
The Application of FORTRAN to Automatic Translation

Paul O. Samuelsdorff

I. Introduction

A multitude of problem-oriented programming languages are being
created in order to facilitate programming in various fields.Th~se
languages have two advantages for non-programmers who need a com-
puter for solving their problems: I. they are not forced to spend
much time on learning a complicated machine language; 2. they do
not necessarily have to alter their programs when they are obliged
to use a different machine. These advantages seem to justify the
labour of writing a multitude of compilers that translate each
problem-oriented language into the machine language of each machine.

The existence of various problem-oriented languages, however, makes
it difficult for the users of computers in various fields to ex-
change their experience. In addition there is the danger that a
certain machine possesses only a limited number of compilers, and
that therefore a program may have to be rewritten when for some
reason or other a different machine has to be used. The question
therefore arises whether it is not possible to have the advantages
of problem-orlented languages without multiplying their number.

This paper wants to show that one of the most widespread problem-
oriented languages, originally created for mathematicians, may
efficiently be used for non-numerical data-processing, if the
necessary subroutines are available.

Another object of this paper is to give a concrete picture of how
linguistic problems may be handled by the computer to those readers
who have only a theoretical knowledge of data-processing. For the
benefit of these readers a few definitions will be given, so that
the examples will be understood by everybody.

bit = the smalles unit of information that may be stored in the
computer, having one of two values symbolized by "I" or "O".

character = a letter of the alphabet, a decimal digit, or one of 11
special signs including the blank. A character is re-
presented in the computer used for our examples (IBM
709@) by a combination of 6 bits.

machlne-word = a string of six characters (represented in the com-
puter by a combination of 36 bits).

location = the place in the computer where a machine-word is stored.

array = a combination of locations treated as a unit.

subroutine = a program that may be called up by another program for
performing a specific job.

function = a subroutine that in addition to handling a certain job
leaves a definite result in a certain location.

IF-statement ~ an instruction of the program that enables a branch -
ing to one of three different statements in the pro-
gram, depending on whether the value in the paren-
theses of this statement is negative, zero or posit-
ive. Its format is "IF (x) 1,m,n", where 1,m and n
are the numbers of the statements to which the pro-
gram may branch.

The application of a mathematically oriented programming language
to linguistic problems will be exemplified by a Hebrew-English
translation project written in FORTRAN with the aid of subroutines
programmed at the Deutsches Rechenzentrum in Darmstadt. These sub-
routines handle data smaller than the machine-word (single bits,.
single characters and their concatenation), the non-numerical
machine-word and data larger than the machine-word.

We shall now explain the subroutines used in our project and give
examples of their application. In order to avoid a repeated ex-
planation of the variables used in the formats of the subroutines,
we introduce the following conventions.

M = a positive integer not greater than 36, referring to one
of the 36 bits of a machine-word.

WORD = the location of a machine-word to be handled by the sub-
routine. If two machine-words are to be handled, we dis-
tlnguish between WORD1 and WORD2.

BLOCK ~ the location of the first machine-word of an array contain-
ing the characters or the string to be handled by the sub-
routine. If two arrays are involved, we distinguish between
BLOCKI and BLOCK2.

NA = a positive integer indicating the position of the first
character of a string in the array BLOCK to be handled by
t~ subroutine. If two strings are to be handled, we dis-
tinguish between NA1 and NA2.

N = an integer, usually positive, indicating the number of
characters to be treated by the subroutine. ~will be neg-
ative if we count the characters from NA to the left.

TABLE = an array containing characters to be used by a subroutine.
This table is prepared before the subroutine is called.

The subroutines will be described in the order of the units they
handle, starting from the smallest units.

2. Bits

2.1. PAKR

This routine facilitates the codinE of ~rammatical information.
Each bit of a 36-bit machine-word represents a certain kind o~
grammatical information. Its value is "I" when this information
applies to the Hebrew word it is coordinated to and "0" when this
information does not apply. The 36 bits of one machine-word, stored
in the array CODE, represent the following information.

