
Proceedings of the 38th Conference Translating and the Computer, pages 122–132,
London, UK, November 17-18, 2016. c©2016 AsLing

What’s in a Name?

Jon D Riding
United Bible Societies

Stonehill Green, Westlea,
Swindon SN5 7TJ

jonriding@biblesocieties.org

Neil J Boulton
United Bible Societies

Stonehill Green, Westlea,
Swindon SN5 7TJ

neilboulton@biblesocieties.org

Abstract

This paper describes the development of a language independent process for identifying proper-names in
a text. The process is derived from a machine originally designed to analyse non-concatenative
morphologies in natural languages. The particular context for this work is the task of managing the 5,000
or so proper-names found in a Bible, including the identification of close cognates and reporting
instances where a related form does not appear to be present.
The need for such a system is explained and the process by which the machine is able to identify names
in the target text is described. The problems posed by disparate orthographies are noted. Results obtained
from Eurasian, South American and African languages are discussed, common problems for the process
identified and its possible use in the context of technical vocabulary suggested. Commonalities between
the task of identifying morphology templates, ordered phoneme sets and syntax patterns are noted.

1 Introduction

The Bible translator faces a peculiar set of problems. Some are common to all translation but
others are particular to the task of translating a Bible. In this paper we shall explore a problem
particular although not unique to Bible translation and describe how NLP techniques might be
employed to limit the scale of the difficulties it causes for translators. The issue is that of
managing the transliteration of proper-names found in the Bible.
At first sight this might seem a strange focus for NLP research but there are some
characteristics of a Bible translation project which make it far from trivial. To begin with, the
Bible is a large book. In its largest form (not all Christian denominations read all of it) it
comprises 81 books whose origins can be traced back something like 3,500 years. Some are
histories, others are collections of poetry or wise sayings, some are telling critiques of the
politics of the times and others record personal and formal correspondence between churches
and friends. As a collection it is vast and eclectic. All of these genres have in common the use
of narrative to expound their message and all good stories are, in the end, about people. All of
these people, their nations, tribes, cities and families have names.
The Bible contains references to between 4,500 and 5,000 names. The precise number
depends on whether categories such as tribal names, names of regions etc... are included. All
these names are 2,000 years old or more and as such they arise from cultures where a name
was of particular significance. Not only did a name seek to express character it could also be
regarded as formative of character [Blumenthal, 2009]. Biblical names, therefore, add both
dimension and depth to a narrative [Krasovec, 2010]. Given this, it becomes very important
that they are handled consistently by a translation team.
The translation team also brings its own problems. A translation of the Bible rarely completes
in fewer than ten years. Fifteen years or more is not uncommon. Over such a period the
membership of the team may well change and the team’s expertise will develop as the project
progresses. For all these reasons and more it is not hard to imagine the importance of handling122

names consistently and the difficulties a team may encounter in ensuring that this is applied
throughout the text.
Unlike the bulk of a text, proper-names are rarely translated [Auden, 1970], it is more usual
that they are transliterated1. Transliteration involves recasting the phoneme stream which
represents the model name in the base text into an appropriate form for the target language.
Sometimes entire translations undergo this process when more than one orthography is used
for a language (as in Romanian/Moldovan prior to 1989 [Chinn, 1993]). The transliteration
task is the same for any given pair of model and target languages, to find a way of
representing in the target language an ordered set of phonemes from the model language.
Other changes may also take place where languages are more highly inflected. Our task has
been to find a way of identifying the thousands of proper-names in a new translation of the
Bible so that the translators can more easily review their work and ensure they have rendered
names consistently throughout the text.

