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The "Spectrum" of Weak Generative Powers of Grammars 

by Wayne A. Lea, Research Laboratory of Electronics, 
Massachusetts Institute of Technology, Cambridge 

A summary is presented of some results in the literature concerning the 
generative powers of various formal grammars. The relative generative 
powers are displayed graphically. 

I. Introduction 
Many forms of grammars have been proposed in the 
study of such related language problems as mechanical 
translation, computer languages, mathematical linguis- 
tics, and the more general characterizations of natural 
languages. It is thus interesting to inquire about the 
relationships between such grammars. In particular, 
one might ask which proposed grammars are the “most 
powerful” (in some meaningful sense) and which are 
the most accurate characterizations of natural-language 
phenomena. 

In this paper, grammars will be compared on the 
basis of the possible symbol sequences they may pro- 
duce—that is, on the basis of what has been called 
their “weak generative powers.” The relationships will 
be displayed on a “spectrum” of weak generative 
powers of grammars. It is hoped that this concise 
graphical display will be found an illuminating and 
useful comparative summary of grammars, generated 
languages, and equivalent machines. 

No attempt will be made to explain in any detail the 
various grammars and machines listed in this paper, 
nor will the relationships discussed be proven, since 
they have already been considered in detail in various 
published papers. We shall merely consider a brief 
listing of each grammar, language, or machine type, 
and references where each relationship to other gram- 
mars, languages, and machines is shown. In listing 
references, our purpose is not to acknowledge the origi- 
nal developers of each interrelationship but, rather 
only to provide references where demonstrations of 
such relationships can be found. Although the author 
does not profess to have checked that all summarized 
results are valid, the literature indicates that they are. 
More important, the use of the chosen form of display 
clarifies any stated relationships between various formal 
grammars and proposed grammars of natural lan- 
guages. 

* This paper is a revision of a memorandum written in June, 196.5, 
when the author was affiliated with the Mechanical Translation Group 
of the Research Laboratory of Electronics, Massachusetts Institute 
of Technology. The author acknowledges the co-operation and en- 
couragement of several members of that group, including its director, 
Victor Yngve. The help of G. H. Matthews in providing references 
and reviewing early drafts of the paper is also acknowledged. This 
work was supported in part by the National Science Foundation 
(grant GN-244) and in part by the Joint Services Electronics Pro- 
gram under contract DA36-039-AMC-03200(E). 

Thus, our goals are: (1) the listing of references 
where relationships between grammars, languages, and 
machines are presented and (2) the handy pictorial 
presentation (in a single “spectrum”) of the relative 
weak generative powers of such grammars and their 
corresponding machines and resulting languages. 

Though it is hoped that this listing and display of 
grammars will be in some sense exhaustive of known 
results, some possible grammar types may have been 
missed. One advantage of the spectrum display used 
herein (Fig. 1) is that such additions can be easily re- 
lated to known grammars by simply marking them at 
the appropriate positions on the spectrum. 

There are some known grammars whose relation- 
ships to other grammars are as yet unknown. The 
"branching" of the spectrum of Figure 1 will illustrate 
these uncertain relationships and thus indicate several 
unsolved problems in algebraic linguistics. 

II. Languages, Grammars, and Machines 
In combinatorial systems (see reference 1 or 2) and 

formal linguistic theory (reference 3, chap, iv), a 
language is simply a set of sequences or strings pro- 
duced by concatenation of elements out of some finite 
vocabulary, set VT. A grammar G is then a set of rules 
(or “productions”) for enumerating the strings belong- 
ing to the language. A grammar may be precisely de- 
fined as a 4-tuple (V, VA, S, P), where V is a finite 
non-empty vocabulary, VA (called the auxiliary vocabu- 
lary) is a non-empty subset of V (and represents the 
symbols or phrase categories used at intermediate steps 
in the generation of a string), S (the axiom, or initial 
string) is a member of VA, and P is a finite set of pro- 
ductions which yield strings in the terminal vocabulary 
(VT = V — VA) by substitutions starting with the 
axiom S. The language L generated by G is a subset of 
the free monoid VT* generated by concatenating mem- 
bers of VT. Terminal strings (members of L) are pro- 
duced by derivations consisting of finite sequences of 
applications of the productions of G, starting from 
axiom S. A production of string ψ from string φ will be 
symbolized as φ → ψ, while  a  derivation  of ψ from φ 
is symbolized as φ ⇒ ψ. 

