
MECHANICAL TRANSLATION
DEVOTED TO THE TRANSLATION OF LANGUAGES WITH THE A I D OF MACHINES

VOLUME FIVE, NUMBER ONE JULY, NINETEEN FIFTY EIGHT

Copyright 1958 by the Massachusetts Institute of Technology

News

UNIVERSITY OF CALIFORNIA, BERKELEY

A group has started work on the mechanical
translation of Russian at the University of Cali-
fornia, Berkeley. The work will be under the
direction of M. Haas, L. Henyey and S. Lamb,
and it will be a cooperative effort of the Com-
puter Center and the Department of Linguistics.
The group is planning to analyze a very large
corpus of Russian text and to formulate a trans-
lation program on the basis of the analysis.
Machine methods will be used extensively in
the analysis.

WAYNE STATE UNIVERSITY

H. Josselson and A. Jacobson have formed a
mechanical translation group at Wayne State
University. They will be concerned primarily
with the translation of Russian into English in
the field of astrophysics. The direction which
the program intends to pursue differs from
other mechanical translation projects in its
emphasis on statistical observations. Thus,
the detailed rules for translation will be worked
out on a conditional probability basis; pertinent
data will be stored in a computer in a manner
most economical from the point of view of ac-
cess time; the discrete linguistic units perti-
nent to translation will be classified and ar-
ranged with the help of statistical observations;
and mathematical models of language will be
constructed to insure both validity and predict-
ability for future performance.

THE UNIVERSITY OF TEXAS

Interest in mechanical translation has been
increasing at the University of Texas. This
semester W. Lehmann, S. Werbow and
W. Winter are giving a seminar on the topic
of the mechanical translation of German. Be-
sides the six students who are registered for
the seminar, there are six regular visitors
and some occasional visitors who attend the
meetings. Members of the seminar are being
encouraged to prepare and present prelimi-
nary work papers.

MASSACHUSETTS INSTITUTE OF
TECHNOLOGY

The M.I.T. group is planning a second Sum-
mer Workshop on German to English mechanical
translation. Its purpose is to provide an in-
formal and stimulating atmosphere in which
experienced people as well as those who are
new to the field can exchange ideas and work on
various problems in German and English mor-
phology and syntax from the mechanical trans-
lation point of view.

The M.I.T. group is also planning for the
spring or early summer a short course in pro-
gramming using the COMIT system.

Those who are interested in attending either of
these programs should write to the undersigned.

Victor H. Yngve
Room 20B-101D
M. I. T.
Cambridge, Mass.

An Input Device for the Harvard Automatic Dictionary†
Anthony G. Oettinger, Computation Laboratory,
Harvard University, Cambridge, Massachusetts

A standard input device has been adapted to permit transcription of either Roman
or Cyrillic characters, or a mixture of both, directly onto magnetic tape. The
modified unit produces hard copy suitable for proofreading, and records informa-
tion in a coding system well adapted to processing by a central computer. The cod-
ing system and the necessary physical modifications are both described. The de-
sign criteria used apply to any automatic information-processing system, although
specific details are given with reference to the Univac I. The modified device is
performing satisfactorily in the compilation and experimental operation of the
Harvard Automatic Dictionary.

THE PROPERTIES of a given automatic
information-processing machine depend prima-
rily on the algorithms the machine is capable
of applying to the tokens 1 for the abstract ele-
ments it is said to process. Configurations of
the states of sets of two-state devices, or
pulse trains where pulses are present or absent
in definite time intervals, are commonly used
as tokens in contemporary machines. Abstract
elements, e.g., the integers, are named by
symbols of various kinds. For example, the
numerals "2", "II", and "10" all name the
number 2. Likewise, various symbols can be
used to name tokens. It is a useful and widely
accepted convention to use the symbol "0" as
the name for one state of a two-state device,
and the symbol "1" as a name for its other state.
Frequently, the symbols "0" and "1" are used
also as binary numerals. In a context where
both these usages occur, a string such as "1001"

† This work has been supported in part by
the Harvard Foundation for Advanced Study and
Research, the United States Air Force, and the
National Science Foundation.

1. This term was originated by C. S. Peirce.
For an explanation of the underlying distinc-
tions, see H. Reichenbach, Elements of Sym-
bolic Logic, Macmillan, New York, 1947, p.4.

functions homographically both as a name for
the number 9 and as a name for a particular
configuration of a set of four two-state devices.
This practice is confusing in discourse about
machines intended for or adapted to purposes
other than numerical computation, especially
when the relation between machine tokens and
abstract elements is the chief subject of discus-
sion. In this paper, therefore, "0" and "1" will
be used exclusively as the names of tokens.