2

I = definite noun
2 = indefinite noun
3 = construct state

= pronoun
5 = prepositional phrase
6 = preposition
7 = adverb
8 = numeral
9 -- indefinite adjective
10 = definite adjective
11 = indefinite participle
12 = definite participle
13=ZH
I~ = AT
15 = AUTU, AUTH, AUTM, AUTN
16 = KI, AM, KAWR
17 = GM, RQ
18= LA

19= IW
20 = verb
21 = infinitive
22 = comma
23 = KL
2@ = present
25 = past
26 = future
27 = copula
28 = WL
29 = W
30=U
31 = masculine singular
32 = feminine singular
33 = masculine plural

= feminine plural
35 = no indefinite article
36 = no definite article

(The words in capital letters are Hebrew words that need special
treatment.)

It would be very complicated to work out the figure to be stored
in a certain location for each possible combination of grammatical
information. Let us take as an example a masculine singular verb
in the past tense. The machine-word coordinated to this verb will
have a "I" in bit-positions 20, 25, and 31, and a "O" in all other
blt-positions: 000000000000000000010000100000100000. This is the
binary equivalent of the decimal number 69 664. Instead of working
out this figure, we code a "I" into the 2Oth, 25th and 31st column
of a punched card and leave the other columns blank. The first 36
columns of the card are then read into an array of 36 locations.
The 36 machlne-words of this array are subsequently packed with
the aid of the subroutine PAKR into one location (containing 36
bits), the ones and blanks of the 36 columns on the card resulting
in ones and zeros in the respective bits of one machine-word.

2.2. KBIT

This subroutine is a function and identifies single bits. If we
want to find out whether a word possesses a certain grammatical
feature, we have to ask whether the value of the respective bit
of the machine-word that contains the desired grammatical inform-
ation is "I" or "0".

Format: J = KBIT(WORD,M)

The result stored in the location J will be "I" or "0", depending
on the value of the respective bit.

The subroutine EBIT enables the control to cause a branching to
the specific part of the program needed for the treatment of a
member of a certain word-class. A computed GOTO after the dic-
tionary Iooku~ handles this process very efficiently, as seen in
the following example.

3

79 DO 90 L ~ 1 25999,90 ,
IF 8O

80 GO TO (100,200,300,400,500,600,1000,75,920,910,1200.2000,
13000,$000,5000,1000,75,1000,1000,2200,1000,1000,700~,L

90 CONTINUE

The valne of the variable L must be computed before the GOTO state-
ment is reached. It must be a positive integer not greater than the
number of statement-numbers in the parentheses of the GOTO state-
ment, since it determines which statement of the program is to be
executed next. L is computed in statement 79. It assumes the values
from 1 to 23 as long as the program reaches statement 90. The IF-
statement between statement 79 and statement 80 causes the program
to branch to statement 90 as long as the Lth bit of the machine-
word containing the grammatical information of the Nth word of the
sentence equals zero. As soon as the Lth bit equals one, the pro-
gram will branch to statement 80. (999 is a dum~ statement number,
since the result of KBIT will never be negative.) Since we are
examining the machine-word found in the dictionary together with
the Hebrew word we were ~ooking up, statement 80 will cause a branch-
ing to that part of the program that handles members of the word-
class this Hebrew word belongs to.

An IF-statement using the subroutine KBIT may also enable the pro-
gram to branch conditionally during the syntactic analysis or the
translation process and thus make the solution of ambiguities poss-
ible. Specific parts of the program for the solution of ambiguities
are reached by statements examining the bits of machine-words loc-
ated in the array SCODE. For instance for ambiguous verbs the state-
ment will be:"2200 IF (KBIT(SCODE(N)~I)) 999,2210,25OO". The part
of the program solving the ambiguity of the verb startsat state-
ment 2500. The other "1"-bits of SCODE, coded with a verb or a
noun, indicate how a preposition is to be translated.

2.3. LBIT

This subroutine permits the conversion of "O"-bits into "1"-bits
and vice versa. Its format is similar to that o--~IT, namely

J = LBIT(WORD,N)

~he result stored at J will be "1" when "0" has been replaced by "1"
and "0" when "1" has been replaced by "0".

LBIT is used for storing or deleting grammatical information during
the analysis process.

An example is the indication of definite nouns or prepositional
phrases during the dictionary lookup. Since in Hebrew the definite
article and some of the prepositions consist of one letter that
is attached to the following noun, this letter has to be stripped
before the word can be found in the dictionary. We use the subroutine
LBIT during the dictionary lookup for storing "1" In the first bit-
position of CODE(N)and deleting the "1" in the second bit-posltion
if the Nth word of the sentence is a noun preceded by the definite
article, or "1" is stored in the fifth bit-position, if the Nth
~ord of the sentence is a noun preceded by a preposition.

