
Quarterly Progress Report of the Research Laboratory of Electronics; 
M.I.T.,   October,   1958 

 

XVII.    MECHANICAL  TRANSLATION* 

V.  H.  Yngve U.   C.  Dickman K.   C.  Knowlton 
J.  R.  Applegate D.  A.  Dinneen G.  H.  Matthews 
A.  N.  Chomsky (Absent) E.   S.  Klima R.  A.  Rothstein 
W.   S.   Cooper J.  Viertel 

A.    COMPACT  ENCODING OF  REFERENCE DATA 

In some computer applications it is essential that the program have quick access to 

large quantities of reference data.    The data might be a list of employees' names and 

their payroll numbers,  or possibly a catalog of manufactured items with their prices. 

The mechanical translation of languages is such an application,  for a large dictionary 

of some sort must be stored in a rapid-access memory medium,  no matter how sophis- 

ticated the translation program is.    In these situations it is desirable to store the data 

in as compact a form as possible — to compress it,  without losing any useful information. 

Various compression schemes have been devised;  most of them are applicable only to 

the argument part of an item of data,  and not to the function-value part.    These methods 

usually introduce a risk of look-up error,  which increases as higher rates of compres- 

sion are demanded.    In this report we summarize a system that is confined to the argu- 

ment part of each item of data and introduces no risk of look-up error,   even though it 

provides a high degree of compression.    The system requires only that the item that 

is to be looked up shall be accounted for by the data,   and that the arguments shall be 

arranged in numerical order. 

For simplicity,   let us consider a list of binary arguments listed in ascending numer- 

ical order (see List 1).    In every row of such a list except the first,  we single out the 

leftmost bit that differs from the neighbor immediately above it.    All such bits are,  per 

force,   1-bits.    In List 1  these   1-bits have been underlined.    The compression system 

exploits the fact that knowledge of these bits alone is sufficient to deduce the position of 

any item to be looked up in the list.    That is,  for look-up purposes we could reduce 

List 1   to a second list (List 2). 

This meager list   (List 2) contains by implication a surprising amount of informa- 

tion about List 1.    To show that it contains enough information for look-up purposes, 

we reconstruct as much as possible of List 1,   using only the information shown in 

List 2  and utilizing the properties of the underlined 1-bits.    As an example,   consider 

the neighbor immediately below an underlined 1-bit.    This must itself be a 1-bit,  pro- 

vided that it lies to the left of the underlined 1-bit in its own row.    For the latter under- 

lined 1-bit,  by definition,  indicates that all bits to its left in its row are identical with 

their upstairs neighbors.    Continuing by induction,   we can reason that an underlined 

1-bit is the topmost bit of a column of 1-bits which extends downward through all succes- 

sive rows whose own underlined bits lie farther to the right than the column.    When the 

*  This work was supported in part by National Science Foundation. 

175 



 

176 



(XVII.    MECHANICAL TRANSLATION) 

column arrives at a row whose underlined 1-bit lies to the left of the column bits,   it is 

uncertain whether the column of 1-bits continues down into this row or not.    So if we 

confine ourselves to what can be deduced with certainty,  the column of 1-bits terminates 

just above this uncooperative row.    Such columns display all the 1-bits that are contained 

in or implied by List 2.    Next,   notice that the definition of an underlined 1-bit implies 

that the neighbor immediately above any underlined 1-bit must be a 0-bit.    Reasoning as 

before,  we see that such a 0-bit must be the bottom bit of a  column of 0-bits  which 

extends upward past all underlined 1-bits that lie to its right,   and that the column,  in 

fact,  extends into the first row it encounters whose underlined 1-bit lies leftward of the 

column.    Such columns display all of the 0-bits that are implied by List 2. 

We have been able,   a priori,  to augment the second list sufficiently to form List 3. 

This list has the surprising property that any row differs from any other row in at least 

one place;  that is,  for two arbitrary rows,   some  0-bit in the upper row will lie directly 

above a 1-bit in the lower row.    To see this,   consider the rows between the two rows in 

question,   and also the lower row itself.    One of these rows must contain  an underlined 

1-bit that lies farther toward the left than the underlined 1-bits of the other rows;  this 

1-bit must be at the top of a column of 1-bits which extends down into the lower row in 

question,  and this 1-bit must also lie under a column of 0-bits which extends into the 

upper row in question.    Thus any row of List 3 is distinguishable from any other row, 

in spite of the large proportion of unknown bits.    This proves that any item that could 

be looked up in List 1 could also be looked up in List 3,  for it would be distinguishable 

from all but one member of the third list. 

The look-up routines need not be as forbiddingly involved as List 3 might suggest, 

for this list actually contains some superfluous information.    The item to be looked up 

corresponds,  in reality,  to some particular row of List 3 — viz.,  the row that lies in 

the same position in List 3  as  does the row in List 1   which matches the item being 

looked up.    We regard this row in List 3 as the "correct" row,   and we require a look- 

up program to point out its position.    The item does not correspond to any row above 

the correct row,   and a distinction will always be apparent between the item and such 

a (higher) row,  for the row must contain a 0-bit in at least one place where the item 

contains a 1-bit.    Similarly,   the item can be differentiated from any row lying below the 

correct row,  for a lower row must contain at least one 1-bit where the item contains a 

0-bit.    Observe now that the 0-bits shown in the third list are not needed,  for it is 

sufficient that the item be distinguishable from all rows lying below the correct row. 

Therefore,  for the purposes of a look-up program,  the correct row may be defined as 

that row for which all succeeding rows contain at least one 1-bit in the same place that 

the item contains a 0-bit.   With this definition,  the look-up routine need reconstruct only 

columns of 1-bits,   and this is a one-way procedure whereby successive rows are gener- 

ated as the routine works downward through the list.  A still simpler algorithm avoids the 

177 



(XVII.    MECHANICAL TRANSLATION) 

formation of parts of some columns of 1-bits;  only one column is essential in any given 

row,  provided only one item is being looked up.    These look-up procedures and their 

variations are more fully described in Mechanical Translation (1). 

The second list,  which displays only the underlined 1-bits,   comprises all of the 

information that needs to be stored.    A simple way to code this information would be to 

number the columns of the list,   and then store for each row the column number of its 

underlined 1-bit.    With this system,   N-bit arguments could be compressed to a length 

of [log2 N] bits,  where the square brackets indicate that the quantity within must be 

increased until it is an integer.    Should the computer happen to operate with a base 

b  2,  then the  compression system can be modified in a straightforward manner,  so that 

an N  character argument compresses to   [l + logb N] characters.    These compression 

rates could be improved  a little by utilizing certain weak interdependencies among the 

underlined digits themselves,  but the improvement would be slight and would entail a 

more complex look-up procedure. 

Here is an illustration of the capabilities of this sort of compression system:   The 

name-and-address part of every listing in a city telephone directory could be replaced 

by a two-letter code in such a way that a user could still look up the phone number of 

any friend whose name and address he knew exactly . 

W. S.  Cooper 

References 

1.    W.   S.  Cooper,   The storage problem,  MT,  Vol. II,  No.  5 (in press). 

178 


