
JULES  MERSEL 

Programming 

aspects of 

machine 

translation 

[From: Paul L.Garvin (ed.) Natural Language and 
the Computer  (New York: McGraw Hill, 1963)] 

During the years that have elapsed since 
high-speed digital computers first became 
generally available, knowledge about the 
art of programming has been acquired 
by many groups. The first part of this 
discussion is intended for those readers 
who have not had an initial exposure to 
programming. 

Programming can be considered as 
being similar to writing instructions for 
a girl who is working with a desk calcu- 
lator. The analogy becomes exact if you 
assume that such a computress has the 
virtues of being very quick, of never 
making mistakes, and following instruc- 
tions perfectly—and that she has the 
glaring defect of being incapable of 
thinking. 

If it were required that our compu- 
tress solve a problem, a notebook of in- 
structions could be prepared for her. She 
would be told to go to line 1, page 1 of

 
 

that notebook. There she might find an instruction which reads Add the 
number on line 6, page 73, to the number found on line 19, page 12, and 
place the result on line 13, page 62. After you have done that, go to line 3, 
page 9, to find out what to do next. There she might find a similar instruc- 
tion. The differences in the instructions would involve simply a change 
in line and page number and a change in the arithmetical operation to be 
performed. Only occasionally would she be called upon to make a de- 
cision. The decision would be as trivial as Look at the number on line 12, 
page 3, and compare it with the number on line 24, page 22. If the first 
number is bigger, go to line 16, page 36, to find out what to do next. If the 
first number is not bigger, go to line 9, page 7, to find out what to do next. 
Eventually she would find an instruction which said Hand the notebook 
back to me; your task is finished. 

Programming for a computer is no more and no less than the writing 
of such a notebook. The instructions available to the programmer, 
though more extensive than just the arithmetical commands, are few and 
quite simple. The additional instructions consist of such things as writing 
onto magnetic tape, reading from magnetic tape, and performing certain 
simple  Boolean  operations.     Unfortunately   there   are   no  such  instructions 



234                                                                                                             JULES  MERSEL 

as be intelligent, do the right thing, jump to a conclusion, or find an 
adjective. 

As can be seen from the above analogy, digital computers do not think; 
they merely do the mechanical part of the white-collar work. In order 
for any problem to be solved on a computer, it must be well stated. Such 
instructions as supply the appropriate preposition (and this did appear 
on our original syntactic flowcharts) must be amplified so that the digital 
computer is told very specifically exactly what to look for, by what char- 
acteristic to recognize it, and then as a result of its search to decide ex- 
actly which preposition must be supplied and where it must be inserted. 

Writing such a notebook is a time-consuming and tedious task. How- 
ever, it would take less time to perform the desired operations manually 
than to program them. Digital computers are advantageous only when 
one is going to perform the same task over and over again. Then the 
speed of the computer makes its application economical. As an example 
one might give the problem of finding the sum of a million numbers. 
One wouldn’t say, as one might in hand calculations, add the first num- 
ber to the second number, add the third number to the sum, add the 
fourth number to the sum, until one finally said add the one-millionth 
number to the sum. Instead, one would do something logically more com- 
plex and fantastically shorter. The instructions would be: 

Set the sum to equal 0. 
Set i to equal 1. 
Add the ith number to the sum. 
Does i = 1 million? If so, you are finished. If not, increase i by one and 
proceed through the third and fourth instructions. 

We now can begin to get a glimmer of how a computer can be useful. 
It wouldn't take the computer long to do such a computation, provided 
the programmer can find a short way of telling the machine explicitly 
how to do it. 

In recent years compilers have been developed that simplify the task 
of writing programs. One such program, COMIT, was specifically written 
for language-data processing. However, even with compilers, the detailed 
spelling out of instructions is not avoided—it is merely raised to a less 
dreary level. 

INPUT AND OUTPUT 

Our computress analogy can be expanded to embrace the notion of input, 
output, and erasable storage. Let us assume that instead of giving our 
fictional computress just one notebook, we gave her four such books. 

One of the books would be the same as the kind described above- 
it would contain the program and no numbers would be written into 
it by the computress. 



Programming Aspects of Machine Translation 235 

Another notebook, which we can call the input, would contain all the 
numbers which change from problem to problem and which are used in 
this calculation by the computress. 