4

~. Single characters

3.1. IFPP (find first position)

This subroutine makes the identification of s,in~le characters, poss-
ible.

Format: J = IFFP(BLOCK,NA,N,TABLE,IND)

This function finds the first position of a character in the array
BLOCK which is equal to a character of TABLE if IND = I or unequal
to amy of the characters of TABLE if IND = O. The search starts
from the NAth character of the array. It goes to the right if N is
positive and to the left if N is negative.

One of the characters we frequently want to identify is the blank,
in order to find word boundaries. This subroutine is used, for in-
stance, when we want to insert an adjective between a preposition
and the following noun. We have to look for the blank after the
preposition in order to insert the adjective in the right place.
An example for a negative N will be given in section 6.3.

3.2. SEPO (seek positions)

This subroutine traces the positions of occurrence of a character
(or a member of a set of characters) stored in a table.

Format: CALL SEPO (BLOCK,NA,N,TABLE,NSP,NFIND)

The subroutine SEPO examines N characters in the array BLOCK,
starting from the NAth character. The number of characters found
to be equal to the characters stored in TABLE is stored in the loc-
ation NFIND. The actual positions of these NFIND characters are
stored in the array NSP.

If the only character stored in the table is the blank, dictionary
lookup will be very convenient, since the occurrence of word bound-
aries may be stored for a whole text. NSP(I) will contain the posi-
tion of the blank after the Ith word of the text. The next word to
be processed will therefore easily be found. Its first character
willy,be in the first position after the one indicated by the con-
tents of NSP(I) and its length will be NSP(I+I) - NSP(1) - I.

3.3. ICPC (compare character)

This subroutine compares a character with a set of characters stor-
ed in a table.

Format: J = ICPC(BLOCK,NA,TABLE,NTAB)

NTAB is a positive integer stating with how many characters of
TABLE we want to compare the NAth character of the array.

The result of this function, stored in J, is zero if the NAth cha-
racter is unequal to any of the characters of the table, otherwise
it is a positive integer not greater than NTAB, indicating that
the NAth character of the array BLOCK is equal to the Jth character
of TABLE.

5

In the following example we see how this subroutine is used for
choosing between the English indefinite articles "a" (WORD(I)) and
"an" (WORD(5)).

1476 K = ICPC (EWD(1,N),I,VOC,5)
1477 IF (K-l) 1905.1910,1915
1905 ENG(1 ,I) = WORD(1)

I = I+1
GO TO 1480

1910 K = ICPC (EWD(1,N),5.VOC,5)
IF (K) 1905,1915,1905
ENG(1 ,I) ~ WORD(5)
I = I+I
GO TO 1480

EWD is the array where the English words were brought after the
dIB~ionary lookup and ENG where they are brought d~ring the ana-
lysis. The first five locations of the table VOC contain the vowels
U, O, I, E A. If the first letter of the noun in question, stored
in EWD(1 ,N~, starts with a consonant, K in statement 1476 will be
zero, and K-1 in statement 1477 will be negative. If the first
letter is U, K-1 =0, and if the first letter is any other vowel t
K-1 will be positive. That means, that for any first letter of the
noun, except U, statement 1477 decides whether "a" or "an" will be
chosen. In the case of U the choice depends on the third letter of
the noun, found in statement 1910. "A" will be chosen if the third
letter is a vowel, and "an" will be chosen if it is a consonant.
This routine will, of course, still have to be refined for the case
when the prefix "un" is followed by a vowel.

4. Machine-word parts

4.1. CSW0 (compose word)

This subroutine, composing a machine-word from two parts of two
other machine-word's, facilitates the insertion of short words like
prepositions or the definite article.

Format : S = CSWO (WORI~ ,WORD2,K)

As a result of this function the first K characters of the machine-
word in location WORDI is composed with the last 6 - E characters
of the machine-word in location WORD2. The resulting machine-word
is stored in location S. S may be identical with WORI~ or WORD2.
We see an example of the application of this subroutine in t~he part
of the program that translates a date into English.

