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Applications of the Theory of Clumps* 

by R. M. Needham, Cambridge Language Research Unit, Cambridge, England 

The paper describes how the need for automatic aids to classification 
arose in a manual experiment in information retrieval. It goes on to dis- 
cuss the problems of automatic classification in general, and to consider 
various methods that have been proposed. The definition of a particular 
kind of class, or "clump," is then put forward. Some programming tech- 
niques are indicated, and the paper concludes with a discussion of the 
difficulties of adequately evaluating the results of any automatic classifi- 
cation procedure. 

The C.L.R.U. Information Retrieval Experiment 
Since the work on classification and grouping now 
being carried out at the C.L.R.U. arose out of the 
Unit's original information retrieval experiment, I shall 
describe this experiment briefly. The Unit's approach 
represented an attempt to combine descriptors and uni- 
terms. Documents in the Unit's research library of 
offprints were indexed by their most important terms 
or keywords, and these were then arranged in a multi- 
ple lattice hierarchy. The inclusion relation in this sys- 
tem was interpreted, very informally, as follows: term 
A includes term B if, when you ask for a document 
containing A, you do not mind getting one containing 
B. A particular term could be subsumed under as many 
others as seemed appropriate, so that the system con- 
tained meets as well as joins, that is, was a lattice as 
opposed to a tree, for example as follows: 

 
The system was realized using punched cards. There 
was a card per term, with the accession numbers of 
the documents containing the term punched on it; at 
the  right  hand  side  of  the  card  were  the numbers of 
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the terms that included the term in question. The docu- 
ment numbers were also punched on all the cards for 
the terms including the terms derived from the docu- 
ment, and for the terms including these terms and 
so on. 

In retrieval, the cards for the terms in the request 
were superimposed, so that any document containing 
all of them would be identified. If there was no im- 
mediate output, a “scale of relevance” procedure could 
be used, in which successive terms above a given term 
are brought down, and with them, all the terms that 
they include. In replacing D by C, for example, we 
are saying that documents containing B, E and F as 
well as C are relevant to our request (we pick up this 
information because the numbers for the documents 
containing B, E, and F are punched on the card for C, 
as well as those for documents containing C itself). 
Where a request contained a number of terms, there 
was a step-by-step rule for bringing down the sets of 
higher-level terms, though the whole operation of the 
retrieval system could be modified to suit the user's 
requirements if appropriate. 

The system seemed to work reasonably well when 
tested, but suffered from one major disadvantage: the 
labor of constructing and enlarging the lattice is enor- 
mous, and as terms and not descriptors are used, and 
as the number of terms generated by the document 
sample did not tail off noticeably as the sample in- 
creased, this was a continual problem. The only answer, 
given that we did not want to change the system, was 
to try to mechanize the process of setting up the lattice. 
One approach might be to give all the pairs of terms, 
                      A  C 
for example      ,          and then sort them mechanically 
                      B    B 
to produce the whole structure. The difficulty here, 
however, is that the person setting up the pairs does 
not really know what he is doing: we have found by 
experience that the lattice cannot be constructed prop- 
erly unless groups of related terms are all considered 
together. Moreover, even if we could set up the lattice 
in  this  way,  it w ould  be  only a partial solution to our 
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problem. What we really want to attack is the problem 
of mechanizing the question “Does A come above B?” 
When we put our problem in this form, however, it 
merely brings out its full horror; how on earth do we 
set about writing a program to answer a question like 
this? 

As there does not seem to be any obvious way of 
setting up pairs of terms mechanically, we shall have 
to tackle the problem of lattice construction another 
way. What we can do is look at what the system does 
when we have got it, and see whether we can get a 
lead from this. If we replace B by C in the example 
above, we get D, E and F as well; we have an inclu- 
sive disjunction “C or B or D or E or F.” These terms 
are equally acceptable. We can say, to put it another 
way, that we have a class of terms that are mutually 
intersubstitutible. It may be, that if we treat a set of 
lattice-related terms as a set of intersubstitutible terms, 
we can set up a machine model of their relationship. 
Intersubstitutibility is at least a potentially mechaniza- 
ble notion, and a system resulting from it a mechaniza- 
ble structure. What we have to try to do, therefore, is 
to obtain groups of intersubstitutible terms and see 
whether these will give the same result as the hand- 
made structure. 

The first thing we have to do is define 'intersubsti- 
tutibility.' In retrieval, two terms are totally intersub- 
stitutible if they invariably co-occur in documents. 
They then each specify the same document set, and it 
does not matter which is used in a request. The point 
is that the meaning of the two terms is irrelevant, and 
there need not be any detectable semantic relation 
between them. That is to say, we need not take the 
meaning of the terms explicitly into account, and 
there need be no stronger semantic relation between 
them than that of their occurring in the same docu- 
ment. What we have to do, therefore, is measure the 
co-occurrence of terms with respect to documents. Our 
hypothesis is that measuring the tendency to co-occur 
will also measure the extent of intersubstitutibility. 
This is the first stage; when we have accumulated 
co-occurrence coefficients for our terms or keywords, 
we look for clusters of terms with a strong mutual 
tendency to co-occur, which we can use in the same 
way as our original lattice structure, as a parallel to 
the kind of group illustrated in our example by “C or 
B or D or E or F.” 

The attempt to improve the original information 
retrieval system thus turned into a classification prob- 
lem of a familiar kind: we have a set of objects, the 
documents, a set of properties, the terms, and we want 
to find groups of properties that we can use to classify 
the objects. Subsequent work on classification theory 
and procedures has been primarily concerned with 
application to information retrieval, but we thought 
that we could usefully treat the question as a more 
general one, and that attempts to deal with classifica- 
tion  problems  in  other  fields  might  throw some light 

on the retrieval case. The next part of this report will 
therefore be concerned with classification in general. 

Classification Problems and Theories; 
the Theory of Clumps 
In classification, we may be concerned with any one 
of three different problems. We may have 
1) to assign given objects to given classes; 
2) to discover, with given classes and objects, what 

the characteristics of these classes are; 
3) to set up, given a number of objects and some in- 

formation about them, appropriate classes, clusters 
or groups. 

1) and 2) are, to some extent, statistical problems, but 
3) is not. 3) is the most fundamental, as it is the basis 
for 2), which is in turn the basis for 1). We cannot 
assign objects to classes unless we can compare the 
objects' properties with the defining properties of the 
classes; we cannot do this unless we can list these de- 
fining properties; and we cannot do this unless we 
have established the classes. The research described 
below has been concerned with the third problem: this 
has become increasingly important, as, with the com- 
puters currently available, we can tackle quite large 
quantities of data and make use of fairly comprehensive 
programs. 

Classification can be looked at in two complemen- 
tary ways. Firstly, as an information-losing process: we 
can forget about the detailed properties of objects, and 
just state their class membership. Members of the same 
class, that is, though different, may not be distin- 
guished. Secondly, as an information-retaining process: 
a statement about the class-membership of an object 
has implications. If we say, that is, that two objects are 
members of the same class, this statement about the 
relation between them tells us more about each of 
them than if we considered them independently. In a 
good classification, a lot follows from a statement of 
class membership, so that in a particular application 
the predictive power of any classification that we pro- 
pose is a good test of its suitability. In constructing a 
classification theory, therefore, we have to achieve a 
balance between loss and gain, and if we are setting 
up a computational procedure, we must obviously 
throw away the information we do not want as quickly 
as possible. If we have a set of On objects with Pm 
properties, and Pm greatly exceeds On, we want if we 
can to throw as much of the detailed property informa- 
tion away as is possible without losing useful distinc- 
tions. This cannot, of course, necessarily be done 
simply by omission of properties. 