2 Components of Proper Names

Phonemes
Those of us accustomed to working with language as text tend to think of words as made up
of letters. We recognise that particular surface forms are constructed from stem lemmata via
morphological transformations but our day to day encounters with language as text encourage
us to imagine that the fundamental building blocks are letters. This is both helpful and
misleading. It is helpful insofar as letters map to typescript and so to the keyboards which are
the medium through which we create text, it is misleading insofar as letters are only an
approximation of the phonemic components which underpin spoken language. The system
that truly underpins language is fundamentally about speech.
A proper-name (PN) is in reality a row of phonemes2 which represent the sounds of that PN as
an utterance. Many of these phonemes will correspond to letters in the alphabet but others are
represented by letter clusters. English, for example, has a number of phonemes which cannot
be represented by a single letter such as {ch, ph, sh, th} and it can be argued that some
English vowels too may be represented by letter clusters e.g. {ai, ea, ee, etc…}, the list is
incomplete. It is not our intention to argue the case for a defined and generally agreed
phoneme set for English or any other language but rather to suggest that expanding our set of
symbols beyond the alphabet to include common letter clusters which are used consistently to
represent particular sounds is beneficial to the task of identifying PNs in text.

Order
If phonemes may be considered the building blocks of names there is a second element of
equal importance. Order is critical in rendering and recognising names. Consider ‘David’. We
might parse David into five components {D.a.v.i.d} but without taking into account that these
components are ordered we get little benefit. ‘additive’, for instance, has all of the
components found in ‘David’ but there is no relationship between the two words.

A PN then, is constructed from letters and letter clusters each of which may be taken to
represent a phoneme and all of which are ordered to form the PN as a whole. A PN is, in other
words, an ordered set of phoneme items.

1 There are occasional exceptions where names carry root meanings which are central to the narrative and
translators decide to translate e.g. י ֑ א עַמִּ Not-My-People [GNB, 1976] – Hos – [Kittel, 1997] (Lo-Ammi) לֹ֣
1.9.

2 In this paper we use the word phoneme in a less than formal sense to describe an alphabetic character or
cluster of characters that consistently represents a particular sound in a language. For a more formal
discussion of phonemes see: [Davenport & Hannahs, 2010:115-132] or [Ladefoged, 2001:23-24].

123

3 Finding a name in text

Since PNs do not typically translate but are reproduced as a phonemic pattern in the translated
text it follows that finding a PN in a text is an exercise in identifying the phonemic
components of the PN ordered as we might expect them to be. Thus if we begin with a model
representation of a name such as ‘David’ we might hope to find a similarly ordered set of
items representing those sounds in another language. One of the early questions a Bible
translation team must address is what they consider their ‘model’ to be for names. There is,
rightly, an emphasis in Bible translation on returning to the Hebrew and Greek base texts but
this is not always helpful. The reality on the ground may well be that the people group for
whom the new translation is being prepared have had access to other translations of the Bible
in regional lingua franca. Thus, for example, a Swahili translation may well choose to
transliterate the name Abraham as Ibrahimu3 rather than the more naturally Swahili
Abrahamu. Such decisions recognise the need to work with existing expectations within the
community rather than seeking to impose a purist view.
Where a team elects to transliterate directly from the base texts we must first render the model
name into the same alphabet as the target text. This is done via a transliteration matrix which
implements a simple Markov Chain4 to record the probability of a particular base language
phoneme being represented as a certain target language phoneme. Standard transliteration
matrices exist for many pairs of scripts which can be adapted for particular language pairs. As
the system identifies pairs of model and target names the individual transliterations these
pairings represent are fed back into the matrix to improve subsequent transliterations.
Where our model and target texts share an alphabet we might hypothesise that David and
Daavidille (Finnish, allative [Karlsson, 1999:119]) are references to the same PN by virtue of
the two renderings sharing a common sequence of phonemes {D.a._.v.i.d_}. The order of
these matched items is crucial to the identification as too is the proximity of each successive
matched item to its predecessor. We should also note that we have preserved the leading
capital in our examples so far but in practice many languages do not use leading capitals with
PNs. In reality our matched set of phonemes needs to be {d.a._.v.i.d_} (we use ‘_’ to represent
lacunae covering one or more items).
The method adopted to assess how closely a word in a translation matches a model form of a
PN is an adaptation of a process presented at TC34 [Riding, 2012]. The process compares
candidates from the target text with a model form by ranging the model and candidate along
the two axes of a simple matrix with the candidate on the x axis and the model on the y axis.
Thus in our example above, David/Daavidille, we generate the matrix:

3 Swahili Union Bible [UBS, 1989]. In East Africa the influence of Arabic is strong, particularly closer to the
Indian Ocean coast as a consequence of centuries of trade with Arab merchants.