A third notebook, the output, would originally be blank and would 
eventually contain just those numbers that the problem-giver eventually 
wanted to see. The fourth notebook, the erasable storage, would contain 
all the intermediate results and modified instructions that were needed 
to arrive at the output. In our computress—desk calculator analogy, this 
fourth notebook would be thrown away when the problem was solved; 
in computing machines, the erasable storage is part of the equipment, 
and is merely wiped clean so that new information can be written over 
it. The point to be remembered in machine translation, or for that 
matter in any other type of research, is that if the intermediate results 
will be needed for future use, they must be placed into the output. If 
they are left in erasable storage they will be erased, and the only way of 
retrieving them would be to go through the whole problem again and 
record from erasable storage before erasure takes place. 

TYPES OF COMPUTER STORAGE 

In computing machines, storage, or memory, can consist of three types: 
The first type is random-access storage. Random-access storage is 
typified by the speed with which one can write into or read from any 
storage location. This speed is based on the equal availability of all stor- 
age locations. The time required for such reads and writes varies from 
a fraction of a microsecond (1 sec = 0.000001 second) for evaporative- 
film memory to 20 sec for the slower magnetic-core memories. 

A second type of memory is serial memory. Serial memories require 
positioning for either writing into or reading from them. A common 
type of serial memory is the magnetic drum. Reading or writing can be 
done only when the drum has turned to a certain position. Waiting for 
this to occur can take as much as 32 milliseconds (1 msec = 0.001 second). 
Though this is a far longer wait than would be required with even the 
slowest core storages, the drum has the compensating advantage of pro- 
viding much more storage per dollar expended. 

The third type of storage is exemplified by magnetic tape. Magnetic 
tapes can hold extremely large amounts of information. Unfortunately 
if the information is far from the reading head of the tape unit, minutes 
may elapse before the information becomes available. To a large extent, 
these long waits can be avoided by careful programming. Tapes have the 
advantage of being inexpensive: a reel of tape costs $50, machine time 
may cost $400 per hour. They also can be removed from the computer 
for later use: output can be written onto them, and later input can be 
read from them. This input-output use is one of the main advantages of 



236                                                                                                 JULES  MERSEL 

magnetic tapes; the ability to save intermediate results is important 
economically.1 

DICTIONARY SEARCH 

The programming of any particular problem is affected almost as much 
by the characteristics of the available computer as by the nature of the 
problem itself. 

In the following discussion we shall consider the programming tech- 
niques used by three different machine-translation groups to solve the 
problem of searching a Russian-English machine dictionary. 

If we ignore the question of what a dictionary should contain, then 
the best-defined portion of the machine-translation process is the dic- 
tionary lookup. In concept, nothing could be simpler. Given a word from 
text, look it up in the dictionary. If we had an ideal machine with an 
infinite and instantaneous-access memory, we would merely take the Rus- 
sian word, use it to find our item in the dictionary, and be through with 
the lookup. Unfortunately such a machine does not exist. The problem 
is complicated by the limited amount of fast storage available on com- 
puters today. 

The random-access memories on present general-purpose computers 
do not have room for a complete bilingual dictionary with all the neces- 
sary information. 

Though a dictionary can be ordered (the most common ordering being 
alphabetical), natural text comes in a completely unpredictable and ran- 
dom order. The problem therefore is that if only part of the dictionary 
is placed in storage, there would be no assurance that when the next text 
word is selected, the required portion of the dictionary would be easily 
available. The solutions to this problem reflect the interests and goals 
of various machine-translation groups. 

One solution to the problem is that used by the group at Thompson 
Ramo Wooldridge Inc. This group uses a computer with good compu- 
tational ability, a small but fast internal storage, and excellent mag- 
netic tapes. The computer can transfer information to and from mag- 
netic tapes while performing other computations. 

The dictionary is stored in alphabetic order on magnetic tape. Four 
thousand words of text are transferred to internal storage. These text 
words are sorted into alphabetic order. The beginning of the dictionary 
is then brought into the internal memory. The alphabetically ordered 
text words are now compared with the dictionary items that are in fast 
storage. 

This comparison does not simply follow the alphabetic order.  Instead, 
1 Since the time this paper was given at the UCLA lecture series, disk-type 

memories have become an important type of storage medium associated with 
high-speed computers. 