We may now consider the classification process in 
more detail. Our initial data consists of a list of ob- 
jects each having one or more properties.* We can 
conveniently arrange this information in an array, as 
follows: 
* We have not yet encountered cases where non-binary properties 
seemed necessary. They could easily be taken account of. 
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properties 
P1  P2...........................Pm 

o         O1    1   1  0  0  1  0 
b 
j O2    0   1  1  0  1  0 
e 
c 
t 
s 

On    1   0 1  0  0  0 

where O1 has P1, P2, P5 and so on, O2 has P2, P3, P5 and 
so on. We have to have this much information, though 
we do not need more—we need not know what the 
objects or properties actually are,—and we have, at 
least to start with, to treat the data as sacred. 

We can try to derive classes from this information 
in two ways: 
1) directly, using the occurrences of objects or prop- 

erties; 
2) indirectly, using the occurrences of objects or prop- 

erties to obtain resemblance coefficients, which are 
then used to give classes. 

We have been concerned only with the second, and 
under this heading mostly with computing the resem- 
blance between objects on the basis of their properties. 
If we do this for every pair of objects we get a (sym- 
metric) resemblance or similarity matrix with the sim- 
ilarity between Oi and Oj in the ijth cell as follows: 

O1    O2   O3 . . . . 

                             O1     S12   S13 
                             O2      S21           S23 
                             O3 S31    S32 

To set up this matrix, we have to define our similarity 
or resemblance coefficient, and the first problem is 
which coefficient to choose. It was originally believed 
that if the clusters are there to be found, they will be 
found whatever coefficient one uses, so long as two 
objects with nothing in common give 0, and two with 
everything in common give 1. Early experiments 
seemed to support this. We have found, however, in 
experiments on different material, that this is probably 
not true: we have to relate the coefficient to the sta- 
tistical properties of the data. We have therefore to 
take into account 
i) how many positively-shown properties there are 
(that is, how many properties each object has on the 
average), 
ii)  how many properties there are altogether, 
iii)  how many objects each property has. 
Thus we may take account of i) and ii) by computing 

the coefficient for each pair of objects on the basis of 
the observed number of common properties, and then 
weighting it by the unlikelihood* of the pair having 
at least that number of properties in common on a ran- 
dom basis. 

In any particular problem there is, however, a 
choice of coefficient, though for experimental purposes, 
as it saves computing effort, there is a great deal to 
be said for starting with a simple one. Both for this 
reason, and also because we did not know how things 
were going to work out, we defined the resemblance, 
R, of a pair of objects, O1 and O2, as follows: 

 
This was taken from Tanimoto1; it is, however, a 
fairly obvious coefficient to try, as it comes simply 
from the Boolean set intersection and set union. For 
any pair of rows in the data array we take: 

 
This coefficient is all right if each object has only a 
few properties, but there are a large number of prop- 
erties altogether, so that agreement in properties is 
informative. We would clearly have to make a change 
(as we found) if every object has a large number of 
properties, as the random intersection will be quite 
large. In this case we have to weight agreement in 1's 
by their unlikelihood. There is a general belief (espe- 
cially in biological circles) that properties should be 
equally weighted, that is, that each 1 is equally sig- 
nificant. We claim, on the contrary, that equal weight- 
ing should be interpreted as equality of information 
conveyed by each property, and this means that a 
given occurrence gives more or less information ac- 
cording to the number of occurrences of the property 
concerned. Agreement in a frequently-occurring prop- 
erty is thus much less significant than agreement in 
an infrequently-occurring one. If N1 is the number of 
occurrences of P1, N2 the number of occurrences of P2, 
N3 of P3 and so on, and we have O1 and O2 in our 
example, possessing P1, P2 and P5, and P2, P3 and P5 
respectively, we get 

 
This coefficient is thus essentially a de-weighting. 
Though more complicated than the other, it can still 
be computed fairly easily. 

When we have set up our resemblance or similarity 
matrix, we have the information we require for carry- 

* The unlikelihood is theoretically an incomplete B-function, but a 
normal approximation is quite adequate. 
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ing out our classification. We now have to think of a 
definition for, or criterion of, a cluster. We want to say 
“A subset S is a cluster if . . .” and then give the con- 
ditions that must be fulfilled. There are, however, (as 
we want to do actual classification, and not merely 
think about it) some requirements that any definition 
we choose must satisfy: 
i) we must be able to find clusters in theory, 
ii) we must be able to find them in practice (as op- 

posed to being able to find them in theory). 
These points look obvious, but are easily forgotten in 
constructing definitions, when  mathematical elegance 
is a more tempting objective. What we want, that is, is 
1) a definition with no offensive mathematical prop- 

erties, and 
2) a definition that leads to an algorithm for finding 

the clusters (on a computer). 
We still have a choice of definition, and we now 

have to consider what a given definition commits us 
to. Most definitions depend on an underlying model of 
some kind, and so we have to see what assumptions 
we are making as the basis for our definition. Do we, 
for example, want a strong geometrical model? We can 
indeed make a fairly useful division into definitions 
that are concerned with the shape of a cluster (is it a 
football, for instance?), and those that are concerned 
with its boundary properties (are the sheep and the 
goats to be completely separated?). Boundary defini- 
tions are weaker than those based on shape, and may 
be preferable for this reason. There are other points 
to be taken into account too, for instance whether it is 
desirable that one should allow overlap, or that one 
should know if all the clumps have been found. 

Bearing these points in mind, we may now consider 
a number of definitions. We can perhaps best show 
how they work out if we think of a row of the data 
array as a vector positioning the object concerned in 
an n-dimensional space. 

CLIQUE 

(Classes on this definition are sometimes referred to 
simply as “clusters”; in the present context, however, 
this would be ambiguous. These clusters were first 
used in a sociological application, where they were 
called “cliques,” and I shall continue to use the term, 
to avoid ambiguity, though no sociological implications 
are intended.) According to our definition, S is a clique 
if every pair of members of S has a resemblance equal 
to or greater than a suitably chosen threshold θ, and 
no non-member has such a resemblance to all the mem- 
bers. In geometrical terms this means that the mem- 
bers of a clique would lie within a hypersphere whose 
diameter is related to θ. This definition is unsatisfactory 
in cases where we have two clusters that are very close 
to, and, as it were, partially surround, one another. 
Putting it in two-dimensional terms, if we have a num- 
ber of objects distributed as follows: 

 
they will be treated as one round clique, and not as 
two separate cliques, although the latter might be a 
more appropriate analysis. 

This approach also suffers from a substantial disad- 
vantage in depending on a threshold, although in most 
applications there is nothing to tell us whether one 
threshold is more appropriate than another. The choice 
is essentially arbitrary, and as the precise threshold 
that one chooses has such an effect on the clustering, 
this is clearly not very satisfactory. The only cases 
where a threshold is acceptable are those where the 
clustering remains fairly stable over a certain range of 
the threshold. This is hard to define properly, and 
there is no evidence, experimental or theoretical, that 
it happens. 

IHM  CLUSTER 
The classification methods used by P. Ihm depend on 
the use of linear transformations on the data matrix, 
with a view to obtaining clusters that are, in a suitable 
space, hyperellipsoids. An account of them may be 
found in Ihm's contribution to The Use of Computers 
in Anthropology.2 

This definition is unsatisfactory because it assumes 
that the different attributes or properties are inde- 
pendently and normally distributed, or can be made so. 