To restrict the languages generated by grammars to 
interesting proper subsets of the free monoid VT*, it 
is necessary  to restrict the  form of productions allowed. 
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The broadest generative power of interest in mathe- 
matical linguistics is the power of a general Turing ma- 
chine. Since Turing machines are associated with all 
effectively computable functions or algorithms,3 broader 
generative power would involve sets which could not 
even be effectively (i.e., mechanically) enumerated. 

III. The Spectrum 
We shall now consider how the weak generative 

powers of various grammars and machines are related. 
Grammars are considered to be weakly equivalent when 
they produce the same language. Types of grammars 
are thus equivalent if for each language produced by 
a grammar of one type there is a grammar of the other 
type which produces the same language, and vice 
versa. 

In accordance with the frequent use of line diagrams 
in set theory, whereby the inclusion of sets within 
others is pictorially displayed by showing successive 
subsets as successively lower points on a vertical line, 
the  equivalences  of  grammars and the inclusion of cer- 

tain languages within other types will be displayed as 
in Figure 1. The inclusion relation between languages 
is shown by the relative height on the line diagram or 
“spectrum”; points higher on the spectrum represent 
language types (sets) of which all lower points are 
special cases (subsets), resulting from added restric- 
tions on the productions allowed in the grammars. 
Equivalent grammars are shown as a single point on 
the spectrum. (Thus, for example, the diagram illus- 
trates the inclusion of all context-free languages within 
the set of context-sensitive languages, which are in turn 
included in all recursive sets, which are also in turn 
a proper subset of the recursively enumerable sets.) 

The "branching" at the lower end of the spectrum 
indicates one of two types of relationship. Either it is 
not presently known how some such “branched” types 
of grammars, languages, or machines are related with 
respect to weak generative powers, or else the types 
are known to be incomparable with respect to inclu- 
sion. For example, it is not known whether all meta- 
linear grammars are included within the sequential 
grammars,   or  vice  versa,  or  whether  they  are  inter- 
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secting sets, with some metalinear grammars not being 
sequential, and some sequential not metalinear. (Some 
of these questions may be easy to answer, but I have 
made no effort to do so. Perhaps the reader may at- 
tempt such studies.) 

IV. References 
The following is a list of references where each 

equivalence of grammars or machines is shown, or 
where certain grammars are shown to be properly in- 
cluded within other grammar types. The letter label- 
ing each member of this list corresponds to the letter 
of the point on the spectrum which is presently being 
discussed. 

A. Davis   has  shown   (reference   3,  chap.  vi)   the 
equivalences of Turing machines, recursively-enumer- 
able  sets,   and   combinatorial  systems   of   semi-Thue, 
Thue, Normal and Post types. Chomsky (reference 1, 
theorem 2) has shown that his Type 0 grammars are 
equivalent to these systems.   (The reader   should be 
cautious   when   interpreting   the   present   numbering 
scheme; Chomsky used a different one in reference 4). 

B. In   grammars,  we  may   often  be  interested  in 
determining whether or not a sentence is a member of 
a language set. Those sets for which this membership 
is effectively decidable are called recursive (or decid- 
able) sets. Recursive or decidable sets are known to be 
a proper subset of recursively enumerable  sets   (see 
Davis, reference 3). 

C. The productions used in semi-Thue systems may 
be restricted to those of the form φAψ→φωψ, where a 
single symbol  A is rewritten as a substring ω   (non- 
null) and φ and ψ are strings from V*. This results in 
formal grammars called  (after Chomsky)   context-sen- 
sitive  phrase-structure  grammars.   Chomsky  has  also 
called them  Type   1  grammars  and shown that the 
languages generated by such grammars  are properly 
included  in  the   set   of recursive  sets   (reference   1, 
theorem 3). He also showed that such grammars are 
equivalent to grammars in which, for each rule φ→ψ 
the length of ψ is not smaller than that of φ. 

Kuroda5 has shown that a set is a context-sensitive 
language if and only if it is accepted by a non-deter- 
ministic linear-bounded automaton. 