575 EWD(1 ,IL) = CSW0 (WORD(50),EWD(I ,IL),2)
K = IL-I
CALL SHA2(EWD(1 ,K) ,1,52,4,1)
EWD(1 ,K) -- CSWO (WORD(40) ,EWD(1 ,K), 5)
CALL SHA2 (EWD(1 ,K) ,1,55,5,1)
GO TO 550

In statement 575 the preposition "of" (WORD(50)), chosen in this
case as the translation of the Hebrew p~epcsitional prefix B, is
composed with the first part of the name of the month which follows
it. The statements following statement 575 translate the Hebrew B
before the day of the month by "on the" (WORD(52) and ~ORD(~O)).
The shifting subroutine SHA2 will be explained in section 6.2.

5- Machine-words

5.1. CPWO (compare words)

A special subroutine for comparing non-numerical machine-words is
necessary for ignoring the sign-bit. When we make a mathematical
comparison between two machine-words (subtracting one word from the
other) the first bit is interpreted as a sign (0 = + and I = -).
This will give a wrong result when we compare a word starting with
a letter between A and I with a word starting with a letter between
J and Z, since the former have "0" in their first bit-position,
while the latter have "I"

In non-numerical data-processing we therefore have to regard the
machine-word as an entity of six characters, where the first bit
of the first character is part of the binary number representing
the whole machine-word.

Format: S = CPWO(WORDI,WORD2)

The machine-words at the two locations WORDI and WORD2 are compared.
S = I if the contents of WORD1 is greater than the contents of
WORD2, S = 0 if the two machine-words are equal, and S = -I if the
contents of WORDI is smaller than the contents of WORD2.

6. Units lar~er than the machine-word

6.1. CPST (compare strings)

This routine differs from CE~O in enabling us to define the number
of characters (N) that we regard as the entity to be compared.

Format: CPST(BLOCKI,NAI,BLOCK2,NA2,N)

The result is similar to that of the comparison of two machine-
words: S = I if the binary number representing the string in BLOCKI
(starting from NA1) is greater than the binary number representing
the string in BLOCK2 (starting from NA2), S = 0 if the two strings
are equal, and S = -I if the binary number representing the string
in BLOCKI is smaller than the binary number representing the string
in BLOCK2.

We shall see an example of this subroutine in the dictionary lookup,
section 6.5., where the words from the text will be compared to the
words in the dictionary.

6.2. SHA2 (shift in array)

This subroutine enables us to shift strinEs of variable length.

Format: CALL SHA2 (BLOCK,NA,N,NSHIFT,IND)

NSHIFT is the number of positions we want to shift a string of N
characters, starting from the NAth character in the array BLOCK.
NSHIFT may be a positive or a negative integer, depending on whether
we want to shift to the right or to the left. IND = I if we want
to fill the vacant positions by blanks and IND = 0 if we want to
fill them by zeros. We saw two examples of this subroutine in sec-
tion 4.1. Since we reserved six machine-words for one English word,
N+NSHIFT = 36 (6x6 characters).

6.5. 1OSS (compose strings)

With the aid of this subroutine we may brin K a string of variabl e
(N) from one arra~ (BLOCK1) ~o another (BLOCK2), starting

position in the two arrays (NA1 and NA2).

Format: J = ICSS(BLOCK1,NA1,N,BLOCK2,NA2):

The result of this function will be J = NA2+N.

This routine, combined with IFFP (section 5.1.), is very useful in
bringing the processed English sentence,word for word, into the out-
put area.

5060 NA2 = 1
DO 5075 L = 1,I
N = IFFP (ENG(1 ,L), 56,-36,TAB,O)+1
IF (N-l) 5075,5075,5070

5070 NA2 =ICSS (ENG(1,L),I,N,OUT,NA2)
5075 CONTINUE

I is the number of arrays, each consisting of six locations, that
contain the English words after the analysis process. IFFP has to
look for the first non-blank, since the English equivalent of a
Hebrew word may be a word group. For the same reason we have to
start the search from the 56th character, going left. We add 1 to
the result of the function, so that the English word (or word group)
is stored ~ith an additional blank and the result (NA2) of the func-
tion ICSS may serve as a parameter of the same function in the next
round. The IF-statement before 5070 is a safeguard against the Eng-
lish word being blank.

6.4. A subroutine changing the word order was added to the existing
subroutines. Since in Hebrew the adjective always follows the noun
it qualifies, we have to change the word order in English.

Format: OALLADT(N)

N is a positive integer indicating that the adjective is the Nth
word in the sentence. It changes position (together with its grammar
codes) with the (N-1)th word. This subroutine was entirely written
in FORTRAN, without a~ing subroutines.