Both these definitions depend on fairly strong as- 
sumptions about the data. Ihm, for example, is taking 
the typical biological case where the properties may 
be regarded as independently and normally distributed 
within a cluster. If these assumptions are justified, this 
is all right. But in many applications they may not be. 
In information retrieval, for instance, the following 
might be a cluster: 

 
There is obviously a great deal to be said, if we are 
trying to construct a general-purpose classification pro- 
cedure, for making the weakest possible assumptions. 
The effects of these definitions can usefully be stud- 
ied in more detail in connection with the similarity 
matrix. First, for cliques. Suppose that we re-arrange 
the matrix to concentrate the objects with resemblance 
above θ,  given  as  1,  in  the  top  left-hand corner (and 
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bottom right). Objects with less than θ resemblance, 
given as 0, will fall in the other corners. Ideally, this 
should give the following*: 

1111 0000 
1111 0000 
1111 0000 
1111 0000 

0000             1111 
0000             1111 
0000             1111 
0000             1111 

However, consider the following: 
1101           1100 
1101           1001 
0011           0001 
1111           0000 

1100 1111 
1000 1111 
0000 1111 
0110 1111 

One would want, intuitively speaking, to say that the 
first four objects form a cluster. But on the clique 
definition this is impossible, because of the 0's in the 
first 4-square. In fact we have found, with the 
empirical material that we have considered, that the 
required distribution never occurs; raw data just does 
not have this kind of regularity, at worst if only be- 
cause it was not written down correctly when it was 
collected. Even with θ quite low, one would probably 
only, unless the objects to be grouped were very in- 
bred, get pairs or so of objects. In the information 
retrieval application this definition has the added dis- 
advantage that synonyms would never cluster because 
they do not usually co-occur, though they may well 
co-occur with the same other terms. The moral of this 
is that we should not look for an “internal” definition 
of a cluster, that is, one depending on the resemblance 
of the members to each other, but rather for an “ex- 
ternal” definition, that is, one depending on the non- 
resemblance of members and non-members. The first 
attempt at such a definition was as follows: S is a 
cluster if no member has a resemblance greater than a 
threshold 6 to any non-member, and each member of 
S has a resemblance greater than θ is some other mem- 
ber.†   In  terms  of our resemblance matrix we are look- 
* These matrices have been drawn in this way for illustrative pur- 
poses. In any real similarity matrix successive objects would almost 
certainly not form a cluster, and one would have to rearrange it if 
one wanted them to do so (though this is obviously not a necessary 
part of a cluster-finding program). One would not expect an equal 
division of the objects either: in all the applications so far considered 
a set containing half the objects would be considered to be too large 
to be satisfactory. (In the definition adopted both the set satisfying 
the definition and its complement are formally clusters, though only 
the smaller of the two is actually treated as a cluster). 
† This definition was the first to be tried out in the C.L.R.U. research 
on classification under the title of the Theory of Clumps; in this re- 
search clusters are called “clumps” and these clusters were called 
“B-clumps.” 

ing, not for the absence of 0's in the top left section, 
but for the absence of 1's in the top right section. We 
may still, however, not get satisfactory results. For 
example, the anomalous 1 in the top right corner of 
the matrix below means that the first four objects do 
not form a cluster, although we would again, intui- 
tively speaking, want to say that they should. 

1111 0010 
1101 0000 
1011 0000 
1111 0000 

0000 1111 
0000 1111 
1000 1111 
0000 1111 

This definition again may work fairly well in biology, 
but it suffers, like the clique definition, from the prob- 
lems connected with having a threshold. It also means 
that if we have a set of objects as follows 

 
they will be treated as one cluster and not as two 
slightly over-lapping ones. On this definition, that is, 
we cannot separate what we might want to treat as 
two close clusters. 

These definitions all, therefore, suffer from the major 
disadvantage that a single aberrant 0, in the first case, 
or 1, in the second, can upset the clustering, and for 
the kind of empirical material for which automatic 
classification is really required, where the set of ob- 
jects does not obviously “fall apart” into nice distinct 
groups but appears to be one mass of overlaps, and 
where the information available is not very reliable, as 
in information processing, definitions like these are 
clearly unsatisfactory. In many applications, that is, 
the data is not sufficiently uniform or definite for us 
to be able to rely on the classification not being af- 
fected in this way. 

What we require, therefore, is a definition that does 
without θ, and is not affected by a single error in the 
matrix. We can get a lead on a definition by looking 
at the matrix distributions for the other definitions. 
Considering for the moment the first four rows of the 
sample matrix, we found that our previous cluster 
definitions were not satisfied for the first four objects 
if there was a 0 in the left half of any of the first four 
rows, or a 1 in the right half; we wanted, that is, to 
have either the left half of each row all 1's, or the right 
half all 0's. An obvious modification would be to say 
that there should be more 1's in the left half than in 
the right half of each of these rows, without saying 
that  there  should  be no 0's in the left, or 1's in the right 
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half. This would clearly be a move in the right direc- 
tion, away from the extremes of the other definitions. 
It would mean, for example, that the following dis- 
tribution would give us a clump.* 

1101 1100 
1101 1001 
0011 0001 
1111 0000 

1100 1111 
1000 1111 
0000 1111 
0110 1111 

A definition on this basis was adopted for use in the 
C.L.R.U. research, where a cluster was called a 
“clump,” as follows: A subset S is a cluster, or clump, 
if every member has a total of resemblances to the 
other members exceeding its total of resemblances to 
non-members, and every non-member has a greater 
total of resemblances to the other non-members than to 
the members. At present, “total of resemblances” may 
be taken as “total of resemblances exceeding θ”; how- 
ever, this use of a threshold may be dropped, and the 
total is then simply the arithmetic sum of coefficients.** 
The complement of a clump is thus a clump. There 
are many equivalent forms of this definition. For in- 
stance: If, in the previous matrix diagrams, we label 
the clump in the top left section “A,” and its com- 
plement in the bottom right “B,” we can define “the 
'cohesion' of A and B”: Let C be the total of resem- 
blances between any two sets of objects. We can set 
up a ratio of resemblances 

CAB 
C AA + C BB 

which we call the “cohesion across the boundary be- 
tween A and B.” A partition of the matrix marking off 
a clump will correspond to a local minimum of C. Let 
A be the resemblance matrix. We set up a vector v 
defining a partition of the total set of objects, with 
elements +1 for objects on one side of the partition 
and — 1 for those on the other. Q is a diagonal matrix 
defined by the equation 

Av = Qv • 

Since the elements of v are all + or — 1, the multi- 
plication Av simply adds up, for each element, the 
resemblance to the members of the subset specified by 
+ 1 and subtracts the resemblance to the other ele- 
ments specified by —1. Thus, it is clear that if the 
subset specified by +1 is a clump, the entries in the 
result vector Av will have to be positive in those rows 
where v is positive, and negative elsewhere. This cor- 

* It was found expedient to treat the diagonal elements (which carry 
no  information  anyway)   as zero rather than units.  This  makes  the 
algorithm easier to describe and implement. 
** These clumps have been called GR-clumps in earlier publications. 

responds to the case in which all the elements of Q 
are positive. 

There is clearly some relation between clumps and 
the eigenvectors of A corresponding to positive eigen- 
values, but we cannot say just what this relation is. 
This approach does not, moreover, lead to any very 
obvious procedure for clump-finding. In matrices of 
the order likely to arise in classification problems, the 
solution of the eigenproblem would almost be a re- 
search project in itself. If we could get over this diffi- 
culty we might abandon as too difficult the attempt to 
relate eigenvalues and eigenvectors to clumps as de- 
fined, and try to set up some other definition of a class 
in which the connection was more straightforward. In- 
vestigation shows, however, that the interpretation of 
eigenvectors and eingenvalues as the specification of 
a class is not at all obvious. This approach is also open 
to the methodological objection that information is 
abandoned at the end, and not at the beginning, of the 
classification process. 

We may, however, still learn something useful from 
considering these alternative definitions, and the equa- 
tion defining the cohesion of A and B indeed suggests 
that an arbitrary partition of our set of objects with 
interchanges of objects from one side to the other to 
reduce the cohesion between the two halves can be 
used as a clump-finding procedure. As this is used as 
the basis of the procedures we have developed, we can 
now go on to consider the question of programming. 

Programming Procedures for the Theory of Clumps 

In programming, the first step is to organize the data 
into some standard form. We have found it most con- 
venient to list the properties and attach to each prop- 
erty a list of the objects that have it. Listing the objects 
with their properties is much less economic, as the 
data is usually very sparse. (The data can of course be 
presented to the machine in this form, as it can be 
transformed into the desired form very easily.) The 
properties and objects can be identified with serial 
numbers, so that if one were dealing with text, for ex- 
ample, one would sort the words alphabetically and 
give each distinct word a number. 

