
[From: Paul L.Garvin (ed.) Natural Language and the Computer
 (New York: McGraw Hill, 1963)]

 The general problem area of machine
 translation has been outlined and re-
 lated to other fields of language-data
 processing in Garvin's “A Linguist's
 View of Language-data Processing.” It
 has been discussed in some detail in the
 two immediately preceding sections by
 Hays and Harper. This discussion will
 deal more specifically with the question
 of syntax: both with the place of syntax
 in the over-all design of a machine-
 translation program, and with the de-
 tailed problems of syntactic resolution.

 Machine translation is a process for
 translating text automatically from one

language to another. This process is em-
bodied in a program—that is, a set of
instructions for a computer. With such
a program, any large-scale computing
machine can be transformed into a trans-
lating machine.

 A genuine translation is more than
just the replacement of individual foreign words by individual English
words. It must transmit the essential information contained in the for-
eign text to an English reader who is unfamiliar with the language. The
meaning of each sentence is more than the sum of the meanings of each
word—it also depends on the structure of the sentence and the function
of each word in that structure. To obtain a satisfactory translation, the
program must therefore contain not only a dictionary lookup for finding
individual word meanings, but also a translation algorithm for making
correct translation choices and for detecting the elements of meanings
implicit in the sentence. The core of such a translation algorithm is a
syntax routine.

The major purpose of a syntax routine in machine translation is to
recognize and appropriately record the boundaries and functions of the
various components of the sentence. This syntactic information is essen-
tial for the efficient solution of the problem of word order for the output
and is equally indispensable for the proper recognition of the determiners
for multiple-meaning choices.

It is furthermore becoming increasingly apparent that it is the design of
the syntax routine which governs the over-all layout of a good machine-

223

PAUL L. GARVIN

Syntax in

machine

translation

224 PAUL L. GARVIN

translation program and lends it the unity without which it would re-
main a patchwork of individual subroutines and piecemeal instructions.
The conception of syntax thus becomes important beyond the immediate
objectives which the routine serves in the program.

A syntax routine for machine translation can be described from two
viewpoints: (1) the underlying linguistic conception of syntax (the syn-
tactic “model”); and (2) the logical technique employed in the design
of a syntax program.

Two kinds of linguistic conceptualization underlie current work in
machine translation: formal or quasi-formal models of language on the
one hand, and more discursive conceptual frameworks on the other. The
former are illustrated by the transformational model and the dependency
model, as discussed earlier by Stockwell and D. G. Hays respectively. The
latter are illustrated by the informational and definitional models, as
presented by Sebeok and Garvin.

Formal models attempt to base a conceptualization of language upon
a previously derived system. In machine translation, D. G. Hays and his
coworkers have extensively applied an approach based on the dependency
model referred to above. Discursive frameworks, on the other hand, can
be developed by a formalization of common-sense criteria and the system-
atization of the experience of trained observers. In Russian-English
machine translation, such common-sense approaches largely consist in a
modification of traditional Russian grammar for data-processing pur-
poses. Since the traditional grammar of Russian is, on the whole, not
too far removed from linguistic reality (see “The Definitional Model
of Language”), the various adaptations to machine translation under-
taken by American research groups have proved quite adequate.

The conception of linguistic structure as presented here, in so far as it
concerns syntax, is comparable to what has become known as the immedi-
ate-constituent model, but with some significant differences. Where the
immediate-constituent approach takes the maximum unit—the sentence-
as its point of departure and considers its step-by-step breakdown into
components of an increasingly lower order of complexity, we can start
out with the minimum unit—the morpheme in straight linguistic analy-
sis, the typographical word in language-data processing—and consider its
gradual fusion into units of increasingly higher orders of complexity,
which we have termed fused units. A sentence is thus viewed not as a
simple succession of linear components but as a compound chain of fused
units of different orders of complexity variously encapsulated in each other.
Syntactic analysis, including the automatic analysis which an MT syntax
routine must perform, then has as its objective the delineation of this
encapsulation of fused units by ascertaining their boundaries and functions.

