
[Mechanical Translation and Computational Linguistics, vol.9, no.1, March 1966]

Endocentric Constructions and the Cocke Parsing Logic*

by Jane Robinson,† RAND Corporation, Santa Monica, California

Methods are presented within the parsing logic formulated by Cocke to
reduce the large number of intermediate constructions produced and
stored during the parsing of even moderately long sentences. A method
is given for the elimination of duplicate construction codes stored for
endocentric phrases of different lengths.

Automatic sentence-structure determination is greatly
simplified if, through the intervention of a parsing
logic, the grammatical rules that determine the struc-
ture are partially disengaged from the computer rou-
tines that apply them. Some earlier parsing programs
analyzed sentences with routines that branched accord-
ing to the grammatical properties or signals encountered
at particular points in the sentence, thus having the
routines themselves serve as the rules. This not only
required separate programs for each language but led
to extreme proliferation in the routines, requiring ex-
tensive rewriting and debugging with every discovery
and incorporation of a new grammatical feature. More
recently, programs for sentence-structure determination
have employed generalized parsing logics, applicable
to different languages and providing primarily for an
exhaustive and systematic application of a set of
rules.1-4 The rules themselves can be changed without
changing the routines that apply them, and the routines
consequently take fuller advantage of the speed with
which digital computers can repeat the same sequence
of instructions again and again, changing only the
values of some parameters at each cycle.

The case in point is the parsing logic devised by
John Cocke in 1960 for applying the rules of a con-
text-free phrase-structure grammar, requiring that each
structure recognized by the grammar be analyzed into
two and only two immediate constituents (IC).1

Although all phrase-structure grammars appear to be
inadequate in some important respects to the task of
handling natural language, they still form the base of
the more powerful transformational grammars, which
are not yet automated for sentence-structure determina-
tion. Moreover, even their severest critic acknowledges
that “the PSG [phrase-structure grammar] conception
of grammar . . . is a quite reasonable theory of natural
language which unquestionably formalizes many actual
properties of human language” (reference 5, p. 78).
Both theoretically and empirically the development
and automatic application of phrase-structure gram-
mars are of interest to linguists.

The phrase-structure grammar on which the Cocke
parsing logic operates is essentially a table of construc-
tions. Its rules have three entries, one for the code (a
descriptor) of the construction, the other two specify-

ing the codes of the ordered pair of immediate con-
stituents out of which it may be formed. The logic
iterates in five nested loops, controlled by three simple
parameters and two codes supplied by the grammar.
They are: (1) the string length, starting with length 2,
of the segment being tested for constructional status;
(2) the position of the first word in the tested string;
(3) the length of the first constituent; (4) the codes
of the first constituent; and (5) the codes of the sec-
ond constituent (Fig.1).

After a dictionary-lookup routine has assigned gram-
mar codes to all the word occurrences in the sentence
or total string to be parsed (it need not be a sen-
tence), the parsing logic operates to offer the codes of
pairs of adjacent segments to a parsing routine that
tests their connectability by looking them up in the
stored table of constructions, that is, in the grammar.
If the ordered pair is matched by a pair of IC's in the
table, the code of the construction formed by the IC's
is added to the list of codes to be offered for testing
when iterations are performed on longer strings. This
interaction between a parsing logic and a routine for
testing the connectability of two items is described in
somewhat greater detail in Hays.2

In the RAND program for parsing English, the rou-
tines produce a labeled binary-branching tree for every
complete structural analysis. There will be one tree if
the grammar recognizes the string as well formed and
syntactically unambiguous and more than one if it is
recognized as ambiguous. Even if no complete analysis
is made of the whole string, a resume lists all con-
structions found in the process, including those that
failed of inclusion in larger constructions.6,7

Besides simplifying the problem of revising the
grammar by separating it from the problem of applica-

* Any views expressed in this paper are those of the author. They
should not be interpreted as reflecting the views of the RAND corpo-
ration or the official opinion or policy of any of its governmental or
private research sponsors. This paper was presented at the Inter-
national Conference on Computational Linguistics, New York, May,
1965.
I wish to acknowledge the assistance of M. Kay and S. Marks in
discussing points raised in the paper and in preparing the flowchart.
A more general acknowledgment is due to D. G. Hays, who first called
my attention to the problem of ordering the attachment of elements.