The next stage is to set up our similarity matrix. 
This is done in two stages, collecting the co-occurrence 
information, and working out the actual similarity co- 
efficients. In the first, we consider each property in 
turn, and count one co-occurrence for each pair of 
objects having the property; we are thus only opening 
a storage cell for the items that will give positive en- 
tries in the similarity matrix. The whole is essentially 
a piece of list-processing, in which we list our objects, 
and for each item in the list we have a pointer to a 
storage cell containing information about the object 
concerned. As we can store only information about the 
relation between the given object and one other object 
in a cell,  we  require  a  cell for every object with which 
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a particular object is connected. These are arranged in 
the serial order of the objects, with each cell pointing 
to the next one. The objects connected with a given 
object are thus not linked directly with this object, but 
are given in a series of storage cells, each leading to 
the next. 

If we are given n objects, we have, for any one of 
the objects, n—1 possible co-occurrences with other 
objects (by co-occurrences, we mean possession of a 
common property). We could therefore have a chain 
of n—1 empty storage cells attached to each item in 
our object list, and fill in any particular one when we 
found, on scanning our property lists, that the object to 
which the chain concerned was connected and the ob- 
ject with the serial number corresponding to the cell 
had a common property. This would, however, clearly 
be uneconomic, as we would fill up our machine store 
with empty cells, and only use a comparatively small 
proportion of them. What we do, therefore, is open a 
cell only for each object we find actually co-occurring 
with a given object, when we are scanning our prop- 
erty lists. We will thus, as we go through our property 
information, add or insert cells in our chains. As we 
shall not meet the objects in their serial order,* but 
want to store them in this order, we have to allow in- 
sertion as well as addition in our chains of storage cells. 

We may find also that two objects have more than 
one property in common. When we open a cell for a 
co-occurrence, we record the co-occurrences as well as 
the objects that co-occur; the next time we come 
across this pair of objects we add 1 to our record of 
the number of co-occurrences, and so on, adding to 
the total every time the two objects come together. 
(It should be noticed that as co-occurrence is sym- 
metrical we will need** a cell under each of the ob- 
jects, and will record the co-occurrences twice). 

What we are doing, therefore, is accumulating in- 
formation by list-processing, either opening new cells 
for new co-occurrences, or adding to the total of exist- 
ing co-occurrences. Each storage cell contains the 
name of an object, the number of times it has co-oc- 
curred with the object to which the chain concerned 
is attached, and a pointer to the next cell in the series. 
As this looks rather complicated when written out, even 
though the principle is very simple, we can illustrate 
it with a small example as follows: 
P = property, O = object, (   ) = storage cell, → = "go to"; 

Data P1 : Ol    O5    O8 
P2 : Ol    O5    O7 
P3 : 03    04 

Store Ol 
O2 
O3 
. 
. 

* Because the initial data comes with serially-ordered properties. 

** The duplicate storage of the co-occurrence information doubles 
the size of the matrix, but makes it much easier to handle. 

Operations 
1. Scan P1 list; Ol, O5 co-occur; open cell for O5 under 

Ol, for Ol under O5; note 1 co-occurrence in each; the 
entry for Ol now reads: 

O1  → (O5,1) 
for O5: 

O5 → (O1,1) 
2. Scan P1 list; Ol, O8 co-occur; open cell for O8 under 

Ol, for Ol under O8; note 1 co-occurrence in each; the 
entry for Ol, with the new cell added to the existing 
chain now reads: 

O1 → (O5,l) → (O8,1) 
for O8: 

O8 → (O1,1) 

3. Scan P1 list; O5, O8 co-occur; open cell for O8 under 
O5, for O5 under O8; note 1 co-occurrence in each; the 
entry for O5, with the new cell added now reads: 

O5 → (Ol,l) → (O8,l) 
for O8, with the new cell added: 

O8 → (Ol,l) → (05,1) 

4. Scan P2 list; Ol, O5 co-occur; add 1 to the co-occur- 
rences totals for O5 under Ol, for Ol under O5; the 
entry for Ol now reads: 

Ol → (O5,2) → (O8,l) 
for O5: 

O5 → (Ol,2) → (O8,l) 

5. Scan P2 list; Ol, O7 co-occur; open cell for O7 under 
Ol, for Ol under O7; note 1 co-occurrence in each; the 
entry for Ol with the new cell inserted now reads: 

O1 → (O5,2) → (O7,1) → (O8,1) 
for 07: 

O7 → (Ol,l) 

6. Scan P2 list; O5, O7 co-occur; open cell for O7 under 
O5, for O5 under O7; note 1 co-occurrence in each; the 
entry for O5, with the new cell inserted now reads: 

O5 → (O1,2) → (O7,1) → (O8,l) 

for O7, with the new cell added: 

O7 → (O1,1) → (O5,1) 

7. Scan P3 list; O3, O4 co-occur; open cell for O4 under 
O3, for O3 under O4; note 1 co-occurrence in each; the 
entry for O3 now reads: 

O3 → (O4,l) 
for O4: 

O4- → (O3,1). 

When this information has been collected it is trans- 
ferred to magnetic tape in a more compact form, in 
which the name of each object is given, together with 
a list of all the objects it co-occurs with, with their re- 
spective total co-occurrences. The matrix is thus stored 
in a form in which it can be easily updated if neces- 
sary. Some other information is also included: the total 
number of objects each object co-occurs with, and the 
total number of properties it has. This gives us all the 
information we need for working out any similarity 
coefficient. When we have worked out our coefficient 
for each pair of objects, we replace the co-occurrence 
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totals  by the  appropriate  similarity  coefficients.   Our 
entry for O9, say, might read: 

O9 : O2 = .35, O4 = .07, O28 = .19, ............  

The serial list we obtain is our similarity matrix, and 
we are now in a position to start clump-finding. 

This is where the matrix terminology introduced 
earlier is useful. What we want to obtain is a partition 
of our set of objects, into, say L and R, such that we 
have a clump and its complement. If we imagine our 
set and a partition as follows 

 
what we have to do is consider the sets of objects on 
each side of the partition to see whether they form 
clumps, and if they do not, try moving objects across 
the partition until we get the required distribution. To 
see whether a set is a clump, we have to take each 
object in turn and sum its connections to the set and 
complementary set respectively. 

The initial partition will be defined by a vector v, 
and we can, as we saw, obtain the diagonal matrix Q 
in the equation 

Av = Qv 

after multiplying the similarity matrix A by v. We 
know that if all the elements of Q are positive, we 
have found a clump. If we have a negative element in 
Q, this means that the partition is unsatisfactory, either 
because we have an object in R which should be in L, 
or an object in L which should be in R. (The sign at- 
tached to the corresponding element of v will tell us 
which). We can deal with the anomalous object by 
shifting it across the partition,* but we have to see 
what effect this has on our two sets. We mark the shift 
by reversing the sign of the element in v which cor- 
responds to the negative element in Q, and then use 
the new vector, defining the new partition, to recom- 
pute Q. If we still have a negative element in Q, we 
repeat the whole process. We thus have an iterative 
procedure for improving an unsatisfactory Q by re- 
moving the next negative element in the series. Rectify- 
ing one negative element can mean that we get others 
that we did not have to start with, but it can be 
shown that the procedure is monotonic. 

The important point is that we carry out the whole 
multiplication Av only once; after this, as we are only 
dealing with one element of Q, corresponding to one 
object, at a time, we have only to consider one row 
of A. We have, that is, changed only one element of v, 
and therefore have only to carry out the multiplication 
* Thus diminishing the cohesion between the two sets. 

on the corresponding row in A to get the new result 
vector Av. This all means that the procedure is quite 
economic, and that we can store A, row by row, in a 
fairly compact form. Recomputing Q is not a very seri- 
ous operation. We have to do it all because we are 
dealing with the totals of connections between objects, 
and shifting one object could affect the totals for all 
the other objects in our set. 