For MT purposes, the most significant order of fused units are the
major members—subjects, predicates, and objects—of clauses. The lan-

Syntax in Machine Translation 225

guages of the world differ significantly in the manner by which these
clause members are formally marked. In a language such as Russian, for
instance, the clause members are characterized primarily by a particular
selection of grammatical endings, the functions of which must often be
ascertained from the context. Only in case of unresolvable ambiguity of
endings will conditions of word order and the semantic nature of par-
ticular words indicate the functions of the clause members. In languages
such as English or French, on the other hand, word order is the primary
means for identifying and characterizing the clause members.

A recognition routine for Russian syntax must therefore in some way
search the span of the entire clause to identify appropriate endings, and
from them ascertain the boundaries and functions of the major clause
members. The corresponding command routine for translation into
English or French must then have the capability for the rearrangement
of entire clauses, in order to generate correct word order for the output
language.

A recognition routine for English or French syntax, on the other hand,
can draw on word order in the identification of the major clause mem-
bers. This identification, however, presupposes that the grammatical
function of each constituent word of the clause has been unambiguously
ascertained. Since in English, for instance, a great many words have am-
biguous part-of-speech membership (for example, love functioning as a
verb, noun, or modifier, depending on the context), the identification
of the clause members can not proceed until these ambiguities have been
resolved. A command routine for translation into Russian must then
generate correct grammatical endings and stem modifications where nec-
essary, in order to render the functions of the major clause members
which in English or French are marked by word order.

The following discussion will be limited to a detailed consideration of
the problems arising in the machine translation of Russian into English.
The fused-unit conception is particularly well suited to MT since the
minimum units—for this purpose the typographical words—constitute the
primarily given input units; the program then computes the fused units
and their interrelations from the grammar codes (see below) of the
words. The methodological basis used here for this computation is what
we can call the fulcrum approach to syntax. Its basic features have been
adopted and have been implemented to a considerable extent by the
machine translation group at Thompson Ramo Wooldridge Inc. This
approach is a suitable point of departure for the discussion, not only of
our own work in syntactic resolution, but also of the work of other groups
that use a common-sense grammatical framework as the basis for their
approach to Russian-English MT.

The fulcrum approach consists in directing the primary syntactic
searches toward those pivot words (fulcra) within the sentence, around

226 PAUL L. GARVIN

which other words are centered. The fulcra contain the maximum
amount of grammatical information, thereby allowing an optimization
of further searches within the sentence. Not only is the sentence as a
whole assumed to have a fulcrum, but the various constituents of a sen-
tence in turn are assumed to have their fulcra.

Thus, the fulcrum of the Russian main clause is assumed to be its
predicate. Once the predicate is known, it allows a reasonable prediction
concerning possible subjects and objects. The number (and, when pres-
ent, the gender) of the predicate will be in agreement with the subject
and hence will predict the corresponding features of the latter. The
predicate has certain inherent government characteristics: some verbs
govern the accusative, other verbs govern the instrumental, etc. These
government characteristics of the predicate allow prediction of the cor-
responding characteristics of the object(s). The converse does not apply.

The fulcrum of a nominal block (that is, a noun with modifiers and
other dependents) is assumed to be the noun: It is that member of the
block which determines the case and number forms of the other mem-
bers, and not conversely.

The syntactic searches, whether based on an overt fulcrum approach
or not, are made possible by including, with each word of the machine
dictionary, a grammar code containing all the grammatical information
inherent in the particular word. The grammar code is thus a representa-
tion of all the potential functions and relations of a word; the syntactic
searches then serve to determine which of these inherent possibilities
actually does apply for the particular sentence in which the word occurs.

The grammar code utilized by TRW is organized in terms of this
potential function of the words, rather than simply their morphological
shape, particularly for the indication of parts of speech in the grammar
code. In traditional Russian grammar, parts of speech are largely deter-
mined on the basis of the nature of the stem and the grammatical endings.
In our grammar code, priority is given to the capability of a word to
constitute the predicate, subject or object, or other functional compo-
nent of the sentence. Increasing emphasis on functional rather than
morphological grammar coding is becoming apparent in the work of
other groups as well.