† Present address: IBM Thomas J. Watson Research Center, York-
town Heights, New York.

4

tion to sentences, the parsing logic, because it leads
to an exhaustive application of the rules, permits a
rigorous evaluation of the grammar's ability to assign
structures to sentences and also reveals many unsus-
pected yet genuine ambiguities in those sentences.8

But because of the difficulties inherent in specifying a
sufficiently discriminatory set of rules for sentences of
any natural language and because of the very many
syntactic ambiguities resolvable only through larger
context, this method of parsing produces a long list of

intermediate constructions for sentences of even modest
length, and this in turn raises a storage problem.

By way of illustration, consider a string of four word
occurrences, x1 x2 x3 x4, a dictionary that assigns a single
grammar code to each, and a grammar that assigns a
unique construction code to every different combina-
tion of adjacent segments. Given such a grammar, as
in Table 1, the steps in its application to the string
by the parsing routines operating with the Cocke
parsing logic are represented in Table 2. (The pre-

COCKE PARSING LOGIC 5

liminary dictionary lookup assigning the original codes
to the occurrences is treated as equivalent to iterating
with the parameter for string length set to 1).

Of course, reasonable grammars do not provide for
combining every possible pair of adjacent segments
into a construction, and in actual practice the growth
of the construction list is reduced by failure to find the
two codes presented by the parsing logic, when the
grammar is consulted. If rule 1 is omitted from the
grammar in Table 1, then steps 5, 9, 14, and 16 will
disappear from Table 2, and both storage requirements
and processing time will be cut down. One method of
reducing storage requirements and processing time is
to increase the discriminatory power of the grammar
through refining the codes so that the first occurrence
must belong to class Aa and the second to class Bb
whenever adjacent constituents form a construction.

Another way of limiting the growth of the stored
constructions is to take advantage of the fact that in
actual grammars two or more different pairs of con-
stituents sometimes combine to produce the “same”
construction. Assume that A and F (Table 1) combine

With such a grammar, the number of constructions
to be stored and processed through each cycle in-
creases in proportion to the cube of the number of
words in the sentence. If the dictionary and grammar
assign more than one code to occurrences and construc-
tions, the number may grow multiplicatively, making
the storage problem still more acute. For example, if
x1 were assigned two codes instead of one, additional
steps would be required for every string in which x1
was an element, and iteration on string-length 4 would
require twice as many cycles and twice as much stor-
age.

to form a construction whose syntactic properties are
the same, at least within the discriminatory powers of
the grammar, as those of the construction formed by
E and c. Then rules 4 and 5 can assign the same code,
H, to their constructions. In consequence, at both step
8 and step 9 in the parsing (Table 2), H will be stored
as the construction code C(M) for the string x1 x2 x3
even though two substructures are recorded for it, that
is, (x1(x2 + x3)) and ((x1 + x2)x3). The string can be
marked as having more than one structure, but in sub-
sequent iterations on string-length 4, only one con-
catenation of the string with x4 need be made, and

6 ROBINSON

step 16 can be omitted. When the parsing has termi-
nated, all substructures of completed analyses are re-
coverable, including those of marked strings.