We can describe this iterative series of operations, in 
which we modify our initial partition, as one round 
of clump-finding; we will either find a clump, or finish 
up with all our objects on one side of the partition. 
When we do not find a clump, that is, it is because we 
have, in trying to improve on our initial division, 
moved all our objects onto one side of the partition, so 
that the whole partition collapses. After each round, 
whether we find a clump or not, we have to start again 
with a new partition. It is clear that the way we parti- 
tion the set initially can influence our clump-finding; 
it can also affect the speed with which we find clumps. 
Again, when we start a new round, we want to take 
account of the partitions we have already made. We 
obviously do not want to repeat a partition we have 
already tried, and we may also be able to take account 
of previous partitions in a more sophisticated way. 
How, then, should we set up our partitions, either to 
begin with, or for a new round? How should we set 
about getting a useful partition? 

We first tried using some very crude cluster, which 
we had found by another method, as a sort of “seed”; 
it would partition off a potential clump. In one experi- 
ment, for instance, we used cliques as starting points. 
This is not, however, very satisfactory. In many ap- 
plications we have found that we cannot obtain any 
cliques, and so cannot use them as a lead; this was 
true of the information retrieval application, with 
which we were most concerned at the time, so we did 
not pursue the approach. The procedure is also rather 
inefficient; it is no better than other methods, and in- 
volves the additional preliminary stage in which the 
crude clusters are set up. 

We then thought that as we have an iterative pro- 
cedure, we could start with a random equipartition; 
we can start, that is, in a comparatively simple-minded 
way because clump-finding is not a hit or miss affair: 
we can improve on whatever division we start with. 
When we start a new round, we make another equi- 
partition, though we found it more efficient if partitions 
after the first are not made at random, but are ad- 
justed so that we do not start with anything too close 
to the partitions we have already tried.* We thus have 
a kind of orthogonal series of equipartitions. 

This procedure has, however, one defect: although 
we sometimes find a clump, in general any partition 
that we make is far too likely to collapse. The whole 
process becomes a succession of collapses, each fol- 

* This is effected by a rule for modifying the vector v. 
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lowed by an entirely new start. This is unfortunate, be- 
cause although a given partition is not right, something 
near it may well be, and this is clearly worth looking 
for. We found that we could avoid the unfortunate 
consequences of a collapse by using a binary section 
procedure. When we fail to find a clump, we take suc- 
cessive binary sections, with respect to our starting 
partition, inspecting each in a round of iterations, 
either until we find a clump or the binary chopping 
reaches its limit. We thus have a series of rounds, and 
not merely one round associated with each starting 
partition, each testing a partition which is a modifica- 
tion of the original one. 

The actual procedure is as follows: Suppose that we 
partition our set into two parts, L and R, with the ele- 
ments of L corresponding to +1 in our vector, and 
those of R to —1: 

TL becomes        P1 

TR       " TL (“best” half) 
TR  (rest) 

In any subsequent partition the permanent part stays 
permanent, while the temporaries are reconsidered. 
Suppose we have 

 

  

 
Now suppose that we carry out our iterative scan and 
transfer, and find that L collapses. We do not start 
afresh with a quite independent partition, but try to 
give L a better chance: we inspect R, find the mean 
total of resemblances to L, and restart with the ele- 
ments with greater than average resemblance to the 
old L in a new L: 

and L still collapses. We then set up: 

PL becomes      PL 
TL       "            PL 

TR       " TL (“best” half) 
                                     TR (rest) 

that is 

  

 
We now scan again, and with a bigger L, may find that 
it no longer collapses. 

We can illustrate the process in more detail by using 
the notions of “temporary,” T, and “permanent,” P. We 
label our initial parts TL and TR: 

 
Suppose we find on iterating, that L collapses, and we 
want to give it a better chance. We make alterations 
as follows: 

Suppose we now find that R collapses, and we must 
give it a better chance. We now set up: 

PL becomes      PL 
TR       "            PR 

TL       " TL (“best” half) 
                                  TL  (rest) 

that is 

 

The procedure thus consists of a continual reduction 
of the temporary sections, in an endeavor to build up 
the permanent sections in a satisfactory way. 

If we find a stable partition where neither side col- 
lapses, this gives us a clump. It in fact gives us a 
clump and its complement, which is also formally a 
clump,  though  we  only  treat  the  smaller  one  of  the 
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two as a clump in listing our results. If we go on par- 
titioning until there are no more elements to partition,* 
we have failed to find a clump, and have to start all 
over again with a wholly new division of our set. In 
any given attempt at clump-finding, therefore, we are 
always concerned with a partition which has some 
relation to our initial one, as we want to find out 
whether anything like the one we started with will 
give us a clump; and as we think that it is worth 
making a fairly determined search for one, we go on 
trying until it becomes clear that there is none. It is 
clear that this improved procedure for clump-finding is 
a general one and can be used with any method of 
choosing starting-partitions; thus if we have an appli- 
cation where we think that we can suitably use other 
clusters as seeds, we start with them and then go about 
our clump-finding this way. The procedure as it stands 
can be usefully refined in a number of ways; in many 
applications we are not interested in clumps with only 
two or three members, and so there is no point in car- 
rying on the partition procedure when one side is very 
small. We can avoid this if we redefine 'collapse', so 
that, for instance, we say that a partition has collapsed 
if one side has, say, less than 10, elements in it. In 
some applications we may be interested in clumps 
centered on particular elements, or have reason to 
think that particular elements will lead to clumps; if 
this is the case we can start with a single element, 
making our initial partition between this element and 
the rest of the set. We will clearly get an initial col- 
lapse, as all the element's connections will be to the 
other side of the partition, but after this we can pro- 
ceed. 

Setting up the initial partition between one element 
and the rest has in fact turned out to be a better way 
of starting in general. The trouble with equipartitions 
is that they tend to lead to aggregate clumps. The defi- 
nition of 'clump' is such that the union of two clumps 
may be a clump, and if we start clump-finding by con- 
sidering half of a large set of objects, we are very 
likely to find that the nearest clump is a large one 
which is an aggregate of smaller ones. This is not 
necessarily a bad thing, but we found that the aggre- 
gates we got in our experiments were too big to be 
suitable for the purpose for which the classification 
was required. Starting with one element avoids this 
difficulty, and as we have a clump-finding procedure 
in which the collapse of a partition is not fatal, we 
can begin with a partition which cannot but collapse, 
but from which we may be able to derive the kind of 
clump we want. 

This procedure seems to work satisfactorily, though 
some problems do arise: we do not know 

1) when we have found all the clumps, or 
2) how many there are to be found. 

* Experience shows that the total disappearance of elements to par- 
tition is most unusual. 

These facts are most objectionable. They illustrate 
an important aspect of work on classification at pres- 
ent, namely that approaches that are amenable to 
theoretical treatment are not good in practice, largely 
because they embody assumptions that are often in- 
applicable to one's data, whereas approaches that do 
seem to work in practice are very unamenable to 
proper theoretical analysis. Until a method is found 
that can both be theoretically analysed, and works well 
on real data, we cannot be satisfied. We are, however, 
convinced that the way to progress at present lies 
through experiment, A valuable aid at this point is to 
have an operational test of the usefulness of the classi- 
fication found. If such a test is available, we may 
simply continue to find clumps until it is satisfied. It 
is at any rate possible that such tests connected with 
the usefulness of the product may continue to be more 
helpful than theoretical termination rules; they need, 
after all, to be satisfied regardless of what the theory 
predicts. 

Within these limits we want to be as efficient as pos- 
sible. We want to find clusters quickly, and if there are 
quite different ones to be found, to find at least some 
of them, and we can legitimately use any information 
as an aid. We may, for instance, find that we can use 
an existing classification, or clusters found by some 
other, perhaps rather crude, method, as a starting 
point. This kind of thing is not always possible or ap- 
propriate, and we may have or want to apply our 
procedure to our data without making any assumptions 
about it at all. In this case we may be able to make 
our procedure more efficient for example by looking for 
clumps centered on a particular element that has not 
already occurred in a clump; we can note when we 
have found the same or very similar clumps, so that 
we start somewhere different. 

