 30 - Nov 3, 2015   |   p. 57



If this translation e(d′) is different from the reference translation y, then an update is needed to
reward the highest-scoring forced (or “gold”) derivation d∗ and to penalize the highest-scoring
non-gold (Viterbi) derivation d′ (line 12). We apply a latent-variable max-violation perceptron
(Huang et al., 2012), which has been successfully used in MT training (Yu et al., 2013; Zhao
et al., 2014), to do update.

Technically, this framework is similar to (Xiao and Xiong, 2013). The main difference
is that we try to do end-to-end MT training, and combine rule induction, TM estimation, and
parameter tuning together, while they only focus on rule induction. Moreover, to accommodate
the vast amount of search errors in decoding, we update weights by max-violation perceptron,
performing prefix instead of full-sequence updates, whereas the updates in Xiao and Xiong
(2013) are still full-sequence updates which are insensitive to search errors. For simplicity
reasons we do not make this difference explicit in line 12.

3 Phrase-based Forced Decoding

Forced decoding generates those derivations that can produce the exact reference translation.
For example, given the following sentence pair,

Source: Bùshı́ yǔ Shālóng jǔxı́ng le huı̀tán
Target: Bush held a talk with Sharon

One possible derivation created by forced decoding is as follows:

(0 ) : (0, “”)

(•1 ) : (s1, “Bush”)
r1

(• •••6) : (s2, “Bush held a talk”)
r2

(•••3•••) : (s3, “Bush held a talk with Sharon”)
r3

where each hypothesis is in form (v) : (s, p), in which v is the coverage vector (a • indicates
the source word at this position is already “covered (or translated)”), and (s, p) is the score and
partial translation of each state.

Generally, we can employ a traditional phrase-based decoder to do forced decoding. How-
ever, the distortion limit in the decoder will prohibit long-distance reorderings, and exclude
many sentence pairs from getting forced derivations, especially for language pairs with very
different word orders, such as Chinese and English.

Hence, in order to do better forced decoding, we use a more flexible limit to constrain
the number of gaps during decoding (also known as “IBM constraint” in (Zens et al., 2004)),
rather than distortion limit. Here, a gap refers to a consecutive of positions that are not covered
in the coverage vector. For example, consider the third hypothesis of the above derivation,
(• •••6) : (s2, “Bush held a talk”), its coverage vector has one gap, i.e., the two untranslated
words. Also, we don’t want the decoding process to be too flexible on reordering, so we demand
that there are at most two gaps in a specific coverage vector (See Figure 2).

gap gap

gap gap

Figure 2: Two possible scenarios in gap-based decoding. The gray boxes denote covered seg-
ments.
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Obviously, compared to distortion limit, gap limit is more flexible for decoding, especially
when there is only one gap in the coverage vector, we can jump to any uncovered position of
the source sentence for translation. Hereafter, we use dl-based decoding to denote the decoding
algorithm using distortion limit, while gap-based decoding denotes the algorithm using gap
limit.

In addition, same as forced decoding, real decoding can also be dl-based or gap-based. We
use the same choice for forced and real decoding.

4 Rule Generation and Collection

As described in § 2, since there is no predefined rule set, we need to consider all possible
phrase pairs from the training sentence pair. To reduce the search space of phrase pairs, we set
the maximum phrase length to 3 2. As an example, considering the above sentence pair, we
enumerate all possible source and target phrases from it for forced decoding:

possible source phrases possible target phrases
Bùshı́ Bush

Bùshı́ yǔ Bush held
Bùshı́ yǔ Shālóng Bush held a

yǔ held
yǔ Shālóng held a

yǔ Shālóng jǔxı́ng held a talk
... ...

From these phrases, we can pick a source phrase and a target phrase arbitrarily to form
a phrase rule, and apply it to forced decoding. For example, as a start, if we select Bùshı́ and
Bush respectively, we can create hypothesis (•1 ) : (s1, “Bush”) in the above derivation.
We consider all possible combinations of these phrases as rules for forced decoding.

In addition, since training sentence pairs do not always contain equal information on both
sides, we introduce two null rules 〈f, null〉 and 〈null, e〉 to capture the redundant information
for forced decoding. 〈f, null〉 deletes a source word, and 〈null, e〉 inserts a target word to the
translation.

After forced decoding, we collect the rules used in forced derivations and add them to the
standing rule set R (line 6 in Algorithm 1). 3 Based on the rule counts in R, we recalculate the
rule conditional probabilities by the formula from (DeNero et al., 2006):

φ(e|f) = c(f, e)

c(f) + kl−1
(1)

where f and e are the source and target phrase, c(·) is the count of phrase or phrase pair, l
is the length of phrase f , and k is a tuning parameter. The formula boosts the probability of
short phrases, and results in better translation quality. After some validation experiments, we
set k = 4.0 finally.