4 For a full discussion of Markov Chains see [Puterman, 2005]

1 2 3 4 5 6 7 8 9 10

∅ d a a v i d i l l e

1 d d d

2 a a a

3 v v

4 i i i

5 d d d

∅

Fig 1.

124

Taking origin at top left we now construct all the possible routes across the matrix via the
matched items taking due account of order by following the rule that a successor must have x
and y coordinates which are both greater than its predecessor. This results in six possible
solutions:

S1 {d(1,1), a(2,2), v(4,3), i(5,4), d(6,5)}
S2 {d(1,1), a(2,2), v(4,3), i(7,4)}
S3 {d(1,1), a(3,2), v(4,3), i(5,4), d(6,5)}
S4 {d(1,1), a(2,2), v(4,3), i(7,4)}
S5 {d(6,1), i(7,4)}
S6 {d(1,5)}

All of these sequences are possible solutions to our problem. Clearly, we need a way to assess
their relative merits. We do this by noting the degree of proximity for each pair of matched
items. In S1 we have a set of four matched pairs:

{(d(1,1), a(2,2)), (a(2,2), v(4,3)), (v(4,3), i(5,4)), (i(5,4), d(6,5))}
Reading across the x coordinates we discover proximities for each of pair of 1, 2, 1 and 1.
This measure of distance between each pair allows us to construct a score which represents
the closeness with which the sequence matches the model. Given that we can calculate the
value of a perfect match we express the value of this sequence as a probability with respect to
a perfect match value. A more detailed description of the process is given at Appendix A.

4 In practice

This processing is now in beta test as part of the UBS CogNomen (CGN) system. CGN sits
beside the translators’ editor, ParaTExt, and reviews the new text as it is created. Tables exist
which identify locations in the text where particular PNs might be present and using these
CGN loads the model forms of those names from a model names list. Once a user has finished
editing a verse CGN runs in the background and identifies candidates for each expected name
storing them, together with their score, in a growing table of PNs for the new text. Names
form part of a wider list of key terms which are carefully reviewed as a translation proceeds.
At such reviews CGN provides a list of all names found in the pericopes under review,
allowing the translator to approve renderings or not as they choose. Over time the translation
team will identify a threshold value above which CGN’s suggestions can be accepted with
confidence without the need for detailed review.
As the translation approaches completion CGN’s tables of PNs allow the team to focus on
areas where review is needed, greatly reducing the scale of the task. Additional benefits are to
segregate PNs from morphology based spelling checks in which context they represent little
more than noise. It has been estimated that if CGN is used consistently throughout the lifetime
of a project a saving of up to 5% of the time needed for the translation can be made.

5 Wider application

The application described here is particular to Bible translation but we believe that there are
wider contexts for this processing. We know already that the process can automatically
analyse complex discontinuous morphologies [Riding, 2012] and experiments suggest that
progress might also be made in the analysis of syntax structures using a similar technique.
Given that at word level this process represents a way to identify cognate forms which share a
similar phonemic pattern we also hope to explore the automatic creation of technical indexes
and glossaries.

125

6 Conclusion

The process described in this paper is able to analyse linguistic structures in a number of
different and, at first sight, apparently unrelated contexts. That a single analysis process can
be used in the context of phonemic and morphemic word formation, and possibly in syntax
analysis, is telling us something significant about language. In every context this process
relies upon identifying not only individual items within a text stream but also the order in
which they are encountered. The moment we write something down we have removed it from
the event stream of time. A document is not really a moment in time but a recording of a
linguistic event stream conveying meaning not only in its individual components but by the
order in which we encounter them.
CogNomen represents just one context in which stream based processing can help translators
manage elements of large texts in an efficient and consistent manner.

Acknowledgements

We are indebted to United Bible Societies with whose support this work has been funded by
Every Tribe and Every Nation (ETEN). Thanks are also due to Oxford Brookes University for
continued access to their computing and library services.