6.5. The following subroutine was written for the dictionarF lookup
of the translation project. The words in the dictionary are alpha-
betically ordered, with the exception of the blank, that stands
between R and S, because of the value of its binary equivalent.
For this reason, the blank following the word in the text is added
before the word is compared with the dictionary entries (HW).

The following parameters are used by the subroutine:

NA = The position of the first letter of the word in the text that
is looked up in the dictionary.

NZ = The number of characters of the word.

IL = The ordinal number of the word in the sentence.

M = The number of entries in the dictionary.

8

5" Machine-words

5.1. CPW0 (compare words)

A special subroutine for comparing non-numerical machine-words is
necessary for ignoring the sign-b~t. When we make a mathematical
comparison between two machine-words (subtracting one word from the
other) the first bit is interpreted as a sign (0 = + and 1 = -).
This will give a wrong result when we compare a word starting with
a letter between A and I with a word starting with a letter between
J and Z, since the former have "0" in their first bit-position,
while the latter have "1"

In non-numerical data-processing we therefore have to regard the
machine-word as an entity of six characters, where the first bit
of the first character is part of the binary number representing
the whole machine-word.

Format: S = CPW0(WORD1,WORD2)

f e machine-words at the two locations WORD1 and WORD2 are compared.
- 1 if the contents of WORD1 is greater than the contents of

WORD2, S = 0 if the two machine-words are equal, and S = -1 if the
contents of WORD1 is smaller than the contents of WORD2.

6. Units larger than the machine-word

6.1. CPST (compare strings)

This routine differs from CPW0 in enabling us to define the number
of characters (N) that we regard as the entity to be compared.

Format: CPST(BLOCK1,NA1,BLOCK2,NA2,N)

The result is similar to that of the comparison of two machine-
words: S = 1 if the binary number representing the string in BLOCK1
(starting from NA1) is greater than the binary number representing
the string in BLOCK2 (starting from NA2), S = 0 if the two strings
are equal, and S = -1 if the binary number representing the string
in BLOCK1 is smaller than the binary number representing the string
in BLOCK2.

We shall see an example of this subroutine in the dictionary lookup,
section 6.5., where the words from the text will be compared to the
words in the dictionary.

6.2. SHA2 (shift in array)

This subroutine enables us to shift strings of variable length.

Format: CALL SHA2 (BLOCK,NA,N,NSHIFT,IND)

NSHIFT is the number of positions we want to shift a string of N
characters, starting from the NAth character in the array BLOCK.
NSHIFT may be a positive or a negative integer, depending on whether
we want to shift to the right or to the left. IND = 1 if we want
to fill the vacant positions by blanks and IND = 0 if we want to
fill them by zeros. We saw two examples of this subroutine in sec-
tion 4.1. Since we reserved six machine-words for one English word,
N+NSHIFT = 36 (6x6 characters).

7

6.3. ICSS (compose strings)

With the aid of this subroutine we may bring a string of variable
(N) from one arra~ (BLOCKI) ~o another (BLOCK2), starting

from any position in the two arrays (NAt and NA2).

Format: J = ICSS(BLOCK1,NA1,N,BLOCK2,NA2):

The result of this function will be J = NA2+N.

This routine, combined with IFFP (section 5.1.), is very useful in
bringing the processed English sentence,word for word, into the out-
put area.

5O6O NA2 = 1
,,]~x)= 5075 L = ~ i

IFFP (ENG(1 ,L~, 56,-56,~-£B,0)+1
I~ (N-I) 5075,507~,5070

5070 NA2 = ICSS (ENG(I,L),I,N,OUT,NA2)
5075 CONTINUE

I is the number of arrays, each consisting of six locations, that
contain the English words after the analysis process. IFFP has to
look for the first non-blank, since the English equivalent of a
Hebrew word may be a word group. For the same reason we have to
start the search from the 56th character, going left. We add 1 to
the result of the function, so that the English word (or word group)
is stored @Ith an additional blank and the result (NA2) of the func-
tion ICSS may serve as a parameter of the same function in the next
round. The IF-statement before 5070 is a safeguard against the Eng-
lish word being blank.

6.4. A subroutine chan~in~ the word order was added to the existing
subroutines. Since in Hebrew the adjective always follows the noun
it qualifies, we have to change the word order in English.