The mapping between machine tokens and the
abstract elements a given machine is said to
process can be regarded as defined by the input
and output hardware of the machine. For ex-
ample, if a pulse train 1010100 is to be re-
garded as a token for the letter A, it is desir-
able to arrange matters so that such a pulse
train will cause a printer to print the literal "A".
When an order relation exists among the tokens
in a machine, as imposed, for example, by com-
parison and branch instructions, and when the
abstract elements themselves are an ordered
set, it is usually desirable to relate abstract
elements and tokens by an order-preserving
mapping. For example, in a machine designed
to recognize 1010100 to be "smaller" than
0010101 and 0010101 in turn to be smaller
than 0010110, the mapping A — 1010100,
B — 0010101, C — 0010110 preserves normal
alphabetic order, whereas A — 0010101,
B — 1010100, C — 0010110 does not.

An Input Device 3

The Univac I computer is currently in use at
the Harvard Computation Laboratory in connec-
tion with the development of an operating auto-
matic dictionary2 and for basic research on
the problems of automatic translation from
Russian into English. The normal mapping be-
tween numbers, letters of the Roman alphabet,
punctuation marks, and other standard symbols
on the one hand, and machine tokens on the other,
is given in Figure 2 by the columns headed
"Upper Case" and "Binary Code" (except for
key no. 0). This mapping is established by all
input and output devices associated with the
machine, in particular by the Unityper, which
is used to record information onto magnetic
tape, and by the High-Speed Printer, which is

the major output unit. Thus, when an A is
typed, a token 1010100 is recorded, and such
a token will in turn cause the High-Speed
Printer to print an A.

Adapting a machine like the Univac to handle
Cyrillic letters is conceptually a trivial matter.
To permit alphabetization of Cyrillic material,
an order-preserving mapping between the Cy-
rillic alphabet and Univac tokens is necessary.
Many such mappings can readily be established.
Once this has been done, the internal operation
of the machine with Cyrillic material presents
no difficulties. However, unless the input and
output devices are physically altered, certain
practical problems obviously arise.

Keyboard Layout

Figure 1

2. Oettinger, A. G., Foust, W., Giuliano, V.,
Magassy, K., Matejka, L., "Linguistic and
Machine Methods for Compiling and Updating
the Harvard Automatic Dictionary" (To be pre-
sented at the International Conference on Scien-
tific Information, Washington D.C., November
1958, and published in the Proceedings of the
conference).

As a first step, it is simple to cover the keys
on the Unityper with keytops labelled with Cy-
rillic letters. From the point of view of typing
ease and accuracy the most desirable keyboard
layout (Fig. 1) is one in standard use on ordi-
nary Cyrillic typewriters. Unfortunately,
merely replacing keytops solves only a part of
the practical problem. First, the typewriter

4 A.G. Oettinger

Definition of Mappings

Figure 2

continues to print Roman letters (e.g., Q for Й),
a cryptographic transformation that makes
proofreading most difficult. Second, the cor-
respondence between the Cyrillic alphabet and
machine tokens established in this way does not
preserve Cyrillic alphabetic order. To recon-
cile these conflicting demands, a composition
of two successive mappings can be used. 3 The
first, established by the input device with
covered keytops, leads to the representation of

3. Ibid.

Cyrillic information in a "typewriter code."
A subsequent code conversion is made automat-
ically on the computer, at the expense of some
running time, leading to the representation of
Cyrillic letters in a "ranked code." The re-
sultant mapping is order-preserving. In Figure
2, the Cyrillic letters are named in the "Lower
Case" column. The token corresponding to a
particular Cyrillic letter in the ranked code is
named in the "Binary Coding" column, in the
same row as the letter. The choice of this par-
ticular mapping was made for technical reasons

An Input Device 5

Modified Roman / Cyrillic Unityper

Figure 3

described in detail elsewhere.4 Similar expedi-
ents have been used by others.5

4. Giuliano, V., "Programming an Automatic
Dictionary" Design and Operation of Digital
Calculating Machinery, Progress Report AF-49,
Harvard Computation Laboratory, 1957, pp.
I-42-I-45.

5. Edmundson, H.P., Hays, D.G., Renner,
E.K., Button, R.I., "Manual for Keypunching
Russian Scientific Text" RM-2061, RAND Cor-
poration, 1957.

Recently, we modified a standard Unityper to
enable both the direct conversion from Cyrillic
to ranked code, and the production of Cyrillic
hard copy. The necessity for a costly inter-
mediate code conversion by the computer itself
is thereby eliminated, and proofreading is made
relatively easy. The layout of the keyboard
of the modified typewriter is shown in Figure 1.
Figure 3 is a photograph of the actual machine.
A sample of the hard copy produced by the mod-
ified Unityper is shown in Figure 4. The facil-
ity for interspersing standard and Cyrillic sym-
bols is proving extremely useful in the recording
of Russian texts, as illustrated in Figure 4.

6 A. G. Oettinger

Demonstration Hard Copy Produced by the Modified Unityper

Figure 4

In lower case, the typewriter is Cyrillic. Ex-
cept for three of the very low frequency letters,
the layout is standard. In upper case, the type-
writer functions as a standard model, except
for the absence of a few special symbols nor-
mally available, and for the presence of one
infrequently used Cyrillic letter. The mapping
which obtains when the typewriter is in upper
case is described by the "Upper Case" and
"Binary Coding" columns of Figure 2. For ex-
ample, 1101011 is a token for the letter Q. In
lower case, the mapping is that described by
the "Lower Case" and "Binary Coding" columns.
For example, 0010011 is defined as a token for
the Cyrillic letter Й.