Similar to our rule generation process, Wuebker and Ney (2013) has proposed a length-
based training method to do rule induction by EM algorithm. The major difference between our
framework and theirs is that their algorithm only relates to rule induction, and still need MERT
to do parameter tuning, while we combine rule induction and parameter tuning together. In this
way, the two step in our framework can help each other, but the two step in (Wuebker and Ney,

2We have also tried longer length limit, but the performance becomes worse, because with longer limit, the learner
greatly prefers longer phrases, which are not good at generalization.

3 We count all rules in all unpruned forced derivations, which are stored in a lattice. The rules are counted based on
its contribution to the derivation, i.e., the score it added to the derivation.
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2013) are isolated. We think it is possible to integrate their method into our framework. We
leave it as our future work.

5 Parameter Tuning

We apply a max-violation perceptron, which has successfully scaled the MT tuning process
from dev set to training data (Yu et al., 2013), to do parameter tuning. We skip the details here.
The basic idea is to find the step where the difference (violation) between the best forced de-
coding derivation and the best real decoding derivation is maximal, and then update parameters
at this step so that most information can be learned.

Theoretically, the max-violation perceptron allows arbitrary features. However, in our joint
learning scenario, we find it is very easy to get overfitting with sparse features. We conjecture
that this is because sparse features have a tight connection to rules. Once some bad rules are
introduced, it is difficult for the learner to correct them. We will make more effort on this in
future.

Here, we only use dense features, which are the same as the ones for phrase-based trans-
lation, including bidirectional translation probabilities (computed by Formula (1) in § 4) 4 ,
bidirectional lexical translation probabilities (estimated based on (Koehn et al., 2003) by word
translation probabilities from Moses (Koehn et al., 2007) based on GIZA++), language model,
rule penalty, length penalty, and distortion cost. To simplify the system, we haven’t used the
lexicalized reordering model here.

6 Related Work

On a high level, this work is a combination of two different research directions. One direction
is to induce translation rules directly from bitext, rather than using word alignment (Marcu and
Wong, 2002; Cherry and Lin, 2007; Zhang et al., 2008; DeNero et al., 2008; Blunsom et al.,
2009; Neubig et al., 2011; Levenberg et al., 2012; Xiao and Xiong, 2013). They can learn
better translation rules, but don’t care about parameter tuning of SMT. Another direction is
discriminative training for MT parameter tuning (Liang et al., 2006; Arun and Koehn, 2007;
Blunsom et al., 2008; Flanigan et al., 2013; Green et al., 2013; Yu et al., 2013; Zhao et al.,
2014). Both the two directions have achieved promising results. We differ from these works in
that we make efforts to combine their spirit together, and try to do rule induction and parameter
tuning in one step.

7 Experiments

To evaluate our method, we conduct experiments on Chinese-to-English transaltion. Since we
need to do forced decoding and real decoding on training corpus each iteration, to guarantee the
training efficiency, here we use a small scale data. It includes about 100K sentence pairs from
FBIS, where the length of each sentence is less than 30 words. We use GIZA++ and grow-diag-
final-and strategy to create symmetric word alignment. We train a trigram language model on
1.5M English sentences.

We base our experiments on Cubit, a state-of-the-art phrase-based system in Python Huang
and Chiang (2007). For the joint learning method, we set the beam size for forced decoding as
10, real decoding as 30. A maximum phrase length of three was used for both baseline and our
joint system. The beam size for final test decoding is set to 50.

We take the newswire portion of NIST MT 2006 data as our dev set, and the NIST MT
03-05 data and the newswire portion of 2008 data as the test set. For baseline, we use MERT
Och (2003) to tune weights.

4For the newly generated rules which do not have any counts, we assign a very small probability for them.
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Figure 3: The percentage of reachable sentences in forced decoding at each iteration, with
various decoding options.

7.1 DL-based Decoding vs. Gap-based Decoding
We use dl-based decoding and gap-based decoding respectively to promote our joint learning
framework. Since we only use dense feature for training, the learning process peak very fast,
and we can reach the best BLEU score on dev set in 4 - 5 iterations for both dl-based decoding
or gap-based decoding.