Programming Aspects of Machine Translation 237 

a binary search is performed. The text word is compared to the last word 
of the dictionary portion in fast storage. If it is alphabetically smaller, 
it is compared to the middle word of the dictionary; depending on this 
last comparison, the text word is then compared to the word one-quarter 
of the way through or three-quarters through the dictionary portion. 
Thus, the amount of dictionary to be compared is halved at each test. 
Consequently, looking at a table of 1,024 words requires at most ten 
comparisons rather than the average of 512 that would come from a 
straight search in alphabetic order. 

As soon as it has been determined that a word of text is alphabetically 
beyond the part of the dictionary that is in memory, that part of the 
dictionary is replaced by dictionary items further down the alphabetic 
list. This is done simultaneously with dictionary lookup. 

In order to allow that portion of the dictionary which is in memory 
to include as much of the whole dictionary as is possible, very few forms 
are carried for any one word. Thus there is a high likelihood of a text 
word not finding a representation in the dictionary. 

When a text word is not in the dictionary, the word is analyzed 
morphologically; that is, an attempt is made to separate the stem of the 
word from its ending. This process of stem-ending analysis requires a 
good computer and an extensive program. It is aided by storing a list 
of possible endings in memory. Dictionary words surrounding the place 
where the text word should have been found are then split into stem and 
ending. If a dictionary word and a text word have the same stem, the 
endings are compared to see whether the ending of the text word will 
predict a grammar code compatible with the grammar code of the dic- 
tionary word. If this is the case, then the text word is given a revised 
grammar code derived from the grammar code of the dictionary word as 
adjusted on the basis of the ending of the text word. The English equiv- 
alents associated with the dictionary word are reinflected so that they 
represent the tense, number, or person corresponding to the form of the 
text word. The text words are thus replaced by the corresponding dic- 
tionary entries, revised wherever necessary by stem-ending analysis. 

The lookup process is continued until all 4,000 text words have been 
examined. Then the beginning portion of the dictionary is brought back 
into internal storage and the next 4,000 words of text are looked up by 
the same method. 

When the complete text has been examined, the dictionary items cor- 
responding to the text words are restored to text order. The text is then 
examined in order to identify contiguous idioms. 

The batching method just described utilizes the speed of the com- 
puter to enable it to supply missing forms in -less time than would be 
required to spin a tape which contained all the forms. Another method, 
in use at the University of California (Berkeley), was programmed for a 



238                                                                       JULES  MERSEL 

machine with good computational ability, but no ability to spin tapes 
during computation. Here an attempt is made to get a very large dic- 
tionary into memory. Since the memory itself is not very large, this is 
ingeniously achieved by dividing the dictionary items so that the Russian 
word is completely separated from the other parts of the dictionary entry. 
All of the Russian portion of the dictionary is brought into memory at 
one time. Space is conserved by eliminating the first two letters of each 
word and indicating in a table where each two-character list starts. Space 
is also saved by making the dictionary purely a stem dictionary. The Berke- 
ley group estimates that it has the capability for storing 20,000 stems.2 

As each text word comes in, its first two characters are examined to 
find the appropriate two-character list. Then the remainder of the word 
is looked at in successive locations of that portion of the dictionary. The 
dictionary items are not stored in alphabetic order but rather in order 
of length. When a dictionary item is found whose characters exactly 
match the beginning characters of the text word, a similar search is insti- 
tuted to find out whether the remaining portion of this text word also 
has a dictionary stem equivalent or a dictionary ending equivalent. Thus, 
in this dictionary, the word microorganisms would be found in three 
searches: one for micro, one for organism, and one for s. After the word 
has been identified, the locations of the dictionary items pertaining to 
this word are stored in successive order. Since this redundant information 
can be stored in comparatively little space, the Berkeley system allows 
passing approximately 30,000 words of text through the dictionary before 
the storage space is filled up. When the examination of the Russian 
portion of the dictionary is completed, the next segment of the dictionary 
is transferred to internal storage. Here, no further search is involved. 
For each text word, the correct segment can be picked up right away 
and placed onto tape. This is continued until all segments of the dic- 
tionary have been brought into memory. This technique allows the 
Berkeley group to claim the fastest lookup of any of the dictionary 
search methods. Its drawbacks are that there is no guarantee that the 
Russian portion of the dictionary will not eventually grow too large for 
storage, and the dependence on the assumption that the correct transla- 
tion of a word can be put together from the English equivalents of its 
separate parts. 