The symbols circled in the "Lower Case"
column are the normal correspondents of the
tokens. For example, while 0010011 is defined
as a token for Й in the ranked code, it is nor-
mally a token for the semi-colon. Therefore,
since the output equipment has not been modi-
fied, Cyrillic material in the ranked code still

would print in cryptographic form, e.g., "56EU"
for "ДЕНЬ" A fast transliteration routine de-
veloped by Andrew Kahr for converting ranked
code into a standard transliteration code has
proved satisfactory for experimental purposes.
It yields, for example, "DEN'" for "ДЕНЬ" .

Relatively few physical changes were neces-
sary to achieve the desired modifications. Spe-
cially prepared keytops labelled as in Figure 2
had to be substituted for the normal ones. Cor-
responding type slugs were not available on the
market, but were cast by the manufacturer
from dies specially cut to our specifications.
The correspondence between typewriter keys
and the machine tokens is established physically
by a set of encoding bails, notched in the pattern
described in Figure 2. A photograph of the bail
associated with the leftmost column of binary
coding (Column 1) is shown in Figure 5. These
bails were cut in our shop from blanks provided
by the manufacturer, who undertook to harden
the cut bails to his own specifications. Instal-

An Input Device 7

ling keytops, type slugs, and bails presented no
unusual difficulties.

The author wishes to express his appreciation
to the Remington Rand Univac Division of Sperry
Rand Corporation, in the persons of Messrs.

Edward L. Fitzgerald and Ted Carp, for their
cooperation, especially in casting type slugs to
our specifications, and to Messrs. Allen
Christensen and Daniel Spillane of the Staff of
the Computation Laboratory for machining the
bails.

An Encoding Bail

Figure 5

Research Methodology for Machine Translation
H. P. Edmundson and D. G. Hays, The RAND Corporation, Santa Monica, California

The general approach used at The RAND Corporation is that of convergence by
successive refinements. The philosophy that underlies this approach is empirical.
Statistical data are collected from careful translation of actual Russian text,
analyzed, and used to improve the program. Text preparation, glossary develop-
ment, translation, and analysis are described.

Introduction

THIS PAPER is the first of a series that de-
scribes the methods now in use at The RAND
Corporation for research on machine transla-
tion (MT) of scientific Russian. The limitation
to scientific text results from the importance of
prompt, widespread distribution of Soviet scien-
tific literature in the United States. The pur-
pose of this series is to clarify the technical
problems of computer application in linguistic
research, to stimulate research in machine
translation, and to encourage standardization of
working materials. The present paper describes
the general approach being followed, giving its
philosophy and method.

The general approach used at The RAND Cor-
poration for conducting research on MT is that
of convergence by successive refinements. At
each stage, automatic computing machinery is
used for some aspects of translation, and for
collecting and analyzing data about other aspects,

The philosophy that underlies this approach is
empirical, in the sense that statistical data are
collected from careful translations of actual
Russian text, analyzed, and used to improve
the MT program. Preconceptions about lan-
guage are generally suppressed in this ap-
proach; no attempt is made to create a com-
plete linguistic theory in advance. Neverthelesst
cogent formalizations and previous knowledge of
language are adopted whenever they seem useful.

The method is conveniently divided into four
components:
1. Text Preparation. Russian scientific arti-
cles are pre-edited and punched into a deck of
IBM cards.

2. Glossary Development. A second deck is
punched, including a card for every different
"word" in the text. Some pertinent linguistic
information is added.
3. Translation. Using the glossary, an IBM
704 program produces a rough translation of
the text. This translation is postedited.

4. Analysis. The postedited translation is
studied in order to improve the glossary and
the machine-translation program.

These four components of the research meth-
od are described in some detail in the present
paper (see pp. 10 to 15 and Fig. 1). However,
a complete exposition is contained in the RAND
Studies in Machine Translation, nos. 3 through 9.

Some Definitions

It is necessary to be clear concerning the
meanings of certain words that we shall use in
a technical sense. This research employs a
number of distinctions that are common only
among linguists, and that accordingly call for
special definitions.

Corpus: a group of articles or books selected
for analysis.

Form: a distinctive sequence of characters.
Thus every change in spelling is a change in
form; "photon" and "photons" are different
forms of the same word.

Occurrence (of a form): a sequence of printed
characters, in a corpus, preceded and followed
by either spaces or punctuation. An occurrence
is identified by its ordinal position in the corpus.
Hence, by definition, "photon" on page 1 and
"photon" on page 2 are different occurrences of
the same form.

Research Methodology 9

10 Edmundson and Hays

Word: a form that represents a set of forms
differing only in inflection. For example,
"great" and "greater" are forms of the same
word, while "great* and "large" are forms
of different words.

Glossary (of a corpus): a list of all the
forms that occur in a corpus; grammatical and
semantic information may also appear.