References

Auden, W H (1970) A Certain World, The Viking Press, New York.
Bible Society eds. (1976) Good News Bible. BFBS
Blumenthal, F (2009) Biblical Onomastics: What's in a name? Jewish Bible Quarterly Vol. 37(2) 124-128
Chinn, J (1993) "The Politics of Language in Moldova", Demokratizatsya 1993 Vol. 2(2) pp. 309–315
Davenport, M and Hannahs, S J (2010) Introducing Phonetics and Phonology, 3rd Ed. Routledge.
Davidson, B (1981) The Analytical Hebrew and Chaldee Lexicon, 3 rd Ed. Bagster, London.
Karlsson, F (1999) Finnish: An essential grammar, Routledge, London.
Kittel, R. (Ed.) (1997) Biblia Hebraica Stuttgartensia, Deutsche Bibel Gesellschaft, Stuttgart.
Krasovec, J (2010) The Transformation of Biblical Proper Names, T & T Clark International
Ladefoged P (2001), A Course in Phonetics, Harcourt, Florida
Puterman, M L (2005) Markov Decision Processes: Discrete Stochastic Dynamic Programing. Wiley Series in

Probability and Statistics, John Wiley & Sons, New York.
Riding, J D (2012) Hunting the Snark - the problem posed for MT by complex, non-concatenative morphologies.

In Proceedings: Translating and the Computer 34, ASLIB.
United Bible Societies eds. (1989) The Holy Bible in Kiswahili, Union Version, UBS

126

Appendix A: Processing Model

The Match Matrix

We begin by arranging the two items to be tested along the axes of a two dimensional matrix
(fig 1). This example tests an English model Abraham against a Bantu candidate Abulahamu.
Each word is bounded by the null set marker: ∅ with each cell numbered from 0 on each axis.
Any individual character matches between the two names are marked by inserting the
matched character into the cell at the intersection of that characters position in the two names.
In this example the matched character ‘b’ is found in each word and the intersection of its
position in each name is at coordinates (2,2) on the matrix. Likewise, the character ‘h’ is
found in both names and the intersection of its position in the two names at at (5,6). ‘m’
similarly is marked at (7,8). The character ‘a’, however, appears three times in each name and
so is matched at nine positions on the matrix:

{(1,1), (1.5), (1,7), (4,1), (4,5), (4,7), (6,1), (6,5), (6,7)}

Although we have identified all the individual
character matches between the two names the
machine needs a way to determine what might
be the best sequence of these matches between
the two names. The key to this is sequence.
Character matches can only be considered valid
if they are in sequence. For a match to be
sequential to its predecessor in the sequence
both the x and y coordinates of its match must
be greater than those of its predecessor. Thus
a(1,1) → b(2,2) is a valid sequence but a(1,1) ↛
a(1,5) is not as both matches share a common x
index.

n.b. As much of this appendix will be taken
up with descriptions of match sequences we
shall henceforward abandon the traditional
syntax for listing x,y coordinates as it will soon become clumsy in favour of: c y

x

where ‘c’ represents the matched character, ‘x’ its x index and ‘y’ its y index.

Our rule of sequence serves also to prohibit match sequences where a successor is not the
immediate successor. This whilst b2

2→ h6
5 obeys the rule that both coordinates of the

successor must be greater than the coordinates of the predecessor h6
5 is not the immediate

successor of b2
2 and so is not truly sequential. The best sequence from b2

2 is in fact a5
4

which then leads us on to h6
5 . We have in fact found a three character sequence:

b2
2→ a5

4→ h6
5 . Closer examination of the matrix shows us that this sequence is in fact part of a

longer sequence beginning at a1
1 (we disregard the null set boundary markers for clarity).

Starting the sequence at a1
1 gives us a match sequence across the whole matrix of:

{a1
1 →b2

2 →a5
4 → h6

5 →a7
6→ m8

7} . This looks like the best match sequence across the whole matrix
but it is not the whole story. There are in fact seven possible match sequences across the
matrix (disregarding sequences of cardinality < 2):