Thus, words with the same functional capabilities are given the same
code designation, even though in traditional Russian grammar they are
not considered the same part of speech. For example, some Russian pred-
icative adjectives function as predicates of sentences in much the same
way as verbs (barring certain ambiguities to be discussed further below).
They, together with verbs, are given the same grammar code digit for
“predicativeness.” Another example are certain modifying adjectives
which share an important characteristic in common with participles—
both may be accompanied by certain governed structures (for example,

Syntax in Machine Translation 227

“analogous to this,” “pertaining to this”). These are jointly coded as
governing modifiers.

On the other hand, words which in traditional grammar are con-
sidered different forms of the same part of speech are treated separately
in our grammar code if they have different functional potential. An ex-
ample of this are infinitives, which are traditionally considered merely
a form of the verb. Since, however, they differ significantly from finite
verb forms (e.g., by not having a capability for taking a subject), our
grammar code assigns to them a separate “infinitive” digit, while finite
verb forms are coded for “predicativeness.”

The actual syntax routines utilize the information contained in the
grammar code for a series of searches intended to detect and record the
interrelations of the words of each sentence and the function of the
words within this net of relations. Two major methods for organizing
these syntactic searches deserve mention. The first is a search pattern in
which all syntactic information is immediately recorded from the gram-
mar code as each word is encountered; the second consists of a sequence
of passes at the sentence, in which each pass is designed to retrieve and
record information about a particular set of word relations and functions,
in order to identify fused units of a particular order and type. Further
information is retrieved in later passes. A well-known and very ingenious
example of the first-mentioned search pattern is the method devised by
Mrs. Ida Rhodes of the National Bureau of Standards, and named pre-
dictive analysis by her followers in the machine-translation group at the
Harvard Computation Laboratory. The TRW group, on the other hand,
uses a pass method.

A question of logical flow, less related to linguistic considerations than
the above, is the extent to which the syntactic algorithm is based on a
table-lookup or a logical-tree principle. A table lookup, as the term indi-
cates, consists in the storage of information in tables in memory, to be
looked up when a particular subroutine calls for it. A logical tree, on the
other hand, in this connection refers to a program design in which a
small amount of information is looked up at a time, and the subroutines
of the program branch extensively in terms of the answers obtained to
the questions asked by the program.

The argument in favor of a table-lookup approach to syntactic pro-
gramming is that the same small lookup routine can be used to call a
variety of tables and, hence, yields a more flexible program; and that
even large tables are easier to construct and revise than complex logical
trees with many branches. Logical trees by contrast are favored because
of their greater relative efficiency, and because of the concern that tables,
even if well organized, become unwieldy once they increase beyond a
certain size. The TRW syntax algorithm is largely designed as a logical
tree and uses comparatively few tables.

225 PAUL L. GARVIN

The advantage of a pass method implemented by a logical-tree design
is that instead of having to account, at each step of the left-to-right
search, for each of the many possibilities contained in the tables, every
pass is limited to a particular search. With the proper sequencing of
passes, the syntactic retrieval problems presented by each sentence can
be solved in the order of their magnitude, rather than in the accidental
order of their appearance in the text.

In a program based on the pass method, each individual pass is laid
out in terms of the information available when the pass is initiated and
in terms of the objective that the pass is intended to accomplish. These
two factors are closely related to each other, in that the output of a pre-
ceding pass becomes the input of the subsequent pass. The scope of each
pass and the order of the various passes thus together present the most
significant design problem of the program.

The various passes are concerned either with individual words and
strings that function as single words (such as symbols and numerals),
or with fused units that the program labels as word packages, in order to
treat them as single entities. The former set of passes serves to ascertain
the function of a particular word or string in order to assign to it the
grammar code required for further syntactic processing in the passes
designed for word packaging. The purpose of the latter is to identify the
boundaries and functions of the word packages that constitute the com-
ponents of the sentence. The word-packaging passes first identify the
potential fulcrum of a given package and then use it as the initial point
from which to search for the required boundary and function informa-
tion to delimit and define the package.