Eliminating duplicate codes for the same string from
the cycles of the parsing logic results in dramatic sav-
ings in time and storage, partly because the elimina-
tion of any step has a cumulative effect, as demon-
strated previously. In addition, opportunities to elimi-
nate duplicates arise frequently, in English at least,
because of the frequent occurrence of endocentric con-
structions, constructions whose syntactic properties are
largely the same as those of one of their elements—
the head. In English, noun phrases are typically en-
docentric, and when a noun head is flanked by at-
tributives as in a phrase consisting of article, noun,
prepositional phrase (A, N, PP), the requirement that
constructions have only two IC's promotes the assign-
ment of two structures, (A(N + PP)) and ((A + N)PP),
unless the grammar has been carefully formulated to
avoid it. Since NP's of this type are common, occurring
as subjects, objects of verbs, and objects of preposi-
tions, duplicate codes for them are likely to occur at
several points in a sentence.

Consideration of endocentric constructions, how-
ever, raises other questions, some theoretical and some
practical, suggesting modification of the grammar and
the parsing routines in order to represent the language
more accurately or in order to save storage, or both.
Theoretically, the problem is the overstructuring of
noun phrases by the insistence on two IC's and the
doubtful propriety of permitting more than one way of
structuring them. Practically, the problem is the elimi-
nation of duplicate construction codes stored for endo-
centric phrases when the codes are repeated for differ-
ent string lengths.

Consider the noun-phrase subject in “All the old
men on the corner stared.” Its syntactic properties are
essentially the same as that of men. Fifteen other
phrases, all made up from the same elements but
varying in length, also have the same properties. They
are shown in Table 3.

A reasonably good grammar should provide for the
recognition of all sixteen phrases. This is not to say
that sixteen separate rules are required, although this
would be one way of doing it. Minimally, the gram-
mar must provide two rules for an endocentric NP, one
to combine the head noun or the string containing it
with a preceding attributive and another to combine it
with a following attributive. The codes for all the re-
sulting constructions may be the same, but even so, the
longest phrase will receive four different structural as-
signments or bracketings as its adjacent elements are
gathered together in pairs, namely:

(all (the (old (men (on the corner))))) ,
(all (the ((old men) (on the corner)))),
(all ((the (old men)) (on the corner))),
((all (the (old men))) (on the corner)).

If it is assumed that the same code, say that of a

plural NP, has been assigned at each string length, it is
true that only one additional step is needed to con-
catenate the string with the following verb when the
parsing-logic iteration is performed for string-length 9.
But meanwhile a number of intermediate codes have
been stored during iterations on string lengths 5, 6, 7,
and 8 as the position of the first word of the tested
string was advanced, so that the list also contains codes
for:

men on the corner stared (length 5),
old men on the corner stared (length 6),

the old men on the corner stared (length 7),
all the old men on the corner stared (length 8).

Again, the codes may be the same, but duplicate codes
will not be eliminated from processing if they are as-
sociated with different strings, and strings of different
length are treated as wholly different by the parsing
logic, regardless of overlap. If this kind of duplication
is to be reduced or avoided, a different procedure is
required from that available for the case of simple
duplication over the same string.

But first a theoretical question must be decided. Is
the noun phrase, as exemplified above, perhaps really
ambiguous four-ways, and do the four different brack-
etings correlate systematically with four distinct inter-
pretations or assignments of semantic structure?8 And if
so, is it desirable to eliminate them? It is possible to
argue that some of the different bracketings do cor-
respond to different meanings or emphases or—
in earlier transformational terms—to different order-
ings in the embeddings of "the men were old"
and "the men were on the corner" into "all the
men stared." Admittedly the native speaker can indi-
cate contrasts in meaning by his intonation, emphasiz-
ing in one reading that all the men stared and in an-
other that it was all the old men who stared; and the
writer can resort to italics. But it seems reasonable to

COCKE PARSING LOGIC 7

assume that there is a normal intonation for the un-
marked and unemphatic phrase and that its interpre-
tation is structurally unambiguous. In the absence of
italics and other indications, it seems unreasonable to
produce four different bracketings at every encounter
with an NP of the kind exemplified.