0 1 2 3 4 5 6 7 8

0 ∅ a b r a h a m ∅

1 a a a a

2 b b

3 u

4 l

5 a a a a

6 h h

7 a a a a

8 m m

9 u

10 ∅ ∅

fig. 1

127

0 1 2 3 4 5 6 7 8

0 ∅ a b r a h a m ∅

1 a a a a

2 b b

3 u

4 l

5 a a a a

6 h h

7 a a a a

8 m m

9 u

10 ∅ ∅

fig. 7: S 6{a1
4 → h6

5 → a7
6 →m8

7}

0 1 2 3 4 5 6 7 8

0 ∅ a b r a h a m ∅

1 a a a a

2 b b

3 u

4 l

5 a a a a

6 h h

7 a a a a

8 m m

9 u

10 ∅ ∅

fig. 6: S 5{a1
1→ b 2

2→ a5
6 →m8

7}

0 1 2 3 4 5 6 7 8

0 ∅ a b r a h a m ∅

1 a a a a

2 b b

3 u

4 l

5 a a a a

6 h h

7 a a a a

8 m m

9 u

10 ∅ ∅

fig. 5: S 4{a1
1 → b2

2 → a5
4 →h6

5 →a7
6→ m8

7}

0 1 2 3 4 5 6 7 8

0 ∅ a b r a h a m ∅

1 a a a a

2 b b

3 u

4 l

5 a a a a

6 h h

7 a a a a

8 m m

9 u

10 ∅ ∅

fig. 4: S3{a1
1 → b2

2 →a7
4 →m8

7}

0 1 2 3 4 5 6 7 8

0 ∅ a b r a h a m ∅

1 a a a a

2 b b

3 u

4 l

5 a a a a

6 h h

7 a a a a

8 m m

9 u

10 ∅ ∅

fig. 3: S 2{a5
1 → h6

5 →a7
6→ m8

7}

0 1 2 3 4 5 6 7 8

0 ∅ a b r a h a m ∅

1 a a a a

2 b b

3 u

4 l

5 a a a a

6 h h

7 a a a a

8 m m

9 u

10 ∅ ∅

fig. 2: S 1{a5
1 → a7

4 →m8
7}

128

Given seven valid match sequences across the
matrix (figs. 2-8) how is the machine to decide
which is best? A trivial solution is to take the
longest as the one likely to be the best but there
are circumstances in which this may fail, for
example:

1. Strongly agglutinative languages may
stack prefix and suffix morphemes
around a stem such that the longest
match sequence may not identify the
proper-name but elements from a
common template. In these
circumstances, we rely on the core
proper-name phonemes being matched
closely and their signal will outweigh
that of any morpheme structures.

2. It is possible that no one sequence will
be longer than the rest i.e. there may be a number of sequences all matching the same
number of characters. In these circumstances we need a way to choose between them.

Evaluating Match Sequences

Given the seven possible match sequences in our example we might ask what it is that leads
us to look more favourably on a sequence that begins {a1

1 →b2
2 →a5

4 ...} than one beginning
{a1

1 →h6
5 →a7

6 ...} or {a1
1 →b2

2 →a7
6 ...} . We observe that our confidence in a pair of matches

being sequential is based on the distance between their x and y coordinates on the matrix.
Where a pair of matches are proximal (ideally adjacent) in one or both of the words our
confidence rises. Conversely, there will come a point when the distance between a matched
pair in one or other of the words is such that we have no confidence that the pair is part of a
valid sequence. This threshold distance can become a useful processing limit. We will call it
theta – θ. The value of theta is language dependent insofar as languages with longer average
word lengths may require a higher value for theta but for most languages setting theta as 20 is
sufficient. Let us return to our three example sequence fragments quoted above:

1. {a1
1 →b2

2 →a5
4 ...}

2. {a1
1 →h6

5 →a7
6 ...}

3. {a1
1 →b2

2 →a7
6 ...}

Taking example 1. we construct a set of ordered pairs which represent the pairs of matched
characters along the sequence: {(a1

1 , b2
2) ,(b2

2 , a5
4)etc...} The proximity of the successor to the

predecessor in each pair may be expressed as the difference between the x and y coordinates
for each character in the pair. Thus for (a1

1 , b2
2) the difference between the x coordinates for

each character is: ∣a x−b x∣ (we will call this dx) and for the y coordinates: ∣a y−b y∣ (which
we name dy). For this pair ∣a1−b2∣=1 and ∣a1−b2∣=1 so dx and dy are both 1. For the
second pair in the sequence (b2

2 , a5
4) dx = 2 and dy = 3. We need to combine these two

values such that the larger of the two has the greatest effect on our assessment of proximity.
We ensure this as follows by defining d

1
 as the greater of dx and dy: d 1=max (dx , dy) and d

2

as the smaller of the two values: d 2=min(dx , dy) . We now combine the two values to form a

single value d thus: d=θ−(d 1+ (1
θ⋅d 2)) .