Dictionary (of a language): a list of all the
words in the language, each represented by one
form; grammatical and semantic information
may also appear. A dictionary changes as the
language expands and contracts.

These distinctions are necessary for precise
study of language; they are used, as consistently
as possible, throughout this work. Additional
terms are introduced as required.

Text Preparation
The preparation of a corpus of Russian scien-

tific text on punched cards involves selection of
articles, pre-editing, design of machine codes
and card formats, and keypunching.

1. Selection of Articles
The present RAND corpus consists of ar-

ticles in the fields of physics and mathematics.
These fields were chosen because of their im-
portance for national security, and also because
of the fact that their reputedly limited vocabu-
laries assure a slow rate of glossary increase,
which is useful in the preliminary cycles of re-
search. Two journals are represented: Sections
of the Zhurnal Eksperimental'noi i Teoreticheskoi
Fiziki, which had been keypunched in a research
project at the University of Michigan, furnish a
valuable beginning;* in addition, articles from
the Doklady Akademii Nauk SSSR are being key-
punched at RAND, so that the two journals can
be compared for vocabulary and sentence struc-
ture. Within the Doklady, selection is made by
a scientist on the basis of substantive interest
and high ratio of text to symbols and equations.
A bibliography of the current RAND corpus is
contained in MT Study 9.1

* Andreas Koutsoudas, the director of the
Michigan project, has contributed to this RAND
study as a consultant.
1. H.P. Edmundson, K.E. Harper, D.G. Hays,
and A. Koutsoudas, "Studies in Machine Trans-
lation—9: Bibliography of Russian Scientific
Corpus," in preparation.

2. Pre-editing
Pre-editing is necessary for efficient key-

punching; decisions are made before the key-
punch operation begins, so that the operator
knows exactly what to punch and in what order.
The variety of characters and arrangements that
is possible on a printed page cannot be repro-
duced on a standard keypunch machine. The
pre-editor substitutes, for each nonpunchable
symbol or formula, a code that can be
punched. He assigns and index number to each
article; to each page of the article; to each
line of the page; and to each occurrence in the
line. The current rules for pre-editing are con-
tained in MT Study 4. 2
3. Machine Codes

American punched-card machinery is not
designed to process the Cyrillic alphabet; mod-
ifications are required, either in equipment or
in procedure. For the present, it is most con-
venient to adapt procedures. Accordingly,
three distinct codes for the Cyrillic alphabet
are needed:

a) Keypunch Code. Special key-tops are pre-
pared for the Cyrillic alphabet, and arranged
on the keyboard of an IBM Type 026 keypunch
in the pattern of a standard Russian typewriter.
Each letter of the Cyrillic alphabet is punched
into cards with a unique combination of holes,
but these combinations are not adapted to ma-
chine sorting or listing.

b) Sort Code. The standard construction of
IBM card sorting and collating machines de-
fines a natural ordering of certain punch com-
binations. The RAND sort code assigns these
punch combinations to the Cyrillic characters
in their natural order. Thus it is possible, us-
ing standard IBM machines and standard pro-
cedures, to sort cards into Cyrillic alphabetic
order.

c) List Code. The letters of the Roman al-
phabet, decimal digits, and a few special char-
acters can be printed on IBM equipment. Each
of these characters is printed by a unique punch
combination. The RAND list code causes IBM
equipment to print a Roman transliteration of
the Cyrillic original. The transliteration used
here was designed for convenient machine
printing.

2. H.P. Edmundson, D.G. Hays, E.K.Renner,
and R.I.Sutton, "Studies in Machine Translation
— 4: Manual for Pre-editing Russian Scientific
Text," in preparation.

Research Methodology 11

Of these three codes, the sort code seems
most reasonable as a permanent, standard IBM
code for Cyrillic characters. In the first place,
the "natural" order of the punch combinations
is related to the arrangement of punches in the
card column, as well as to the construction of
sorters and collators. Furthermore, the sort
code uses one column for each Cyrillic charac-
ter, whereas the list code requires as many as
four columns for phonetic representations of
some characters.

The keypunch code can be eliminated by me-
chanical alteration of the keypunch. The list
code can be eliminated by construction of type-
wheels with Cyrillic characters for the ma-
chines used in listing. In the absence of spe-
cial equipment, use of three distinct codes is
unavoidable; conversions among the codes are
most conveniently performed on an automatic
computer.
4. Card Formats

Each occurrence of a form in the corpus, as
marked by the pre-editor, is punched into an
IBM card. This card contains a sequence num-
ber indicating the order of the occurrence in the
corpus, punctuation marks before and after the
occurrence, and the Russian form of the oc-
currence.

In order to record all of the information
needed in translation and analysis, two cards
are required for each occurrence. Both cards
contain the information listed above. In addi-
tion, the first card (the translation text card)
contains glossary information (see Glossary
Development); the second card (the analytic
text card) contains analytic information (see
Translation and Analysis).