The linguistic considerations affecting the design of a syntax program
stem from the assumption that the various orders of units and their rela-
tions do not have the same degree of significance for the over-all structure
of the sentence. An adequate analysis of the sentence must give priority
to the identification of the major sentence components (subjects, pred-
icates, objects), since the relations between these components are the
focal point around which the remaining syntactic relations are centered.

Applying this to the organization of the passes, it means that the main
syntax pass—that is, the pass designed to identify the boundaries and
functions of the major clause members of the main clause—becomes the
pivot of the program. The remaining passes can be laid out in terms of
the input requirements and expected output of this central pass. Pre-
ceding it will be preliminary passes designed to assign grammar codes to
words which are not in the dictionary (a missing-word routine) and to
aberrant typographical matter such as symbols and formulae, as well as
passes designed to compute from the grammar codes information needed
as input to the main syntax pass. Following it will be terminal passes,

Syntax in Machine Translation 229

the function of which is to fill the gaps in syntactic information re-
maining after the main syntax has accomplished its objective.

The present TRW syntax algorithm works in the following manner:
To find a fulcrum, the program reads the word-class field of the grammar
code of each word that the lookup has brought into the work space.
This may be either an original grammar code as brought in from the
dictionary, or a revised grammar code as assigned to a word or string by
an earlier pass. If the word is of a class that may function as the fulcrum
of a word package, this information serves as the signal for later calling
the subroutine designed to identify the boundaries and possible function
of the package in question.

Each pass of the program is concerned with either the assignment of an
appropriate grammar code or with the identification of an appropriate
word package. The word packages correspond more or less closely to the
fused units of the Russian structure; the order of passes constitutes the
sequence in which the search for the various fulcra and fused units is con-
ducted, with the aim of the correct recognition of their encapsula on.

The syntax program consists of four series of passes:
Preliminary passes are designed to insure that all the words and strings of

the sentence are provided with the appropriate unambiguous grammar
codes.

The preliminary passes are required by the discrepancy between the
information contained in the grammar code and the information neces-
sary for the main syntax passes. The grammar code furnishes three sets
of indications: word-class membership, agreement characteristics, and
government characteristics. As is well known, for each dictionary entry
some of this information will be unambiguous, some ambiguous, de-
pending on the particular word forms involved.

Aside from accidental typographical homonyms (such as est' meaning
is or to eat), grammatical ambiguities relate to word-class membership
and agreement characteristics (where ambiguities as to government char-
acteristics are found, they are dependent on another grammatical func-
tion, that of word-class membership).

While the main syntax passes may tolerate agreement ambiguities, they
cannot admit word-class ambiguities in their input, since the fulcrum
approach is based on the recognition of the fulcra by their word-class
membership. One of the essential functions of the preliminary passes is
thus the resolution of ambiguous word-class membership.

It is furthermore reasonable to expect that sentences will contain dis-
continuous fused units—that is, fused units interrupted by variously
structured intervening elements. Unless such intervening structures are
properly identified in prior passes, the program will not be able to skip

230 PAUL L. GARVIN

over them in the search for elements functionally relevant to the objec-
tives of the later syntactic passes.

Finally, since the internal structure and external functioning of units
are relatively independent of each other (as discussed in “The Definitional
Model of Language”), a number of constructions can be expected within
each sentence which by their internal structure resemble potential major
clause members, but do not have that external functioning.

An example of this are relative clauses: Their internal structure re-
sembles that of a main clause, and they contain similarly structured
clause members, but their external functioning is that of inclusion in
nominal blocks as modifying elements. Constructions such as these have
to be identified by appropriate prior passes, and their boundaries and
functions recorded for inclusion in the main syntax.

Minor syntax passes are designed to identify and label the word packages
which are candidates for inclusion in, or exclusion from, the major sen-
tence portions upon which the next series of passes operates.

Major syntax passes are designed to identify and label the major por-
tions of the sentence.

Terminal passes are designed to identify and label certain word pack-
ages not previously identified and labeled.