Working this for our example we find that for the first pair (a1
1 , b2

2) d
1
 and d

2
 are both 1 and

so we calculate d for this pair as: d=10−(1+ (1
10

⋅1))=8.9 . For the second pair (b2
2 , a5

4) dx =

0 1 2 3 4 5 6 7 8

0 ∅ a b r a h a m ∅

1 a a a a

2 b b

3 u

4 l

5 a a a a

6 h h

7 a a a a

8 m m

9 u

10 ∅ ∅

fig. 8: S 7{a1
4 →a5

6 →m8
7}

129

2 and dy = 3 so d
1
 = 3 and d

2
 = 2. d for this pair is therefore: d=10−(3+ (1

10
⋅2))=6.8 .

If we apply this to example 2: {a1
1 →h6

5 →a7
6 ...} we find that for the first pair (a1

1 , h6
5) d

evaluates to 4.6 and for the second pair (h6
5 , a7

6) d evaluates to 8.9. Similarly for our third
example {a1

1 →b2
2 →a7

6 ...} d for the first pair evaluates as 8.9 and for the second pair as 4.6.
For the value v of an entire match sequence dS we simply calculate the value for each pair of

matches in the sequence and then take the product of those values: v=∏
i=1

∣dS∣−1

θ−(d 1+ (1
θ⋅d 2))

For the seven sequences generated by our example match this returns the following values:

dS
1
 = 46.92

dS
2
 = 467.34

dS
3
 = 294.77

dS
4
 = 42664.72

dS
5
 = 350.04

dS
6
 = 388.13

dS
7
 = 40.02

It can be seen at once that we have a clear winner. When identifying a proper-name from
amongst the other words around it we can count ourselves spectacularly unlucky should
another word return a match sequence of similar strength to that of the name. Clearly, the
shorter the name and the longer the average word length in the language the greater the
chance of a spurious match but experiment suggests that for the vast majority the match-
sequence generated by the proper-name will be strongest.
To express the match value for a sequence as a probability we simply calculate the value of a
perfect match p for the shorter of the two words: p=8.9∣dS∣−1 and then divide v by p to render
the result as a probability between 0 and 1. So for our two words abraham and abulahamu the
best possible match sequence would be 6 pairs (|abraham| - 1) matching every letter of
abraham as adjacent in both items: which gives p = 496981.29. Our best sequence dS

4
 gives v

= 42664.72 and P (x , y)= v
p

gives a probability of 0.85 for the match being valid. The next

best sequence dS
2
 we find gives P = 0.009.

130

Appendix B: Mapping Discontinuous Structures in Natural Language – Results

Use Case 1: Proper Name Identification

Model Name Finnish Fulfulde (Niger-Congo) Tojolabal (Mexico-Mayan)

Abiathar Abjatar Abjatarin
Abjatarille Abjatarilta

Abiyater Abiatar
Abiatari

Aziel Asielin Ajiyel Azieli

Boaz Boas
Boasin
Boasille

Not found Booz
Boozi

Chedorlaomer Kedorlaomer
Kedorlaomerin
Kedorlaomeria

Kedorlayomer Kedorlaomeri
Kedorlaómeri
kedorlaómeri
kedorla'omer

Darius Dareios
Dareioksen
Dareiokselle

Dariyus Darío

David Daavid Daavidille
Daavidia Daavidista
Daavidiin Daavidilta
Daavidkin Daavidilla
Daavidin