D. In reference 4 (pp. 365-67), Chomsky suggested 
that grammars with no rules of the form φAψ→φBψ  
(where A and B are single non-terminal symbols and 
either φ or ψ is not null) appear to be a proper subset 
of context-sensitive grammars and yet (as Parikh6 had 
previously shown)  contain context-free grammars   (to 
be discussed under point E) as a proper subset. 

E. When the rewriting of A as ω is unrestricted by 
the context φ—ψ,   the context-free rules of the form 
A → ω are obtained. Context-free grammars (with only 
rules of the form   A → ω) have been shown to be a 
proper    subset   of   context-sensitive    phrase-structure 

grammars (Chomsky, reference 1, theorem 4). Con- 
text-free grammars are also called Type 2 grammars. 

Context-free grammars have been shown to be 
weakly equivalent to normal grammars (which have 
rules of only the forms A → BC and A → a, for a∈VT, 
and thus represent binary trees1,4), modified normal 
grammars (with no pairs of rules A → BC and D → EB 
allowed), admissible grammars (in which every rule 
is used to generate some sentence and every generated 
string can be “completed” by further expansion into a 
terminal string, so no “dangling,” unterminated deriva- 
tions occur), and grammars with only left derivations. 
These facts are shown in references 1, 4, 7, and 8, 
respectively. 

Gross9 and Gaifman10 have shown that dependency 
grammars are equivalent to context-free grammars. 

It has also been shown that context-free languages 
are accepted by nondeterministic push-down storage 
automata.4 Thus, a single point on the spectrum of weak 
generative power represents Type 2, or context-free 
grammars, normal grammars, modified normal gram- 
mars, admissible grammars, left- (or right-) derivation 
schemes, and non-deterministic push-down storage 
automata. Postal (reference 11, chap, iv; see also 
Chomsky, reference 12) has claimed that many gram- 
mars of natural languages, such as Block's Japanese 
syntax, Well's immediate-constituent grammars, Harris' 
morpheme class substitution system, Hockett's item-and- 
arrangement system, Lamb's stratificational syntax, and 
tagmemics all appear to be equivalent to context-free 
grammars. (Such demonstrations of equivalences as 
these between natural-language grammars and formal 
grammars depend, however, on the particular explicit, 
formal assumptions about the nature of vague, informal 
explications in natural-language descriptions. Thus, the 
formal assumptions often may be contested, with dif- 
ferent assumptions implying different formal equiva- 
lences. For example, by suitably weak assumptions 
about stratificational grammars, they can be made to 
generate any recursively enumerable set, rather than 
just context-free languages. [I am indebted to Stanley 
Peters for this example.] The assumptions involved in 
the equivalences shown in Figure 1 are, however, ap- 
parently the prevalent ones in the literature.) Bar- 
Hillel's categorical grammars are shown to be equiva- 
lent to context-free grammars in reference 13. In refer- 
ence 9, Gross shows a model based on predicative 
analyses to be equivalent to context-free grammars. 

F. Chomsky and Schützenberger14 have shown that 
the set of context-free languages properly includes the 
set of metalinear languages. Metalinear grammars have 
non-terminating rules of the form A → xBy or of the 
form S → φ and no rules of the form A → φSψ for any 
A ∈ V and φ, ψ ∈ V*. 

G. Chomsky and Schützenberger14 also showed that 
linear grammars  (in which each non-terminating rule 
is of the form A → xBy) are also a subset of metalinear 
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grammars, as is obvious from their form. 
H. A proper subset of the linear languages is the 

minimal linear languages whose grammars have only 
one non-terminal (namely, the axiom) and rules of the 
forms S → xSy and S → c, with the additional restric- 
tion that c does not appear in the x's and y's in the 
rules. Clearly, a minimal linear grammar is linear, but 
not all linear grammars are minimal. 

I. Unique phrase-structure grammars, (which have 
rules of the forms A → x, and A → yAz, except for the 
axiom S, which introduces all non-terminals, including 
itself) are clearly a subset of context-free grammars, 
since each rule is a context-free rule. Apparently noth- 
ing else is known about their relative weak generative 
powers. 

J. Ginsburg and Rice15 have shown that all sequen- 
tial grammars are context-free grammars and that they 
are properly included in the context-free ones. Sequen- 
tial grammars are context-free grammars for which 
there exists an ordering of the non-terminal symbols 
such that for each i, j, if Ai ⇒ φAjψ then j ≥ i (or 
equivalently, ordered such that no rule Ai → φAjψ for 
j < i). This restriction on the set of rules is such that 
if one symbol Ai is expanded into a string containing 
Aj, there is no derivation which, in turn, expands Aj 
into a string containing Ai. 