The following passes enter into each of the four series in the present
TRW program:

The preliminary passes include a numeral-and-symbol pass and a set
of homograph-resolution passes. The numeral-and-symbol pass serves to
assign a grammar code to number-symbol strings in the sentence, the
homograph-resolution passes serve to resolve various systematic word-class
ambiguities (such as the well-known predicative adjectives ending in -o,
which also function as adverbs) .

The minor syntax passes include a nominal-blocking pass, a preposi-
tional-blocking pass, an inserted-structure pass, and a governing-modifier
pass.

The purpose of the nominal-blocking and prepositional-blocking passes
is to identify and label nominal blocks and prepositional blocks respec-
tively. A nominal block consists of a noun and its accompanying modi-
fiers; a prepositional block consists of a preposition and the nominal
block which it governs.

An inserted structure is one which is not grammatically related to the
remainder of the sentence (comparable to English as it were in a sen-
tence such as this, as it were, can be considered an inserted structure).
The purpose of the inserted-structure routine is to identify and label
these structures so that they can be skipped over by later syntactic searches.

The purpose of the governing-modifier pass is to identify and label
governing-modifier packages. The word class of governing modifiers in-

Syntax in Machine Translation 231

eludes both attributive participles and those adjectives which can in turn
govern certain dependent structures (see above).

A governing-modifier package is the word package which contains a
governing modifier together with the structures that it governs. The ful-
crum of this package is the governing modifier; the program reads its
word-class code to call the appropriate routine, then reads the govern-
ment code in order to search for an appropriate governed structure.

The major syntax passes include a clause-boundary-determination rou-
tine, a relative-package routine, and the main syntax routine.

The clause-boundary-determination routine serves to ascertain the
boundaries between the several component clauses of a compound sen-
tence, in order to process one clause at a time.

The relative-package routine identifies relative clauses by finding the
relative pronouns introducing them. It then sets the clause boundary to
allow the main syntax routine to process the components of the relative
clause. Finally, the package as a whole is labeled for inclusion in the
appropriate nominal block.

The main syntax routine serves to identify the major clause compo-
nents—namely, subject, predicate, and object—and to ascertain their
boundaries. The routine first searches for the fulcrum of the clause, the
predicate, and then uses the information derived from the grammar
code of the predicate to search for the subject and object.

Two terminal passes are included in the present program: (a) a pred-
icate-packaging pass, serving to include adverbs and other dependent
words together with the predicate in a predicate package; and (b) a
genitive-blocking pass, serving to identify genitive nominal blocks and
attach them to the preceding nouns which are likely to govern them.
Both passes identify and label the packages, and set their boundaries.

A syntax program of the kind described above will produce a record
of the syntactic structure of the sentences of the input text, as recognized
by the program. This syntax record furnishes a significant part of the
information required for the correct application of the command rou-
tines for word rearrangement and multiple-meaning choice. At the pres-
ent developmental stage of machine translation, an important function
of the syntax record is its use in checking out the operation of the syntax
program. It allows the analyst to determine what routines have been
applied and why, and to introduce required modifications on the basis
of an examination of the translation output and the syntax record.

At Thompson Ramo Wooldridge Inc., the syntax record is stored on an
information tape which can be printed out separately. It contains the gram-
mar codes of each word (whether brought in from the dictionary or assigned
by the program), as well as an indication of the word packages that have
been identified and additional syntactic and semantic information.

232 PAUL L. GARV1N

The remaining information required by the command routines is se-
mantic. It has to be retrieved by a semantic program linked to the syntax.
The semantic program can deal with the meanings of the input words on
the basis of an appropriate semantic code contained in the machine
dictionary. The code will serve to call the routines needed for the resolu-
tion of semantic choices.

Semantic resolution presents a much more difficult problem area than
syntax. Our knowledge of the inherent semantic system of a language is
as yet sketchy and indefinite (see “A Linguist’s View of Language-data
Processing”). Consequently, the semantic codes used in present machine-
translation programs are not as systematic as the grammar codes. The
resolution routines are piecemeal, and what coordination there is in
these routines is based on their link to the syntax program. An organiz-
ing principle for semantic information, comparable to the fulcrum
approach to syntax, will have to be found before a more efficient and
exhaustive approach to semantic resolution can be envisioned.