Complete descriptions of machine codes
and card formats are contained in MT Study 3.3

Glossary Development

In accordance with the general approach of
this project, the glossary is developed by in-
crements. An initial glossary is prepared from
a small corpus; examination of a new corpus
leads to expansion of this glossary; and so on.
Initially, the rate of growth of the glossary is
large; as the process continues, the rate will
decrease, but never vanish.

3. H.P.Edmundson, D.G.Hays, and R.I.Sutton,
"Studies in Machine Translation—3: Resume of
Machine Codes and Card Formats," August 18,
1958.

During each cycle, the new corpus is alpha-
betized on the Russian form. A summary deck
is produced, containing one card for each dif-
ferent form; the number of occurrences of each
form is recorded in this process. The new sum
mary deck is mechanically matched with the old
glossary, and new forms are listed for coding
by linguists.

The linguist adds information to the new glos-
sary cards as follows:

a) Grammar Code. Each form is coded for
part of speech, case, number, gender, tense,
person, degree, and so forth. The current
RAND code has more than 1000 categories; it
is described in MT Study 6.4

b) Word Number. Each form in the corpus
is numbered automatically; it remains for the
linguist to collect all inflected forms of a single
word and assign a number identifying the group
as a word. (See MT Study 7.)5

c) English Equivalents. If the new form is
a form of a word in the old glossary, the Eng-
lish equivalents previously used are carried
forward. If no form of the word has occurred
before, the linguist assigns up to 3 tentative
English equivalents. (See MT Study 7.)5 His
selection may be altered after postediting. (See
Analysis.)

Grammar code, word number, and English
equivalents are keypunched into the summary
cards and then transferred to the translation
text cards.

Translation

From one point of view, almost the whole re-
search process consists of translation. In a
stricter sense, however, "translation" is used
to describe the two-stage process of machine
translation and postediting. The process begins
with the translation text deck, already contain-
ing glossary information and sorted into textual
order. A 704 program produces a listing
of the text as a rough translation; a postedi-
tor works on this list, converting it into a
smooth English version of the Russian original.

4. K. E. Harper, and D. G. Hays, "Studies in
Machine Translation—6: Manual for Coding
Russian Inflectional Grammar, " March 3, 1958.

5. H.P.Edmundson, K.E.Harper, D.G.Hays,
"Studies in Machine Translation—7: Manual for
Assigning Word Numbers and English Equiva-
lents to Russian Forms," in preparation.

12 Edmundson and Hays

The object of this process is to produce Russian-
English translations suitable for the analyses
described in the following section.
1. Machine Translation

The 704 computer program for MT will
eventually determine the structure of Rus-
sian sentences and construct equivalent English
sentences. The program is expanded and im-
proved as cycles of research produce more in-
formation about language, so it is impossible
to give a final description of it. During the first
cycle, the "machine-translation" program con-
sisted solely of transliteration of the text and
print-out of the glossary information. Analyses
in the first cycle have led to the following ma-
chine routines, completed or planned:

a) Recognition of Idioms that Have Previ-
ously Occurred. An idiom is a sequence of
forms that must be translated as a group, not
one-by-one. This routine is ready for the sec-
ond cycle.

b) Inflection of Nouns into Plural Number.
The English equivalents in the glossary are gen-
erally uninflected. Hence it is necessary, when
a Russian noun occurs in plural number, to in-
flect its English equivalent into the plural. A
fairly complete routine is ready for the second
cycle, but it does not take into account the fact
that some forms of Russian nouns are ambigu-
ous with respect to number. Extensions of the
routine are planned to be in operation in the
second cycle; these will use adjective-noun
agreement to reduce the ambiguities.

c) Inflection of Verbs by Voice, Mood, Tense,
Person, and Number. In English the inflection
of verbs is more complicated than that of nouns.
The third-person singular present tense, the
past tense, the present participle, and the past
participle require inflections; at times, auxil-
iary verbs and pronoun subjects also must be
inserted. A routine to handle many inflections
is planned to be in operation in the second cycle,
but insertion of pronoun subjects in particular
must wait for further textual analysis.

d) Insertion of Prepositions. When a Rus-
sian noun occurs in the genitive, dative, or ac-
cusative case, its English equivalent must, in
most instances, be preceded by a preposition.
The Russian noun may or may not be preceded
by a preposition. A routine is planned to be in
operation during the second cycle, which will
connect Russian prepositions with their noun
objects and will supply additional prepositions
in English as required.

e) Selection of English Equivalents for Russian
Prepositions. Russian prepositions have many
alternative English equivalents. K. E. Harper,
using the postedited corpus from the first cycle,
has developed a classification of nouns that im-
proves the accuracy of preposition translation.
A routine is planned to be in operation during
the second cycle, to select an equivalent for
each preposition according to the class of the
noun to which it is connected.

The computer program for machine transla-
tion has thus advanced since the first cycle be-
gan, but must be improved in every respect be-
fore machine translation is satisfactory without
postediting.

The machine-translation stage concludes with
the printing of a text list. The following items
are printed in parallel columns:

Sequence number — Coding space —
Russian form — Grammar code —
Primary English equivalent —
Alternative English equivalents

The primary English equivalent, copied from
the glossary in the first cycle, is to be modi-
fied by the machine-translation program in sub-
sequent cycles.