K. Counter languages were discussed by Schützen- 
berger in 1957 in an unpublished paper and, later, by 
Chomsky,1 as being those produced by a device con- 
sisting of a finite automaton with an addition of a finite 
number of counters, each with an infinite number of 
positions. It is not known whether counter languages 
are all context free. But it is clear that the regular 
languages (to be discussed under point L) are all 
special cases of counter languages, with the number of 
counters equal to zero. 

L. If all rules of a context-free grammar are re- 
stricted to the forms A → aB or A → a, where a∈VT 
and B∈VA, then what Chomsky1 calls Type 3 grammars 
are obtained. Chomsky has shown (reference 1, theo- 
rem 6) that the languages produced by such grammars 
are exactly the finite-state languages, accepted (or pro- 
duced) by finite-state automata (or Markov sources). 
Such languages are also referred to as regular lan- 
guages, or one-sided linear languages. In reference 1 
theorem 7, Chomsky showed that Type 3 languages are 
a proper subset of the Type 2 languages. Those Type 
2 languages which are not Type 3 languages are neces- 
sarily self-embedding (that is, with derivations A ⇒ 
φAjψ), according to Chomsky (reference 1, theorem 
11), and what distinguishes Type 3 languages from 
arbitrary Type 2 languages is thus the lack of self-em- 
bedding. 

All regular languages are found to make up a proper 
subset of the linear languages, as shown in reference 4, 
page 369. 

Ginsburg  and  Rice15   have  shown that all regular or 

one-sided linear languages are properly contained with- 
in the set of sequential languages. 

Chomsky1 has shown (as was mentioned in point K) 
that all regular languages are special cases of counter 
languages. 

M. A special type of automaton is a member of the 
set of “k-limited automata,” whose state function is 
determined by the last k symbols of input sequence. 
Clearly, not every finite automaton is a k-limited autom- 
aton (reference 4, pp. 333-34.) 

N. Those k-limited automata for which k = 1 are 
called by Ginsburg “completely sequential machines.”16 
Clearly, not every k-limited automaton is 1-limited. 

O. A restriction on sequential grammars which does 
not allow recursive rules like Ai → φAiψ  gives minimal 
sequential grammars. It is apparent that minimal se- 
quential grammars are all sequential, and their finite 
nature, due to not allowing reintroduction of symbols, 
makes them all regular, as well. 

V. Relationship to Natural Languages 
An interesting question relating to this spectrum of 

weak generative powers is how grammars of natural 
languages fit into the spectrum. That is, what are their 
apparent weak generative powers compared to those 
of the formal grammars discussed above? We have al- 
ready seen that interest in being able to establish 
whether or not a string is a sentence of the language 
requires that the grammars be restricted to generative 
power less than or equal to that which generates the 
recursive sets. Furthermore, Chomsky has argued that 
the arbitrary permutations allowed by context-sensi- 
tive grammars are undesirable in grammars of natural 
languages (reference 1; see also reference 12 and refer- 
ence 4, p. 365). Thus, powers less than those of arbi- 
trary context-sensitive grammars seem to be needed for 
characterizing natural languages. 

On the other end of the spectrum, it has been 
argued that natural languages can not be adequately 
generated by finite-state Markov processes. Further- 
more, Chomsky and Postal have argued that there are 
many situations in natural languages where some con- 
text-sensitive rules are needed for adequate descrip- 
tion, and thus generative powers greater than that of 
context-free grammars would appear to be required. 
These issues are discussed in references 1, 12, 2, and 
11. 

This, then, would result in the restriction of the 
range of weak generative powers for grammars of 
natural languages to a probable range between context- 
sensitive and context-free grammars, as is shown on 
the spectrum of Figure 1. 

But at least one author would disagree with the 
above placement. In reference 17, the adequacy of a 
finite-state model is maintained. 

The question of  weak generative power  is, of course, 
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only one factor in the determination of proper gram- 
mars of natural languages. Adequate structural descrip- 
tions  of  sentences  and  proper  characterization  of  the 

interrelationships between sentences are additional fac- 
tors to be considered.2,4,11,12 
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