3) We may get into another difficulty over our re- 
semblance coefficients: many of these coefficients are 
rather small, and we have to decide the precision that 
we should store them to, as this can affect the size of 
the clumps we find. For example, suppose that we 
have an element x in L: we may find that x is pulled to 
R by the aggregate of its very small resemblances to 
members of R, when we want to keep it in L, as it 
genuinely fits into the L-clump. We can counteract 
this tendency only by making L bigger, which may be 
unsatisfactory for other reasons. We have found, how- 
ever, that this defect may nevertheless be turned to 
advantage, because we can use this information as a 
parameter in relation to the clumps we require. 

The definitions and procedure just described have 
been worked out over a period of time and have been 
tested on different kinds of material. They are not at 
all regarded as perfect, and in fact are subject to 
continual improvement. They have, however, reached 
a stage where they can be applied fairly easily, and 
their various applications will therefore be considered 
next. 

  
122 NEEDHAM 



The Application of the Theory of Clumps to 
Information Retrieval 

The most important application of the Theory of 
Clumps has been to information retrieval, and this 
will therefore be described in some detail. We saw 
that we might be able to group terms on the basis of 
their co-occurrence in documents, and then use these 
clusters in the way in which immediately-connected 
sets of terms were used in the original C.L.R.U. library 
scheme. This system currently contains some 2000-odd 
terms, and any attempt to classify them will therefore 
be a large computing problem; this is in spite of the 
fact that the library is quite small—nearly 800 docu- 
ments. This point emphasizes the main problem in 
automatic classification, which is the quantity of data 
we must be able to handle. Automatic classification 
procedures are no use unless they will deal with realis- 
tic amount of material—their basic purpose, indeed, is 
to be able to deal with more data than human beings 
can manage. In the information retrieval case, there- 
fore, we need to be able to deal with large numbers of 
terms. 

We have discussed the general problem of defining 
co-occurrence measures, but it is perhaps worth look- 
ing at the problem in connection with a particular ap- 
plication in some detail. There is no great difficulty 
about finding co-occurrence measures, as they can 
depend only on a small number of factors. Putting them 
in a specifically information retrieval form we have: 

1) the number of times each pair of terms co-occurs; 
2) the number of times each term occurs; 
3) the number of terms for each document in which 
each pair of terms co-occurs (that is, has each docu- 
ment got 2 or 50 terms); 
4) the number of terms altogether; 
5) the number of documents altogether. 

The only ones involving any computation are 1) and 
possibly 3). 1), as we saw, gives us a matrix; in the 
most recent information retrieval experiment we had 
342 terms (representing some 400 documents), which 
would give us a 3422 matrix. From a computing point 
of view this is quite impracticable,* and we have to 
hope that the potential matrix is fairly empty, and can 
therefore be stored economically. In most of the ex- 
periments so far carried out the matrices were quite 
empty, and we have to hope that this will usually be 
the case. In the library case, for example, there were 
only some 12,000 entries out of a possible total of 
nearly 125,000. The best way of tackling the problem 
of choosing the most suitable coefficient is to try a 
number of alternatives, accumulating information un- 
der 1) and 3), and evaluating the results in relation to 
2), 4) and 5).   As we saw, the best coefficient may vary 

* This is not strictly correct. A 3422 matrix, even if it is quite full, 
can be handled, but the matrix does not have to be much bigger be- 
fore it cannot be handled when full, and we must take this point into 
account when we design our programs. 

with the application, and there is much to be said for 
choosing a simple one. In the information retrieval ex- 
periments we began with the first one we defined, (A), 
and after we had found that the second, (B), worked 
better in another case, adopted it for the library classi- 
fication as well, where it also gave more satisfactory 
results. 

We now have to consider our requirements on the 
classes to be found, if we are to use only mechanically 
generated clusters, and not make any modifications of 
our data or results by hand: 
1. We must be able to cope with synonyms and near- 
synonyms. 
2. The classes must not be too large, or the disjunction 
we get when we replace a term by its class will be too 
long.  (This means that we lose discriminating power 
when we retrieve. We get the same result if we pro- 
ceed by too many steps at once in the lattice in the 
scale or relevance operation in the old library system. 
If our clusters are too small, on the other hand, we are 
liable to find that we are not generalizing enough.) 
3. We must be able to obtain overlapping classes. (This 
is to cover cases where keywords are used in different 
ways, and corresponds to meets in the lattice structure, 
where one term leads to two or more  terms on the 
next higher level. The number of meets in the existing 
lattice show that if we were to look for mutually ex- 
clusive classes we would either fail to find any, or get 
very bad ones. The situation is obviously different, if 
we are clustering documents.) 

The definitions and procedures we have outlined do 
satisfy these requirements. We can cope with syno- 
nyms, because we have not defined a clump in such a 
way that every pair of members has to be directly 
connected; experiments have shown that we do not 
get either very large or very small clumps, because our 
definition is neither so weak that any set of elements 
that are connected chain-wise, for example, will sat- 
isfy it—in which case we would get very large clusters, 
—nor so strong that we would only get sets in which 
every pair of elements is directly connected—in which 
case we would probably get very small clusters; and 
we can get overlapping classes, because total resem- 
blances can be compounded in different ways. 

The following are some sample clumps: 

1. Grammar, paradigm, parts of speech, adjective, prepo- 
sition, phrase, phrase marker, tense, ending, stem, syntax, 
diacritic. 

2. Number, deductive system, Brouwerian terms, intuition- 
ism, logic, observation. 

3. Phrase  marker,   kernels,   string  operation,  transforma- 
tional  grammar,   terminal   language,   Markov   process, 
finite state process. 

4. Term abstract, descriptor, request, term vocabulary. 
5. Style, text, paragraph, information retrieval, classifying, 

indexing,  term  abstract,  thesaurus  head,  Roget,   the- 
saurus, descriptor, encode, bits, partial ordering, Boolean 
algebra, confounding, request, parody, term vocabulary, 
reality. 

6. Style, text, paragraph, chunking, interlingua, posteditor, 
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source language, target language, thesaurus head, Roget, 
Pask machine, Latin, technical language. 

Some of these, for example No. 3, are reasonable by 
any standards; others, which appear less obvious, are 
quite reasonable given the character of the documents 
from which they are derived. No. 2, for instance, is 
based on a number of papers on intuitionist mathemat- 
ics ('Brouwerian terms' is a portmanteau term for sev- 
eral exotic terms occurring in some papers by Brouwer 
that we did not think it worth treating separately). No. 
5 comes mostly from C.L.R.U. workpapers on the use 
and encoding of a thesaurus, though there is some 
“noise” in the clump. No. 6 is also from C.L.R.U. 
workpapers, this time early ones on machine transla- 
tion. These two clumps show how the same terms, 
when used in different contexts, may appear in differ- 
ent clumps. The way in which the classification reflects 
the documents is especially shown by No. 1; the clump 
is quite plausible, but does not include all the parts 
of speech; we have papers dealing with, for example, 
Russian prepositions, but not with Russian conjunctions. 

What we now have to consider is what we do with 
our clumps when we have found them. We know that 
we want to use them to the same effect as our original 
lattice, but something more detailed than this is re- 
quired as a specification of how they are to be used. 
We start with a set of documents and their keyword 
lists; from this information we derive a set of clusters 
of keywords. What have we gained by doing this? The 
only way to answer this question is to set up a system 
embodying the clusters and test it in retrieval. This, 
however, only brings us up against the problem of how 
to test any system we devise. Testing any retrieval 
system involves a vast amount of work, and we get 
into the evaluation problem as soon as we start: how 
are we to say whether a retrieval system is any good 
or not? We can really only see how it works out in 
practice, and this is rather late. We want to find out 
whether a proposed system is likely to work quite soon. 