The text list is designed to serve three differ-
ent functions; its format economically provides
for the support of these tasks:

(1) Evaluation of the Machine-translation
Program. The quality of the program can be
judged by reading the primary English equiva-
lent column.

(2) Postediting. The posteditor, who must
know both English grammar and the subject
matter of the article can work from the Eng-
lish equivalents and the grammar code; he
has no occasion to refer to the glossary.
His notations are marked directly in the cod-
ing space; the text list then serves as a key-
punch manuscript.

(3) Linguistic Analyses. The same list can
be used by a linguist for structural or other
analyses of the text.

2. Postediting
The posteditor inserts whatever notations

are required to convert the rough machine
translation into good English; his notations are
analyzed in order to improve the glossary and
the computer program. It is thus necessary
for him to have good command of English gram-
mar and the technical vocabulary of the scien-
tific articles being translated. His task is to
complete the work of the machine, so the rules

Research Methodology 13

he follows must change from cycle to cycle as
the machine-translation program develops. The
following rules apply in the second cycle:

a) English Equivalents. The primary English
equivalent is generally acceptable (see the fol-
lowing section, Glossary Refinement); if it is
not, the posteditor makes one of three notations:

(1) He writes the code number of a listed al-
ternative English equivalent in the coding space.

(2) He writes a new alternative English equiv-
alent in the coding space.

(3) He writes a special symbol to denote that
a string of occurrences is an idiom.

In one of these ways, the posteditor makes sure
that the selected English equivalent is always
acceptable in the context.

b) English Sentence Structure. The structure
of the sentence is partially converted to English
style by the machine-translation program; as
that program develops in repeated cycles of re-
search, fewer and fewer structural notes have
to be made by the posteditor. Among his tasks
are these:

(1) Inflection of English equivalents, or cor-
rection of the inflections made by the machine
program.

(2) Insertion of English preposition codes
when necessary, or correction of insertions
made by the machine program.

(3) Insertion of codes giving correct English
word order.

By such notations as these, the posteditor guar-
antees that the final product is grammatically
acceptable in English.

c) Russian Sentence Structure. The postedi-
tor indicates the connections in the sentence
that make up its structure. Using such rules
as the following, he writes next to each oc-
currence the sequence number of the occurrence
on which it depends:

(1) Adjectives depend on the nouns they
modify.

(2) Nouns that serve as objects of preposi-
tions depend on the prepositions.

(3) Nouns that serve as subjects or objects of
the verbs depend on the verbs.

(4) Words connected by conjunctions depend
on the conjunctions.
The posteditor continues until every occurrence
in the sentence, except one, is shown to depend
on some other.

The selection of English equivalents and syn-
thesis of English sentence structure was per-

formed by the posteditor in the first cycle. Ma-
chine determination of Russian sentence struc-
ture is being initiated for the second cycle. The
current rules for postediting are contained in
MT Study 8.6

Analysis

The final component of this research method-
ology is analysis of the postedited translation,
with the goal of refining both the glossary and
the computer program. Some analyses are per-
formed at the conclusion of each cycle; the ad-
vantages of this method include the following:

a) Compared with the preparation of a "com-
plete" MT program before examination of any
corpus, this method is more closely governed
by the realities of language.

b) Compared with the translation of a very
large corpus before any analysis or program-
ming, this method is less costly, since it makes
more efficient use of the posteditor's time. It
is possible, by means of analyses in early
cycles, to shift part of the work of corpus prep-
aration from the editor to the computer program
in subsequent cycles.

It follows that the two chief criteria for selec-
tion of analyses in each cycle are rapid reduc-
tion of the posteditor's work and selection of a
corpus for each analysis large enough for sta-
tistical stability. Language problems that most
often arise tend to satisfy both criteria in early
cycles.

The method of analysis is empirical correla-
tion of the posteditor's notations with the infor-
mation in the glossary — word number, gram-
mar code, and so forth. The following para-
graphs describe some applications of the method.

1. Glossary Refinement
In each cycle, the glossary is enlarged by

the addition of new forms and new idioms. In
addition, analysis leads to improvement of the
English equivalents. It is first necessary to
determine, for each Russian word (i.e., set
of forms) the minimal set of English equiva-
lents required. The determination is made in
the following steps:

a) A count is made of the number of occur-
rences for which each alternative equivalent is

6. H.P.Edmundson, K.E.Harper, D.G.Hays,
"Studies in Machine Translation—8: Manual for
Postediting Russian Scientific Text," in prep-
aration.

14 Edmundson and Hays

preferred by the posteditor. The alternatives
are rearranged in the glossary in order of fre-
quency of preference.

b) In subsequent cycles, the posteditor is in-
structed to accept the first alternative as often
as possible.

c) Secondary alternatives that are not pre-
ferred in subsequent cycles are deleted.