Daawuda David Dabid
Dabidi davidi
Davidi Dvidi
Davida

Elimelech Elimelek
Elimelekin
Elimelekille

Elimelek Elimelec
Elimelek
Elimeleki

Ezekiel Hesekiel
Hesekielille

Ejekiyel Ezequiel
Ezequieli

Festus Festus Festuksen
Festukselle

Festus Festo

Gehazi Gehasi Gehasin
Gehasia Gehasille

Geehaji Guehazi

Haman Haman Hamanista
Hamanin Hamania
Hamanille

Haman Amán
Amani
Amána

Jezebel Isebelin
Isebel
Isebelille

Ijabel Jezabel
Jezabeli
Jezreel

Lo-Ruhamah Lo-Ruhama
Lo-Ruhaman

Not found Lo-ruhama

Methuselah Metuselah
Metuselahin

Matusala Matusaleni
Matusalen

Nebuchadnezzar Nebukadnessar
Nebukadnessarille
Nebukadnessarin
Nebukadnessaria

Buutunasar Nabucodonosor
Nabucodonosori

Peninnah Peninna Peninnalla
Peninnalle

Peninna Peniná

Rehoboam Rehabeam
Rehabeamin
Rehabeamista
Rehabeamille

Robo'am Roboami
Roboam

Simon Simon
Simonin
Simonia
Simonille

Simon Simon
Simón
Simoni

Timothy Timoteus Timoteuksen
Timoteus-niminen Timoteusta
Timoteukselle

Timote Timoteo

Yahmai Jahmai Yakamay Jahmai

Zephaniah Sefanja
Sefanjalle

No text No text

131

Use Case 2: Non-Concatenative Morphology Analysis (Classical Hebrew)

The text of the first 11 chapters of the book Genesis [Kittel, 1997] was used as input data.
Results are presented using Michigan-Claremont encoding using ‘_’ to represent lacunae in
patterns.

First Iteration Output:

Morphology:
Template PoS
T.O_A_:NFH Qal. fut. 3ppf
T.O_A_ Qal. fut. 2psm / 3psf
TO_:_W. Qal. fut. 2ppm
TO_A_ Qal. fut. 2psm / 3psf
Y.I_:_:_W. Qal. fut. 3ppm
Y.O_:_W. Qal. fut. 3ppm
Y.O_A_ Qal. fut. 3ppm
YI_:_:_W. Qal. fut. 3ppm
YO_A_ Qal. fut. 3psm
_.E_E_ n. m. coll.
_:E_O_ Qal. imp. s. m.
_:_F_IYM n. m. p.
_:_F_ Qal. pret. 3psm
A:_W. Piel fut. 3ppm
_E_E_ n. m. coll.
F:_FH Qal. pret. 3psf
F:_W. Qal. pret. 3pp
F:_ Qal. 3psm
_F_A_:T.F Qal. pret. 2psm
_F_A_:T.IY Qal. pret. 1ps
_F_A_ Qal. 3psm
_F_F_ Qal. pret. 3psm
I:_FH Hiph. pret. 3ps
I:_IY Hiph. pret. 1ps
I:_W. Hiph. pret. 3pp
O:_FH Qal. part. act. f.
O:_IYM Qal. part. p. m. abs.
_O_A_ Qal. fut. 1ps

 verification: [Davidson, 1981]

Stems:
_$_B_ שׁב _L_Y_L_ ליל
_$_B_(_ שׁבע _M_L_)_ מלא
_$_B_R_ שׁבר _M_L_K_ מלך
_$_L_$_ שלש _M_N_X_ מנח
_$_L_X_ שלח _M_R_)_ מרא
_$_M_(_ שמע _N_$_)_ נשא
_$_M_N_ שמן _N_$_M_ נשמ
_$_M_R_ שמר _N_B_L_ נׁבל
_$_P_X_ שׁפח _N_P_L_ נׁפל
_$_R_C_ שרץ _N_S_(_ נסע
_&_M_._ שמ _Q_B_R_ קׁבר
_&_M_L_ שמל _Q_L_L_ קלל
_(_B_D_ עׁבד _Q_R_B_ קרׁב
_(_B_R_ עׁבר _R_K_$_ רכש
_)_K_L_ אכל _R_P_)_ רׁפא
_)_M_R_ אמר _X_P_R_ חׁפר
_B_R_K_ ׁברך _Y_C_)_ יצא
_C_D_Q_ צדק _Y_K_L_ יכל
_D_B_R_ דׁבר _Y_L_D_ ילד
_G_D_L_ גדל _Y_R_)_ ירא
_H_L_K_ הלך _Z_Q_N_ זקנ
_L_Q_X_ לקח

132