The most useful approach seems to be to try a num- 
ber of variations and compare them; if we change our 
resemblance coefficient, or our clustering procedure, we 
can see what effect this has on a given body of mate- 
rial. This is of course only an internal comparison; we 
can clearly learn more if we compare a system con- 
structed on this sort of basis with one that is con- 
structed in a completely different way. But this is just 
what is so difficult, and we must therefore set our 
sights lower. We have not got out of the evaluation 
difficulty either; we can compare the effects of any 
changes we make in our procedure, but we have to 
have some means of evaluating them as well. What 
can we do if we do not want to go to the lengths of 
constructing a whole retrieval system and trying it out 
for, say, a year or two? 
1. We can simply look at the clumps we get. The 
trouble here is that our intuitive criteria of what looks 
all  right  may  in  fact  be  inapplicable; we may, that is, 

get clusters that do not look all right, but in fact are 
entirely plausible, given the data from which they are 
obtained. In grouping index terms we tend to assume 
that the clusters we get will have some obvious kind 
of conceptual or semantic coherence, for instance, that 
they will all be concerned with one subject, or be a 
collection of terms that are more or less synonymous. 
We may not get clusters like this at all, and when we 
look into the question we can see that there is no real 
reason why we should. The clusters we get are after 
all based on the co-occurrence of terms, and while this 
usually means that there is some conceptual connection 
between them, it may not be a very obvious or straight- 
forward one. We may also have terms that are being 
used in exotic ways, and this will affect the way they 
cluster. What this all means is that we have to take 
the character of our sample into account, and if we 
get apparently odd results, to check back with the 
documents. We may also get into difficulties if we have 
to inspect large clusters. In some of the other applica- 
tions of the procedure the clusters are so large that 
they can hardly be looked at properly, and this could 
easily happen in the information retrieval case. 
2. We may be able to learn something from transpos- 
ing the results, as follows: we can form a list of clusters 
for each keyword, and then sort so that we can com- 
pare the keywords with the same clusters. These should 
have something in common. This method is again of 
only limited usefulness, because although clusters with 
the same lists usually do have something in common, 
there are hardly any keywords with identical lists, and 
we are therefore faced with deciding whether the lists 
are sufficiently alike for the comparison to be valid. 
3. We may alternatively try a third method as follows: 
suppose that we set up an index code for our docu- 
ments by taking the list of keywords for each docu- 
ment, and replacing it by the list of clusters in which 
these terms occur. We will thus obtain a cluster list 
for each document. We can then sort and compare the 
documents with the same cluster lists. This is a better 
approach to the problem than  1 or 2 if we have a 
reasonably-sized library, though it does mean that we 
have to be  fairly familiar with the contents, or the 
whole process will take too long. This third method of 
evaluating any classification we get is essentially testing 
it by retrieval, and we have in fact tried the crudest 
possible  retrieval  system  using  our  automatically-ob- 
tained classification, without any hand modification. 

If we obtain cluster lists for documents, as described, 
we have found in our experiments so far that this gives 
a gross classification of the documents, which is satis- 
factory as far as it goes, but does not go far enough. 
Keywords alone, on the other hand, resolve the docu- 
ments too much.*   The  obvious  approach to try, there- 
* This is not necessarily true of any keyword-using system. The key- 
word classification in our own system, for example, is very nearly just 
right, but it is not quite right, and something less refined seems to 
be required. There is equally no theoretical reason why a classification 
in terms of clusters should be too crude; it just turned out that way 
in this case. 
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fore, is to combine the two; for each document we 
have a term list and a cluster list, and we treat each 
request in the same way. A request as it stands gives 
terms, and we can look up the clusters for these in 
the same way as we do for the terms derived from the 
documents. We can then carry out our retrieval in 
two stages. Retrieving on clusters alone is too crude, 
but retrieving on keywords alone is inefficient over a 
whole library. Retrieval on keywords, that is, is all right 
if we get an exact match with a document list, but 
not otherwise, and as we hardly ever do get an exact 
match, we want an alternative approach by which we 
can get better results than inexact matching with key- 
words will give us. 

The most efficient procedure is not to match our 
request term list against the whole library, but only 
against the term lists derived from documents that have 
a cluster list relevant to the request cluster list. We 
make, that is, a first-stage selection from the library as 
a whole by matching cluster lists, and then a second 
stage selection from this subset of the library by match- 
ing keyword lists. We select the documents with a 
cluster list relevant to the request by taking all those 
whose cluster list includes that of the request, and we 
pick out all the documents with more than one key- 
word in common with the request. 

Although we could evaluate the results only by using 
our knowledge of the library, this seemed to work 
quite well. An interesting point is that we did not look 
at the clusters we used in the process; we generated 
them and then used them without inspecting them. 
The classification was thus judged solely by the quality 
of its retrieval output. It might be argued that we can- 
not be sure that the procedure is more efficient (in out- 
put as opposed to operation) if we use clusters as well 
as keywords, rather than keywords alone. We can, 
however, find out whether the clusters do anything for 
us by carrying out retrieval in the opposite way. We 
can pick out all the documents with keywords in com- 
mon with the request, and then select those that have 
cluster sets including that for the request. We tried 
this out and got very good results. A document with, 
for example, three terms in common with the request 
and cluster inclusion was more relevant to the request 
than one with five keywords in common but not cluster 
inclusion. A similar test is to make requests using ran- 
dom sets of terms. If we match a random set with the 
documents sets we may not get much, but we will 
probably get something. If, however, we try a cluster 
match as well, we do not get any retrieval at all. This 
again shows that the clusters do make retrieval more 
effective. 

This was all very much in the way of a first stage 
experiment. Clump inclusion as a criterion for match- 
ing may well be too simple. We might find that we 
could get better results by refining the cluster lists for 
documents and requests in some way. Instead of taking 
all  the  clusters  generated  by the keywords concerned, 

we could try taking the intersection of the sets gene- 
rated by the keywords, and use only those clusters that 
recur to represent our document or request, or we 
could select the most frequent clusters. 

We should now look at our automatic classification 
from the point of view of the specific problem that we 
started with: how to construct the library lattice. We 
wanted to see whether we could set up our term lattice 
automatically, and we should now, therefore, see 
whether we can actually construct a lattice for our 
terms like the one we would have set up by hand. 
(This is not to say that the hand-made and machine- 
made lattices for the same set of terms should be iden- 
tical; we want only to see whether we can construct 
lattices from clumps.) We do not have enough infor- 
mation, however, to do exactly what was done by 
hand. When we had our lattice we could say that 

 
could be replaced by 'A or B or C or D'. When we 
start with the latter, however, there is nothing to tell 
us which is the inclusive term; should A include the 
other three, or B, or C, or D? The only lattice struc- 
ture we can obtain is 

 
and this is not the same thing. There is also more over- 
lap in the mechanically-generated system than in the 
human one, so that any lattice we tried to set up would 
be more complicated. 

The real point, however, is whether we really do 
want to obtain a lattice structure, and specifically, a 
lattice like the original one. It may have been what 
we started out to try to get, but it is not clear that 
we need it. We want a classification to do a job, 
namely, organize a set of documents in such a way that 
we can retrieve from them effectively, and the way to 
test our classification is therefore to try it out directly 
in retrieval. There is no reason for thinking that the 
classificatory structure we obtain by one method will 
be  like   the   earlier   one  we  obtained  by  a  different 

  
APPLICATIONS OF THE THEORY OF CLUMPS 125 



method, nor is there any reason why they should be. 
The point is that we are concerned with two classifica- 
tions that are to be used for the same purpose, but not 
with two classifications that are to be the same, and 
the methods we use to construct them are too different 
for the results to be comparable. 

One or two final points can appropriately be made 
in connection with the use of automatic methods for 
information retrieval in general. The library has to be 
a handleable size. This is not determined simply by 
the number of documents in it, but varies with its con- 
tent. The determining factor is the number of key- 
words and keyword co-occurrences. This in turn means 
that the level of detail of analysis that the keywords 
represent, and the number per document, is relevant. 
We may thus be able to classify quite a large library 
if we keep the number of keywords in the document 
lists down. 