Another type of dictionary lookup has been constructed at the RAND 
Corporation. Here again, there is an attempt to get the whole dictionary 
into the memory. The whole dictionary, however, does not consist of the 

2 Since the time this paper was given at the UCLA lecture series, Sydney Lamb, 
head of the Berkeley group, has made major modifications to his initial diction- 
ary concept. These now allow his research group to state that its technique will 
allow for the handling of a far larger lexicon. Similar improvements have been 
made by other groups. 



Programming Aspects of Machine Translation 239 

Russian lexicon but rather of the lexicon that is needed for the first por- 
tion of text. The size of this first portion is determined by the nature of 
the text itself. Two passes at the text are made. The purpose of the first 
pass is to determine how many text words can be handled by a dictionary 
which fills the available space in high-speed storage. Recognition is made 
of the fact that 4,000 words of dictionary may easily be sufficient to 
handle 100,000 words of text. Thus, after the first pass is made, the 
RAND program knows exactly what words from the dictionary need to 
be in high-speed storage. These dictionary items are brought in and the 
text is passed again. This double pass at the text eliminates the problem 
of re-sorting and thus considerable efficiency is effected. 

Another solution to the problem has been attempted at IBM. Here, 
as befits a computer manufacturer, the solution has been to build an 
internal storage large enough to hold an extremely large memory. This 
storage is a photoscopic disk. It is a serial storage that is read by optical 
techniques rather than magnetic sensing. The storage cannot be written 
on during computation. Since the storage capacity of the disk is quite 
large and the period of rotation short, text is not sorted. 

The capacity is large enough to allow storage of phrases. The lookup 
proceeds by phrases; single words are treated as "degenerate" one-word 
phrases. This storage of idioms has allowed for a fairly extensive but slow 
dictionary search. 

In summary, we can see that though the problem of looking up items 
in the dictionary is conceptually easy, the configuration of hardware 
either requires the use of less than straightforward methods, or has in- 
spired at least one group to build special hardware. 

SYNTAX 

Programming the syntax portion of machine translation differs from the 
dictionary portion in that words on an individual basis are not the 
primary concern, rather certain grammatical characteristics which a word 
may share with thousands of other words. The grammatical character- 
istics are recorded in the grammar code for the word. If the goal were 
the maximal conciseness of the grammar code, it could be compressed 
into just a few alphabetic characters. Indeed, the grammar code that the 
Ramo Wooldridge group first started working with (it was borrowed 
from the RAND Corporation) consisted of three alphanumeric char- 
acters. The decoding of these alphanumeric characters for use in the 
algorithm, though possible, is not convenient. TRW and Wayne State 
University, therefore, chose a binary representation which C. Briggs of 
Wayne3 referred to as the vectorial representation of the word. 

3 Personal communication. 



240                                                                                                                     JULES MERSEL 

Figure 1 shows the grammar code for a modifier. It is called a modifier 
grammar code rather than an adjective grammar code because in our 
representation of the parts of speech (word classes) of Russian the 
modifier class includes not only adjectives, but also participles and 
possessive pronouns. 

The grammar code consists of 108 binary digit positions, shown in the 
figure in 3 columns of 36 each. Each position contains either a one or a 
zero. It allows no other representation. 

The first column of the grammar code has the same format for all parts 
of speech. Positions 1 through 9 indicate the word class of the word. Only 
one of these positions will contain a one; all the others will contain 
zeros. In our example, bit position 3 is occupied by a one. It is reserved 
for indicating modifiers. 

In column 2, bit positions 11 through 36 are labeled the agreement 
code. They represent the possible genders, numbers, and cases that a 
given word may assume: M stands for masculine, F for feminine, N for 
neuter, P for plural, S for nominative, G for genitive, D for dative, Ai 

for accusative inanimate, Aa for accusative animate, I for instrumental, 
and L for prepositional. Unlike the word-class code, the agreement code 
and the government code of the third column do not have the constraint 
that only one position is allowed to contain a one. As many ones may be 
used as are needed to describe all possible features of gender, number, 
and case of a given word, or of the gender, number, and case of the 
words that this word might govern. Note that this requires many more 
ones in the government code than would be needed if we were merely to 
indicate by a single symbol the possible cases that a word could govern. 
Note also that the binary agreement code requires more storage than a 
more condensed representation such as the earlier one consisting of 
alphanumeric characters. The reason for this lack of compactness is the 
great convenience afforded by the binary codes in agreement and govern- 
ment checks. 