One way to reduce the duplication is to write the
grammar codes so that, with the addition of each pos-
sible element, the noun head is assigned a different
construction code whose distribution as a constituent
in larger constructions is carefully limited. For the
sake of simplicity, assume that the elements of NP'S
have codes that reflect, in part, their ordering within
the phrase and that the NP codes themselves reflect
the properties of the noun head in first position and are
subsequently differentiated by codes in later positions
that correspond to those of the attributes. Let the
codes for the elements be 1 (all), 2 (the), 3 (old),
4 (men), 5 (on the corner). Rules may be written to
restrict the combinations, as shown in Table 4. With
these rules, the grammar provides for only one struc-
tural assignment to the string:

(all (the (old (men + on the corner)))).

This method has the advantage of acknowledging
the general endocentricity of the NP while allowing
for its limitations, so that where the subtler differences
among NP'S are not relevant, they can be ignored by
ignoring certain positions of the codes, and where
they are relevant, the full codes are available. The
method should lend itself quite well to code-matching
routines for connectability. However, if carried out fully
and consistently, it greatly increases the length and
complexity of both the codes and the rules, and this
may also be a source of problems in storage and pro-
cessing time.2

Another method is to make use of a classification of
the rules themselves. Since the lowest loop of the pars-
ing logic (see Fig. 1) iterates on the codes of the sec-
ond constituents, the rules against which the paired
strings are tested are stored as ordered by first IC codes
and subordered by second IC codes. If the iterations of
the logic were ordered differently, the rules would also
be ordered differently for efficiency in testing. In other
words, the code of one constituent in the test locates
a block of rules within which matches for all the codes
of the other constituent are to be sought; but the
hierarchy of ordering by one constituent or the other
is a matter of choice so long as it is the same for the
parsing logic and for storing the table of rules that
constitute the grammar. In writing and revising the
rules, however, it proves humanly easier if they are
grouped according to construction types. Accordingly,
all endocentric NP's in the RAND grammar are given
rule identification tags with an N in first position. With-
in this grouping, it is natural to subclass the rules ac-
cording to whether they attach attributives on the right

or on the left of the noun head. If properly formalized,
this practice can lead to a reduction in the multiple
analyses of NP's with fewer rules and simpler codes
than those of the previous method.

As applied to the example, the thirteen rules and
five-place codes of Table 4 can be reduced to two
rules with one-place codes and an additional feature in
the rule identification tag. The rules can be written as:

*N1 1 N N
2
3

$N2 N 4 N

Although the construction codes are less finely differen-
tiated, the analysis of the example will still be unique,
and the number of abortive intermediate constructions
will be reduced. To achieve this effect, the connect-
ability-test routine must include a comparison of the
rule tag associated with each C(P) and the rule tags
of the grammar. If a rule of type *N is associated with
the C(P), that is, if an *N rule assigned the construc-
tion code to the string P which is now being tested as
a possible first constituent, then no rule of type $N can
be used in the current test. For all such rules, there
will be an automatic “no match” without checking the
second constituent codes (see Fig. 1). As a conse-
quence of this restriction, in the final analysis, the noun
head will have been combined with all attributives on
the right before acquiring any on the left.

To be sure, the resume of intermediate constructions
will contain codes for “old men,” “the old men,” and
“all the old men,” produced in the course of iterations
on string lengths 2, 3, and 4, but only one structure is
finally assigned to the whole phrase, and the inter-
mediate duplications of codes for strings of increasing

8 ROBINSON

length will be fewer because of the hiatus at string-
length 5. For the larger constructions in which the NP
participates, the reduction in the number of stored
intermediate constructions will be even greater.

Provisions may be made in the rules for attaching
still other attributives to the head of the NP without
great increase in complexity of rules or multiplication
of structural analyses. Rule $N2, for example, could
include provision for attaching a relative clause as well
as a prepositional phrase, and while a phrase like “the
men on the corner who were sad” might receive two
analyses unless the codes were sufficiently differentiated
to prevent the clause from being attached to corner as
well as to men, at least the further differentiation of
the codes need not also be multiplied in order to pre-
vent the multiple analyses arising from endocentricity.