We can appropriately conclude this section on classi- 
fication and information retrieval with a suggestion for 
a future experiment. As we saw, we can either start 
from scratch in our clump-finding, or use “seeds” or 
“proto-clumps” obtained in some other way. The use 
of existing classes as a lead suggests an experiment of 
a thoroughly down-to-earth character, and one that is 
perhaps more relevant from the point of view of the 
ordinary working librarian than many of the ones car- 
ried out in this field. What we can do is make use of 
any existing library or semantic classification, such as 
the U.D.C., Roget’s Thesaurus, or the ASTIA Techni- 
cal Thesaurus, in a quite straightforward way. We can 
include pieces of the U.D.C. or a thesaurus in our data 
just as if they were keyword lists representing docu- 
ments. We cannot, of course, take the precise struc- 
ture of a set of related terms into account, but can only 
list them, though by treating any such piece as the list 
for a document, we are treating them as connected, 
and therefore are indirectly taking their structure into 
account. We have also to make our own choice of the 
pieces we take out of the existing classifications, but 
the use that we are going to make of them is such that 
the particular details are not important, and so the 
problem of whether we have chosen “properly” does 
not matter. We then give these terms a fairly low 
weighting, so that these previously-constructed classes 
will not affect the classification we want to get from 
our actual documents too much. What we essentially 
want to do is to use these pieces of other classifica- 
tions as rather nebulous proto-clumps to be modified 
by what we get from the documents we are really 
concerned with. It might be objected that if we are 
going to do things like this we might just as well not 
bother with pure automatic classification procedures at 
all. The point, however, is that we are relying on our 
automatic procedures in constructing a classification 
for the documents to hand; it is just that existing 
classification schemes are based on a great deal of ex- 
perience,  and  if  we  can  make  use  of  them as an aid, 

without accepting them as gospel, there is obviously 
something to be said for doing so. We give the terms 
we take over a low weighting specifically in order that 
they shall not influence our machine classification too 
much. What we want them for is to give us something 
to start with, which will either be reinforced by what 
we get from the documents, and which will therefore 
turn into a genuine clumps, or be cancelled out by 
the different clumps that we get from the genuine 
terms. All we have to do is adjust our weightings so 
that the terms we take over do not, as it were, turn 
non-clumps into clumps. 

Other Applications of the Theory of Clumps 
We have, as we said earlier, tried out the procedures 
we have constructed on material derived from quite 
different fields. We thought that any classification 
scheme would work better for any particular applica- 
tion if it had some general validity, and was not de- 
signed for one purpose only, and we found, in practice, 
that what we learnt from one application was often 
useful in another. 

The most instructive application of the procedure, 
apart from the information retrieval one, was to some 
semantic material. This is fully described elsewhere,3 

and will only be described here in sufficient detail to 
show how it is connected with the general research on 
classification. The object of the research is to construct 
a thesaurus-type classification, and to carry out as 
much of it as possible automatically. The data consists 
of small sets of words that are synonymous in at least 
one context; these “rows” are to be grouped on the 
basis of common words to give conceptual groupings 
of the kind exemplified by the sections in existing 
thesauri such as Roget’s. A clump, that is, consists of 
semantically similar rows. The results of tests on 500 
rows (some 350 words) so far carried out are satisfac- 
tory, but the sample is not really large enough. The 
need for classification programs that will deal with 
large quantities of material is indeed very well exem- 
plified by linguistic applications, where we have to be 
able to deal with at least several thousand objects.* 

As in the library case, we were faced with the eval- 
uation problem. We set out to produce something like 
Roget's Thesaurus4 but this was not a detailed enough 
requirement to tell us whether any particular clump 
was satisfactory, and even if we felt, on intuitive 
grounds, that the clumps obtained were plausible, this 
was again not enough when it came to deciding 
whether each member of a clump should indeed be a 
member, and also whether any non-member should be 
a member. There did not, however, seem to be any 
alternative to just looking at the results, and we there- 
fore  had  to  hope  that  this  was sufficient. (This appli- 
* The size of the classification problem is well brought out by the 
fact that good dictionaries and thesauri may contain hundreds of 
thousands of words. Our only hope at present is to divide the material 
we have to classify up into subsets, perhaps in alternative ways, and 
deal with them separately. 
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cation was the one which showed up the defects in 
the first similarity definition.) 

The program has also been applied to some anthro- 
pological material. This consisted of a list of American 
Indian tribes each characterized by the rituals they 
practiced in connection with the puberty of their 
young girls. There were 118 tribes and some 120 ritu- 
als altogether. The program again worked fairly well, 
though some difficulties arose over “doubtful” entries 
in the data array; these were read as 'yes', and it 
turned out afterwards should have been read as 'no'. 
The results of the automatic classification could fortu- 
nately be compared with the (very carefully carried 
out) hand classification for which the material was 
originally collected. The classification we obtained was 
substantially the same as the earlier one, and what dif- 
ferences there were were mostly due to the doubtful 
entries. 

An early version of the program was used for a small 
and rather tentative experiment in the classification of 
blood diseases. The data consisted of a list of 180 
patients with their symptoms (there were 32 symptoms 
altogether), and the classification was a genuinely 
“blind” one, as we did not know what the symptoms, 
which were merely given by numbers, were. We were 
in this case able to compare the results with the con- 
ventional classification of the diseases, and we found 
that we had got the same groupings, with the excep- 
tion of one disease, which is indeed very ill-under- 
stood, and is not defined by a well-marked set of 
symptoms. 

We have also carried out an experiment in archaeo- 
logical classification. This concerned 500 Neolithic pot- 
tery beakers, each represented by a list of decorative 
and other properties (45 altogether). The beakers were 
to be grouped on the basis of their properties. This 
application brought up a number of general problems 
about data to be classified. We have argued that we 
have to treat any data as sacred, that we should as- 
sume that the properties concerned are independent— 
if not in the pure logicians' sense, at least from a com- 
mon-sense point of view.* We started out, too, with 
the belief that all the properties were equally informa- 
tive, that is, that their relative frequency of occurrence 
did not vary too much. In this application, as in the 
semantic case, we found that we had to take the num- 
ber of times a property occurred into account, and 
therefore that  the  second similarity definition was more 

* For the abstract theoretical issues, see Carnap, Der Logische Aufbau 
der Welt5, and Goodman, The Structure of Appearance6. 

appropriate than the first. We also found that some 
of the properties were so obviously dependent on one 
another, that we had to take this fact into account. A 
large number of the properties, for instance, were 
concerned with various different forms of decoration, 
such as zig-zag, or hatching, but there was also a 
property which was simply “being decorated,” which 
was clearly associated with any particular form of 
decoration. The archaeologist concerned said that these 
general properties could be disregarded, but there is 
something unsatisfactory about having to deal with 
the problem in this way. Otherwise the clumps ob- 
tained were plausible, and could again be checked 
independently, for example by stratificational evidence. 
We have also used the program for a rather differ- 
ent purpose, which is instructive as a comparison, as 
it in a sense concerns division rather than grouping. 
Given the logical diagram for a computer consisting 
of nodes and connections between them, we want to 
divide it (for handling and printing purposes) into 
sections, and preferably into sections with the smallest 
number of connections to any other section. We are 
looking, that is, for the areas with the least cohesion 
between them. This is not a question of classification, 
except in a second-order derivative sense, but it is a 
useful application of the program, as it saves a great 
deal of hand work and is quite efficient. 

Conclusion 
It is to be hoped that these notes on the different ap- 
plications of the classification procedures we have 
developed are sufficient to show that we have a gen- 
eral theory of classification, and to support the argu- 
ment that a generally-applicable theory is more use in 
any particular application than an individually-tailored 
one. We have in any case constructed a program which 
can be applied to any data that can be presented in 
the form of a binary incidence array, and as most in- 
formation can be given in this form, this does mean 
that we can try out our procedure without much 
difficulty. We have indeed concentrated on experiment 
rather than theory in our research, because we felt that 
we could learn more from it. A lot of work has been 
done on classification theory, but very little on auto- 
matic classification practice, and we thought that even 
if more work should be done on the theory, there was 
more to be learned from trying to develop computer 
techniques, which are still in their infancy, than from 
refining on already refined theories. 
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