This will become apparent after we take a brief digression into the 
area of Boolean logic. As indicated by Maron earlier in “A Logician's 
View of Language-data Processing,” A  A = A; A  B indicates the com- 
mon portions of A and B. In the computer when doing a Boolean opera- 
tion, 1  1 = 1, 1  0 = 0, 0  1 = 0, 0  0 = 0. In the grammar code, the 
presence of a one in a particular bit position indicates that the gender, 
number, case for which this bit position is reserved, applies to the word 
in question. 

In a government check, the government code of the governing word is 
compared to the agreement code of the potential governed word. This 
comparison is done by a logical-and operation. The result of this opera- 
tion is that those bit positions which in both grammar codes are  filled by 



 

 



242                                                                       JULES  MERSEL 

ones remain filled by ones in the sum. This indicates that there is a 
relation of government in this case. Conversely, if the result is a string 
of zeros without any ones, then there are no ones in corresponding bit 
positions, and hence the first word cannot govern the second word. 
In an agreement check, the agreement codes of two potentially agreeing 
words (such as a noun and preceding adjectives) are compared by a 
logical-and. Those bit positions which contain ones in both agreement 
codes result in ones in the sums. Bit positions that are not occupied by 
ones in both codes, but only in one of them, result in zeros in the sum. 
These additional ones indicate ambiguities in gender, number, and case; 
their zeroing in the logical sum indicates a resolution of the ambiguity. 
The logical-and operation requires only one computer instruction. 

Each column of the grammar code shown in Figure 1 represents a 
separate computer word—that is, a fixed grouping of memory locations. 
Each computer word of the grammar code can be tested separately. Using 
the logical-and operation on the appropriate computer word, a Russian 
word can be tested to determine whether it is a modifier. A second test 
can be used to determine whether it is a governing modifier—that is, a 
modifier which can govern a dependent structure (e.g., the word im- 
portant, as in important-by-comparison results). 

The question may well be raised whether one and zero (standing for 
yes and no) are sufficient for the grammar code of a Russian word. 
In our own case, a ternary system may be needed, where “ + 1” indicates 
yes, “— 1” indicates no, and “0” indicates I don't know. Ida Rhodes of 
the National Bureau of Standards uses a quaternary representation for 
government where a “3” indicates that something is mandatory, a “2” 
that something is highly probable, a “1” that it is merely possible, and a 
“0” that it is impossible. Mrs. Rhodes goes even further and makes the 
code octal, which adds one more bit location. This extra bit location is 
used to indicate whether the condition must be fulfilled immediately or 
at any time within the clause. 

As pointed out in Garvin's “Syntax in Machine Translation,” the 
syntax-analysis method used in the Ramo Wooldridge machine-transla- 
tion program is multiple-pass. The first pass consists of examining the 
whole sentence for numerals and symbols. Whenever a symbol or a 
numeral is detected, its neighborhood is examined in order to find the 
conditions for supplying a grammar code. The second pass again consists 
of an examination of the whole sentence, this time in order to isolate 
and resolve word-class homographs. Figure 2 shows one portion of the 
homograph-resolution flowchart. As the flowchart is entered, it has 
already been determined that the homograph has the potential part-of- 
speech functions of a predicate, an adverb, or a preposition. The start 
is at the circle labeled HR1.  Each box on the flowchart represents a 



Programming Aspects of Machine Translation 243 

question and can be answered by either yes or no. The circles, with the 
exception of those marked PP2, represent jumps to other parts of the same 
flowchart. PP2 represents a jump back to another routine which searches 
the sentence for further homographs. 

The next pass is devoted to the packaging of nominal blocks, which 
may consist of just a noun or a noun modified by one or more adjectives. 
The process of nominal blocking allows for the reduction of case, gender, 
and number ambiguities through a matching of the agreement codes, as 
discussed above. 

After the nominal blocking is completed, the next pass is devoted to 
the creation of prepositional packages, consisting of prepositions together 
with the words they govern. Here the government code of the preposi- 
tion allows an opportunity for reduction of ambiguities, comparable to 
that afforded by agreement checks. After this pass the adverbs of the 
sentence are searched for and inspected to see whether they can be in- 
cluded in the previously prepared nominal packages. Following the adverb 
pass, the routine goes searching for inserted structures—these are struc- 
tures which are independent of the remainder of the sentence, and once 
identified, they can be skipped over and ignored in the major syntax, 
which is discussed further below. The search for inserted structures re- 
quires a fairly close examination of the commas and other punctuation 
of the sentence. 