Format: CALL ADT(N)

N is a positive integer indicating that the adjective is the Nth
word in the sentence. It changes position (together with its grammar
codes) with the (N-1)th word. This subroutine was entirely written
in FORTRAN, without a~±ng subroutines.

6.5. The following subroutine was written for the dictionar~ lookup
of the translation project. The words in the dlctio~ary are alpha-
betically ordered, with the exception of the blank, that stands
between R and S, because of the value of its binary equivalent.
For this reasen, the blank following the word in the text is added
before the word is compared with the dictionary entries (HW).

The following parameters are used by the subroutine:

NA = The position of the first letter of the word in the text that
is looked up in the dictionary.

NZ = The number of characters of the word.

IL = The ordinal number of the word in the sentence.

M = The number of entries in the dictionary.

8

The following two constants are set up in the subroutine:

N = the first power of 2 greater than M (in our case 1024)

J = 2Log N (in our case 10)

SUBROUTINE LOOKUP(NA,NZ,IL,N)
DIMENSION ~(# ,1024) ,HC(lO2#) ,HSC(102#) ,EW~6,102#) ,EC(1024) ,

I~EX~ (200) , CODE (50) ,SCODE(50), EWD (6,5O) ,ECOD~(50), ~ D (2)
COMMON TEXT,HW,CODE,SCODE,EWD,ECODE,HC,HSC,EW,EC,TESTWD
TESTWD(1) = 6HO00000
J=lO
N = 1024
NI = N/2

555 N = N-NI
54O J = J -1 .

i~ (J) 59o ,54a ,5~
544 NI = NI/2
545 IF (CPST (TEXT,NA,HW(1,N),NZ+I)) 535,575,555
555 N =N+NI
560 IF (M-N) 565,540,540
565 N = N-NI

NZ = ~ Z / 2

N = N+NI
3=3-1
IF I~ ~ 590,570,570

570 IF N) 565,544,544
575 CODE(IL) = HC(N)

SCODE(tL) = HSC(N)
DO 580 K = 1,6

580 EWD(K,IL) = EW(K,N)
ECODE(IL) = EC(N)
j = LBI~(~ES~WD(1) ,1)

590 RETURN
END

The lookup is done by the logarithmic method. We jump into the
middle of the array reserved for the dictionary and exclude the
lower half of the dictionary from further search if t~e textword
is greater than the word of the dictionary that it was compared
with, and exclude the upper half if the word was smaller than the
word in the dictionary. This process of halving the searched area
is repeated till either the word is found or J, which is decreased
by one before each search, is equal to zero. That means, we meyer
have to compare more than ten times to find a word in the diction-
ary or to know that it cannot be found. Statements 560 and 570 pre-
vent us from searching in the area between M and N. When the word
is found, the grammatical information from the dictionary and the
English translation of the Hebrew word is delivered to. the main
program and the first bit-position of TESTWD(1) is set "1".

If the word is not found in the dictionary, the program proceeds
as follows. If the first letter is one of the possible Hebrew pre-
fixes (found by ICPC), the word is looked ~p again, with Ehe first
letter stripped and NZ diminished by one. The result of the func-

tion ICPC is used by a computed GOTO for a branching to that part
of the program that will prepare the insertion of the definite
article or the solution of the ambiguity of the preposition.

If the first letter is none of the possible prefixes and the word
is not found in the dictionary, the program will use the Hebrew
original in the translationand print out a message that the word
was not found.

7. Conclusion

Apart from the subroutines described above, there are additional
subroutines that facilitate information retrieval and other lingu-
istic data-processing. Statistical linguistics may obviously be
efficiently treated by a mathematically oriented programming langu-
age.

This paper is not supposed to be a plea for FORTRAN, but for a uni-
versally applicable problem-oriented language, which will make the
progress achieved in programming in one field accessible to the
users of computers in all fields. A combination of subroutines
written in this language may do the job that is done today by sepa-
rate problem-oriented languages. A programming language like PL/I,
or a language still to be created, may do the job more efficiently
than FORTRAN. The idea is that the programs written will have a
maximal possibility of application and that programmming examples
given in the literature describing computer problems will be under-
stood by all the readers interested.

8. Reference

Dipl.-Nath. Gisela Schlotter, Verarbeitung nichtnumerischer Daten
Tell I. Unterprogramme (PI-17)

Deutsches Rechenzentrum, Darmstadt

10