The English equivalents that remain are es-
sential for accurate translation; thus it is
necessary to develop criteria for choice of one
of them in each context. The first task is to
differentiate between the contexts in which a
multiple-equivalent word is translated in differ-
ent ways. The analytic text deck contains one
card for every occurrence, and, alter postedit-
ing, each card is punched to show the English
equivalent, and the words in the context sum-
marized and tabulated. Presumably there are
words that occur more often in the context of
one preference than of the others; if such words
exist, they permit differentiation of the contexts.

At least two more cycles are required before
the RAND corpus will be large enough for this
type of analysis. If, at that time, the data show
strong differentiation of contexts, it will be nec-
essary to construct models. One model that has
been suggested is a thesaurus, or hierarchical
classification of words. A model for semantic
relations and a practical method for applying it
are among the most important unsolved questions
tions in the field of machine translation.

2. Computer-program Refinement
The general nature of the computer pro-

gram is sketched in the previous section (Ma-
chine Translation). It consists of routines for
determination of Russian sentence structure
and construction of English sentences with
equivalent structure. In early cycles, these
tasks are performed by the posteditor; the pur-
pose of analysis is to relate the actions of the
posteditor to the observable characteristics of
the Russian sentences, so that the computer
can be programmed to take similar actions un-
der similar circumstances.

Sentence structure is symbolized, in Russian
and in English, by the following observable
characteristics: word order, particles, inflec-
tions, agreements, and punctuation. For auto-
matic computation, these characteristics are
represented by word number, sequence number,
grammar code, and punctuation code. Analysis
consists of correlation of these characteristics

of the Russian sentence with the English struc-
tural codes or structural-connection codes in-
serted by the posteditor.

The technique is to bring together all occur-
rences of form with a given grammar code —
for example, all nouns in the dative plural. The
analyst first tests whether any English struc-
tural code applies to all occurrences. For ex-
ample, the English equivalents of Russian plu-
ral nouns must be inflected into the plural. A
routine is established for English plural inflec-
tion, initiated when the Russian grammar code
indicates a plural noun. Such grammatically
determined routines are important, but they
are few in number.

The next stage of analysis uses context of oc-
currence; all occurrences with a given gram-
mar code are collected, and sorted according
to grammar codes of contiguous forms. Taking
the traditional rules of syntax as a guide, the
analyst relates the English structural code to
features of the context. The insertion of a prep-
osition before the English equivalent of a Rus-
sian dative noun is thus related to the grammar
codes of preceding occurrences. If the imme-
diately preceding occurrence in Russian is a
preposition, no additional preposition is re-
quired in English. Gradually extending the anal-
ysis over a wider context, the analyst connects
dative plural nouns with preceding adjectives,
preceding participial phrases, and prepositions
preceding these modifiers. Syntactically de-
termined computer routines for making the con-
nections are written. The analyst is able to
conclude that a dative noun, not connected with
a preceding preposition, must be preceded by
"to" in English translation. *

There are two limitations on this type of anal-
ysis. First, the structure of the sentence may
be ambiguous; an adjective may be placed be-
tween two nouns with which it agrees — in Rus-
sian, it might modify either of them. It seems
probable that true structural ambiguity is rare
and that in most cases a sufficiently complex
routine can resolve apparent ambiguities. The
second limitation is that the routines are com-
plicated by rules that are necessary for the res-
olution of extremely rare constructions. Since
the routines must be stored in a computer of
limited size, it is not practical to seek "perfect"
machine translation.

* The example is taken from a study being
conducted by D.G.Hays.

Research Methodology 15

The analytic method described above is par-
tially automatic; collection of occurrences with
a given Russian grammar code, a given context,
and a given English structural code is carried
out by machine. With the explicit marking of
structural connections planned for the second
cycle, still more of the research operation be-
comes automatic, since it will be possible au-
tomatically to collect, for example, all dative
plural nouns depending on prepositions, and to
list all constructions that intervene between the
preposition and the noun.

Conclusion

The RAND methodology is a system for
preparing Russian scientific text on punched
cards, for producing translations in analyzable

form, and for exposing the relationships be-
tween the original and translated versions,
semi-automatically, in such a way that trans-
lation can be programmed.

The research methodology described is, of
course, designed to achieve satisfactory ma-
chine translation; the intermediate products
are:

a) A descriptive grammar of the Russian lan-
guage, as it is used today in scientific writing.

b) A working glossary of Scientific Russian
with the English equivalents required for accu-
rate translation.
Solutions to both conceptual and technical prob-
lems of computer application in linguistic re-
search are given in the other papers of this
series.

The Use of Punctuation Patterns in Machine Translation†
Gerard Salton, Computation Laboratory, Harvard University, Cambridge, Massachusetts

The determination of sentence structure contributes greatly to the understanding
of written texts, and represents, therefore, an element of considerable value in
mechanical translation. The present study deals with the analysis of English
language punctuation patterns and presents a sample program for an automatic
punctuation analysis.