Figure 3 compares the forced decoding reachability, and Table 1 shows the corrsponding
translation result of different decoding settings. From the Figure and Table, we can first certify
the necessity of Null Rule, which improves translation quality significantly. Also, distortion
limit has a big influence. Big limit (dl=10) allows more flexibility on forced decoding, and thus
extract more effective rules, and get better translation quality than smaller limit (dl=6). Finally,
gap limit gets the best translation quality among all the three, verifying the effectiveness of
gap-based decoding.

decoding # rule dev test

w/o Null Rule
dl=6 0.44M 22.04 21.80
dl=10 0.55M 23.86 22.56

gap ≤ 2 0.59M 23.85 22.85

w/ Null Rule
dl=6 0.93M 23.05 22.17
dl=10 0.94M 24.19 23.47

gap ≤ 2 1.02M 24.42 23.67

Table 1: Rule set size and BLEU results of our joint learning method with different decoding
algorithms.

An interesting phenomenon in Figure 3 is that the gap-based decoding algorithm gets more
forced decodable sentences than dl-based decoding (dl=10) without Null Rule, but gets fewer
ones after adding Null Rule. This is because when we use Null Rule, once the jump exceeds
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system # rule 03 04 05 08 All

baseline dl=6 1.18M 21.72 25.47 22.01 21.59 23.37
gap 1.18M 21.19 25.18 21.60 21.57 23.05

joint dl=6 0.93M 20.45 24.37 20.52 20.12 22.17
gap 1.02M 21.93 25.92 21.86 21.85 23.67

Table 2: BLEU scores of different translation systems. The baseline system uses conventional
pipeline training. “All” is a combination of the 4 test sets.

distortion limit (bigger than 10), the dl-based forced decoder will not jump, but use Null Rule to
generate the corresponding target word, and adopt another Null Rule to delete the source word
later. In this way, the dl-based decoder could handle any long-distance jump. Since dl-based
decoding is also more flexible than the gap-based one in short-distance jump, it is reasonable
that dl-based decoding gets more forced decodable sentences after adding Null Rule. This is
also the reason why dl-based decoding collects fewer translation rules (Table 1) with more
forced decodable sentences. Since it utilizs many Null Rules on building forced derivations, the
number of useful rules decreases in these derivations, resulting in fewer useful translation rules.

7.2 Translation Results

Table 2 shows the final translation results. First, it is interesting that gap-based decoding is
better than dl-based in our joint framework, but slightly worse in baseline. This is because with
target translation as a constraint in forced decoding, gap limit is more flexible to get better forced
derivation (3), and thus more effective rules for better translation. But with a fixed rule set in
baseline, its flexibility will introduce more noise into the beam, leading to worse performance.

Moreover, our gap-based joint learned model is better than gap-based baseline by 0.6
BLEU points, and better than dl-based baseline by 0.3 BLEU points.

7.3 Large Data

As previous experiment only trains word alignment on the small 100K corpus, which might
create bad alignment and be unfair to baseline, we try another experiment and train word align-
ment on 2M sentence pairs, but translation model on the original 100K data. The result on the
“All” test set is 24.46 for dl-based baseline (dl=6), and 24.57 for our gap-based joint learned
model.

7.4 Discussions

The above two experiments have shown that our joint learning framework is comparable to the
traditional MT training pipeline.

Based on the experiments, we conclude that three factors influence translation quality.
First, in the training corpus, only about 82.9% of all sentence pairs are forced decodable, mean-
ing that 17.1% sentence pairs are excluded from extracting useful rules. Second, due to the
overfitting problem, we only use dense features here. Yu et al. (2013) has shown that if only
use dense features, max-violation perceptron MT training cannot get good translation quality.
At last, we need to handle the space of all possible phrase pairs, and the space of all possible
decoding derivations. The search space is too large to optimize effectively.

However, even with these problems, we can still get comparable results with the baseline
system, indicating that end-to-end MT training has a great potential to improve, and would be a
promising direction for MT research.
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8 Conclusion and Future Work

We present a pilot study on end-to-end MT training, and propose a joint framework combining
rule induction, TM estimation, and parameter tuning in one module. Preliminary experiments
show comparable translation quality to the conventional training pipeline.

Before we can fulfill the ambitious goal of end-to-end MT training, there are still a lot of
things to do. In future, we will explore how to effectively use sparse features to improve the
translation quality. We also plan to investigate the solution of scaling this framework to large
data set. Currently, we need to solve two problems for scaling. The first one is how to deal with
long sentences. The number of candidate phrase pairs is exponential to the length of training
sentence pairs, making the learning process intractable for long sentence pairs. The practical
solution is to segment them into several short ones. We can use IBM model 1 to do that, which
has been demonstrated to be effective for SMT (Xu et al., 2005). The second problem is how
to use the large data set with millions of sentence pairs. Currently, parallelization seems to be
the only solution. After segmentation, we can get millions of short sentence pairs, and then
parallelize them to clusters for training.
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