After the inserted-structure pass, a search is made of the sentence for 
governing modifiers, which include mainly participles. These are ex- 
amined to see whether they are acting merely as adjectives or whether 
they govern other word groups in the sentence. If rearrangement of the 
English is called for, indication of this rearrangement is made. 

After the governing-modifier pass, the routine once again goes hunting 
for commands in order to determine where major clause boundaries can 
be definitely established. The next and last search preceding the major 
syntax is the search for relative clauses, which are identified and labeled 
relative packages. Up to this point we have dealt with packages which 
can be skipped over in the search for the predicate, subject, and objects 
of the sentence, and we have reduced certain ambiguities by inspecting 
individual words and including them in blocks where possible. 

The major syntax consists of a search of the main clause (skipping over 
inserted structures, governing modifier packages, and relative packages) 
in order to find first the predicate of the sentence. Once the predicate has 
been found, this gives us certain information about the nature of the 
subject (certainly a plural verb will not have a singular subject) and 
about the possible object or objects of this predicate. Then a search is 
made to the left of the predicate for the subject. If one is not found and 
if the predicate is not of the type allowing an implied subject,  our earlier 



 

 



 

 



246 JULES MERSEL 

program would print out notice of syntactic difficulty, indicated by the 
alphanumeric code number 41 in the vertical output (see below). We no 
longer do so; we now determine which part of the clause portion that 
follows the predicate should precede it. This can be done successfully in 
a surprisingly large number of cases. Code 41 now implies a certain type 
of sentence rearrangement. 

If a subject has been found to the left of the predicate, a search is made 
for the possible objects which the government code of the predicate indi- 
cates. This search will often detect whether or not an English preposition 
should be inserted in the final translation. If any difficulties have been 
encountered in the major syntax, the computer exits to a cleanup pass 
where as much of the clause as can still be identified is analyzed. 

The syntactic analysis of the clause is completed, but the syntactic in- 
formation that has been gleaned must be thoroughly examined. The 
results of the syntactic analysis permit the resolution of certain transla- 
tion problems by means of a word-combination routine. This routine 
examines verbs and their complements, after their connection has been 
established by the syntax routines, in order to determine their correct 
translations on the basis of their joint occurrence in a sentence. The 
word-combination routine ascertains the meaning of certain verbs on the 
basis of their complements, and even in those cases where the meaning 
of the verb cannot be determined, the translations of certain of the 
prepositions (implied or otherwise) are selected. After the word-com- 
bination routine, the rearrangement of the English in the sentence is 
performed. After the rearrangement, the correct English equivalent for 
certain Russian words is selected on the basis of the Russian case number 
and gender which by now may have been determined; the definite article 
is inserted in front of certain packages, and in front of those genitive, 
instrumental, and dative packages for which a preceding preposition has 
not yet been inserted, the appropriate insertions are now made; finally, 
ad hoc multiple-equivalent rules are applied. 

In the multiple-pass method just described the sentence is examined 
many times, each time to hunt for specific items. Another method, less 
resembling that which would occur to a linguist, is the method of predic- 
tive analysis developed by Mrs. Ida Rhodes of the Bureau of Standards. 
In her method, the sentence might only be examined twice. The first 
examination, which she calls the profile pass, has as its purpose to label 
which clause each word in a sentence is in. She allows for, and treats, 
nested clauses. The search for clause indicators is primarily a search for 
commas, conjunctions, and certain specific words. After she has created 
this clause identification, which she calls the profile of the sentence, she 
then is ready for the second and possibly last pass. Here, her technique 
consists of examining each word in turn and asking whether it satisfies 