Similarly, for verb phrases where the rules must al-
low for an indefinite number of adverbial modifiers, a
single analysis can be obtained by marking the strings
and the rules and forcing a combination in a single di-
rection. In short, although the Cocke parsing logic
tends to promote multiple analysis of unambiguous or
trivially ambiguous endocentric phrases, at the same
time increasing the problem of storing intermediate
constructions, the number of analyses can be greatly
reduced and the storage problem greatly alleviated if
the rules of the grammar recognize endocentricity
wherever possible and if they are classified so that
rules for endocentric constructions are marked as left
(*) or right ($), and their order of application is spe-

cified.
A final theoretical-practical consideration can at

least be touched on, although it is not possible to de-
velop it adequately here. The foregoing description
provided for combining a head with its attributives (or
dependents) on the right before combining it with
those on the left, but either course is possible. Which
is preferable depends on the type of construction and
on the language generally. If Yngve’s hypothesis9 that
languages are essentially asymmetrical, tending toward
right-branching constructions to avoid overloading the
memory, is correct, then the requirement to combine
first on the right is preferable. This is a purely gram-
matical consideration, however, and does not affect the
procedure sketched above, in principle. For example,
consider an endocentric construction of string-length 6
with the head at position 3, so that its extension is pre-
dominantly to the right, thus: 1 2 (3) 4 5 6. If all
combinations were allowed by the rules, there would
be thirty-four analyses. If combination is restricted to
either direction, left or right, the number of analyses
is reduced to eleven. However, if the Cocke parsing
logic is used to analyze a left-branching language,
making it preferable to specify prior combination on the
left, then the order of nesting of the fourth and fifth
loops of the parsing logic should be reversed (Fig. 1)
and the rules of the grammar should be stored in order
of their second constituent codes, subordered on those
of the first constituents.

Received December 11, 1965

References
1. Hays, D. G. “Automatic Language-

Data Processing,” Computer Ap-
plications in the Behavioral Sci-
ences, chap. xvii. New York: Pren-
tice-Hall, Inc., 1962.

2. ———. “Connectability Calcula-
tions, Syntactic Functions, and
Russian Syntax,” Mechanical Trans-
lation, Vol. 8, No. 1 (August,
1964).

3. Kuno, S., and Oettinger, A. G.
“Multiple-path Syntactic Ana-
lyzer,” Mathematical Linguistics
and Automatic Translation. (Re-
port No. NSF-8, Sec. 1.) Cam-
bridge, Mass.: Computation Lab-
oratory of Harvard University,
1963.

4. National Physical Laboratory. 1961
International Conference on Ma-
chine Translation of Languages
and Applied Language Analysis.
London: H. M. Stationery Office,
1962, Vol. 2.

5. Postal, P. M. “Constituent Struc-
ture.” (Publication 30.) Blooming-
ton: Indiana University Research
Center in Anthropology, Folklore,
and Linguistics. (International
Journal of American Linguistics,
Vol. 30, No. 1 [January, 1964]).

6. Robinson, J. “The Automatic Rec-
ognition of Phrase Structure
and Paraphrase.” (RM-4005-PR;
abridged.) Available on request
from The RAND Corporation,

Santa Monica, Calif. December,
1964.

7. ———. “Preliminary Codes and
Rules for the Automatic Parsing
of English.” (RM-3339-PR). Avail-
able on request from The RAND
Corporation, Santa Monica, Calif.
December, 1962.

8. Kuno, S., and Oettinger, A. G.
“Syntactic Structure and Ambiguity
of English,” AFIPS Conference
Proceedings Vol. 24. Fall Joint
Computer Conference, 1963.

9. Yngve, V. H. “A Model and an
Hypothesis for Language Struc-
ture,” Proceedings of the American
Philosophical Society, Vol. 104,
No. 5 (October, 1960).

COCKE PARSING LOGIC 9