Programming Aspects of Machine Translation 247 

any predictions, and then asking what further predictions the presence 
of the word allows her to make. "Predictions" are assumptions of varying 
strength regarding the presence of certain grammatical conditions. If the 
assumption is borne out, the prediction is considered satisfied. She 
handles her words in the order of their appearance in the text, without 
backtracking to earlier words, but backtracking to earlier predictions. 
She enters each clause with two mandatory predictions that are contained 
in the program: A clause must have a subject and a clause must have a 
predicate. Hence, she can ask with the very first word of the clause, Does 
it satisfy a prediction? If a word satisfies a prediction, she crosses this 
prediction from her list. She examines her predictions in reverse order, 
that is, the last prediction made is the first one examined. This allows her 
not to go too far back within a clause in order to find the desired predic- 
tion. Certain nonmandatory predictions are wiped out if they are not 
satisfied by the word immediately following the word that brought them 
about. Unused predictions that have not been wiped out are stored in a 
“hindsight pool.” Limits are placed on prediction: In a two-clause sen- 
tence, a nominative noun in the second clause cannot satisfy a prediction 
for a subject of the first clause. When a sentence has been completed, 
Mrs. Rhodes' method asks whether any mandatory predictions remain 
unsatisfied. If there are unsatisfied mandatory predictions, the hindsight 
pool is inspected for alternative possibilities to the resolution of the sen- 
tence. Using this hindsight pool, another pass is made at the sentence to 
see whether the mandatory predictions can now all be satisfied. Further 
passes at the sentence could, of course, be made until all of the possible 
translations have been obtained. Mrs. Rhodes prefers, however, to stop 
after the first acceptable analysis has been completed. In this respect, her 
technique is at least as good as the other translation techniques which 
allow for only one possible evaluation, and she has certainly created the 
tools to detect syntactic structure. 

At first glance, her technique seems more palatable from the point of 
view of programming than a multiple-pass method. Her pass at the sen- 
tence is straightforward; it considers and treats each word as it appears. 
Her search for predictions is always backwards and terminates with the 
most recently made useful prediction. In some senses, however, it is not 
too much more straightforward than the multiple-pass method. The 
multiple-pass method consists of finding the word, noting its predictions, 
and searching the sentence for other words that might have been pre- 
dicted by it. Mrs. Rhodes' technique consists of finding a word and 
Marching backwards through the sentence for other words that might 
have predicted it. Her technique approaches its maximum programming 
desirability when there is an extreme shortage of storage, for she handles 
each word in a systematic order and her search backward  has a low proba- 



248                                                                                                            JULES  MERSEL 

bility of going to the very beginning of the sentence. Even then, she 
erases predictions after they have been utilized. Thus, storage require- 
ments are reduced. 

THE OUTPUT 

Several machine-translation groups create two types of output: one 
simply to display the translation, and one for research purposes. The 
Ramo Wooldridge group uses a so-called “horizontal output” for the first 
purpose, and a “vertical listing” for the second purpose. The horizontal 
output consists essentially of lines of English words constituting the trans- 
lation; whenever a Russian word has more than one English translation 
and the program has not made a selection, the English translations ap- 
pear underneath each other, creating a multiple line of English at that 
point. 

For research purposes, much more is needed than just the English 
words of the translation. The output shown in Figure 3 is a vertical list- 
ing displaying the information that was extracted by the program in the 
process of translation. 

The lines consisting of periods and ones or periods and x’s between 
each line of text show the grammar code referred to in Figure 1. The 
difference between the ones and the x’s is that those grammar codes that 
contain a one stem from the dictionary lookup, while those containing 
x’s were either created or modified by the program. 

The first column gives the text location of the individual words. Thus 
all this text comes from page F, lines 45, 46, 47, 48, and 49, and the 
numbers following the line number refer to the position of the word on 
the line. The next columns containing the numbers 40 and 41 on line 6 
represent syntactic translation decisions. The group of six numbers fol- 
lowing that column displays the syntactic analysis of the sentence; each 
digit indicates a particular syntactic condition that has been identified 
by the program. The next column represents the desired English word 
order: a number is assigned to each English word, indicating the position 
which it should occupy in the translation of the sentence (in this case, it 
is identical with the Russian word order). The column after that is a 
transliteration of the original Cyrillic. Finally, there is the English trans- 
lation. If you draw a vertical line just to the left of the word GENERAL, 
you find the dictionary English to the right of that line. To the left of 
that line are words like the, do, of the; these are words supplied by the 
program. The asterisk on the lines with the words AMERICAN, BELIEVE, 
and PEOPLE, indicates that the exact Russian representations of these 
words were not in the TRW dictionary and that the grammar code and 
possibly the inflection of these words was supplied by the stem-ending 
analysis described above. The translation says: 



 



250                                                                       JULES  MERSEL 

GENERAL PAUZR SENATOR GOLDVOTER TAKE (OR OCCUPY) THE IMPORTANT 

POSITION IN THE AMERICAN OBWVESTVE BUT WE DO NOT BELIEVE THAT 

THEY EXPRESS THE OPINION OF THE MAJORITY OF THE AMERICAN PEOPLE. 

This, though far from being a perfect translation, is not ridiculous. A 
correct translation would read: 

GENERAL POWERS AND SENATOR GOLDWATER OCCUPY AN IMPORTANT POSI- 

TION IN AMERICAN SOCIETY BUT WE DO NOT BELIEVE THAT THEY EXPRESS 

THE OPINION OF THE MAJORITY OF THE AMERICAN PEOPLE. 

Studying the vertical listing, we found that the words GENERAL, PAUZR, 
SENATOR, GOLDVOTER, and OBWVESTVE had been missing from the diction- 
ary. This was remedied by the program as follows: The analysis of the end- 
ings and of the neighborhood of the missing words by our missing-word 
routine indicated that GENERAL is a noun in the masculine nominative or 
the masculine accusative; that PAUZR, SENATOR, and GOLDVOTER are nouns 
with the unknown case, gender, and number, and OBWVESTVE is a noun 
in the neuter prepositional As shown in the vertical listing, appropriate 
grammar codes were created by the program and the syntactic analysis 
could proceed 

We also found that the translation of the Russian word I as the con- 
junction and was missed, due to a glossary maintenance error that was 
committed just before this run. The vertical listing allowed us to detect 
this error. 

Now to explain the vertical listing further. In the column representing 
syntactic analysis, the number 001000 indicates that each of the first five 
words (which all show this digit) are in a nominal block. Other numbers 
in the same column indicate that the sixth word is a predicate, the 
seventh and eighth words are nominal blocks that form an object, and 
the ninth, tenth, and eleventh words constitute a prepositional phrase, 
within which the tenth and eleventh words form a nominal block, that 
the thirteenth word is a nominal block, that the fourteenth and fif- 
teenth words form a predicate, the sixteenth word forms a search bound- 
ary, the seventeenth word a nominal block, the eighteenth word a predi- 
cate, that the nineteenth word forms a nominal block and is part of two 
types of complement. This complement (used in the word-combination 
routine described above) extends from the nineteenth word to the 
twenty-second. The twentieth, twenty-first, and twenty-second words in 
addition constitute a nominal block, and the twentieth, twenty-first, and 
twenty-second are also in the genitive. The syntactic analysis has enabled 
the program not only to insert articles (some of which, as can be seen, 
are incorrect) but also the auxiliary do and the preposition of in two 
places. Without the syntactic analysis, the sentence would have read: 



Programming Aspects of Machine Translation 251 

GENERAL PAUZR, SENATOR GOLDVOTER TAKE (OR OCCUPY) IMPORTANT POSI- 

TION IN AMERICAN OBWVESTIVE BUT WE NOT BELIEVE THAT THEY EXPRESS 

OPINION MAJORITY AMERICAN PEOPLE. 

The code number 41 on line 6 indicates that, due to missing agreement 
codes, the routine was not sure it had identified the subject of the sen- 
tence. There was a possibility, as far as the program could see, of the first 
five words being the subject, and therefore no rearrangement took place. 

The information presented in the vertical output is kept with other 
information on a magnetic tape that we refer to as the information 
tape. Each record on the information tape represents a sentence and 
each file an article. On each record, the first five and one-half lines con- 
tain the English information, the remainder of the sixth line contains 
information about stem length, the eventual English word order, whether 
the word was created by stem-ending splitting, whether the word partici- 
pated in an idiom, and whether the grammar code was modified. Line 7 
contains information about multiple-equivalent resolution. Line 8 con- 
tains information about the dictionary access number of the word, the 
form of the ending, and whether the word is potentially part of an idiom. 
Lines 9, 10, 11 contain the grammar code, lines 12, 13, 14, the Cyrillic. 
Line 15 contains information about the location of the word in the text 
and about surrounding punctuation, if any. Line 16 contains a record of 
Insertions to the right that the routine has decided upon. Line 17 and 
part of 18 are used for recording insertions to the left; the remainder of 
18 and all of 19 are used for a record of the syntactic decisions. Conse- 
quently, it is possible to create routines that will go over previously trans- 
lated text in order to search for relationships that were not thought of at 
the time of translation. 

As to the size of the program: the dictionary lookup required 6,000 
Computer instructions, and the syntactic analysis, 10,000 instructions. The 
dictionary lookup works at 180,000 words per hour and the syntactic 
analysis at 60,000 words per hour. That is, translation is done at the rate 
of 45,000 words per hour, or 750 words per minute, or 12.5 words per 
second. 
 