SINCE A MACHINE can easily recognize punc-
tuation marks, it is pertinent to inquire how the
pattern of punctuation marks within a sentence
can be used to determine sentence structure.
Such a study may result in the development of
criteria which can be incorporated in a pro-
gram for machine translation. While the pres-
ent study deals with the analysis of English
language punctuation patterns, a similar analy-
sis can of course be made for the punctuation
of any other language.

Nature of Punctuation

All languages exhibit certain basic differ-
ences among the sentences or clauses which
may be constructed. These differences are
intuitively recognized, even by children who
know, for example, that a statement requires
no response, while a question requires an oral
response. Thus, sentences may be classified
as declarative, imperative, interrogatory, or
exclamatory. Another classification might dis-
tinguish among clauses1 simple, compound,

† This study was prepared during the Seminar
in Mathematical Linguistics held at Harvard
University in the spring of 1956. The writer is
indebted to Dr. A. G. Oettinger and Mr. W. L.
Eastman for helpful advice.

1. Unless otherwise noted, technical terms of
grammar or syntax will always be used in the
conventional sense as defined in elementary
textbooks.

or complex. One can intuitively postulate that
punctuation marks are used in the written lan-
guage to make these distinctions. Moreover,
punctuation marks are also used to prevent am-
biguity. Punctuation, then, is predominantly
constructional, or grammatical, or logical.
Because of this, certain invariances of punctua-
tion patterns must exist. Indeed, most people
will adhere to certain conventions and will
strive to reduce ambiguity by the proper place-
ment of punctuation within the sentences. In
this sense, punctuation is part of the mechanics
of writing, and insofar as it is, it will present a
minimum of difficulties in the proposed analysis

On the other hand, punctuation also performs
a non-logical, non-grammatical function, anal-
ogous to the part played in speech by intonation
and pause and in writing by emphasis. In this
respect, punctuation is an art rather than a part
of the mechanics of writing. Clearly, this lat-
ter aspect makes it difficult to take certain pat-
terns of punctuation marks and to draw conclu-
sions from them about the sentence structure of
the English language.

Fortunately, the situation may not be so
troublesome as it might appear at first glance.
Computing machines are not likely to be used
to translate novels, poems and similar types
of literary texts, but will probably be restricted
to the translation of scientific texts. In view of
this, a similar restriction can be imposed on
the present analysis eliminating the more ob-
vious cases of "psychological punctuation."
Indeed, the more technical a text becomes, the

Punctuation Patterns 17

more predominant the logical and construc-
tional element in the punctuation. Deviations
from the standard punctuation patterns should
be only a minor consideration for technical
texts.

Choice of Punctuation Marks
The present analysis will include all those

punctuational patterns which are commonly
found in normal technical language. Included
marks are the period, comma, semi-colon,
colon, question mark, exclamation point, quo-
tation mark, parenthesis, and dash. Excluded
will be the hyphen, apostrophe, asterisk, mul-
tiple dashes, dots, compound points (such as
comma dash, colon dash, etc.), and oblique
stroke. These punctuation marks are not in-
cluded in the present analysis because their in-
fluence on the sentence structure of scientific
texts is believed to be small, either because of
the special nature of these punctuation marks,
or because of their comparative infrequency in
scientific texts.

Among the punctuation marks to be con-
sidered, such as colon, semi-colon, and so on,
certain occurrences or patterns which are the-
oretically possible may also safely be disre-
garded. Examples are given below:

(1) A colon is sometimes used to denote inter-
polation, as in the following sentence:

"He was good: he himself thought he was
very good: at extricating himself from
difficult situations."

(2) A semi-colon is sometimes used to sepa-
rate clauses or phrases having common depend-
ence as in the following sentence:

"There is tears for his love; joy for his
fortune; honor for his valor; and death
for his ambition."

Such uses are not expected to occur in texts
which are likely to be analyzed by machine.

There is another class of occurrences of punc-
tuation marks which, although not infrequent in
technical texts, must be disregarded in the anal-
ysis. This class includes all non-punctuational
uses such as occur in mathematical expressions.
These can be eliminated without excessive dif-
ficulty when the text is being transcribed for
input into the machine by enclosing anything
resembling a mathematical expression or equa-
tion between a pair of asterisks. Punctuation
marks which appear between asterisks are then
disregarded automatically during the analysis.

The major classes of other non-punctuational
uses to be eliminated are given below:
(1) Periods are used following sets of capital
letters which stand for names or titles. For
example, M.P. stands for Member of Parlia-
ment, or N.Y. stands for New York.
(2) Periods are used following abbreviations
or contractions, as in Dr., Mr., Maj. Gen.,
etc., i.e., and so on. These uses are fairly
frequent in scientific texts.

(3) Periods are used in section or chapter
headings, as in "1.1. Communication. "

(4) Periods, commas, colons may also be used
between digits in various capacities. Consider,
for example, the following:

7:14:30 standing for 7 hours, 14 minutes,
30 seconds

12.50 standing for 12 1/2
12, 520 standing for 12 thousand 5 hundred

and 20.
No general and attractive rule has been found

for eliminating all of these situations satisfac-
torily. For case (1) it may be stipulated that
the period following a single capital letter will
be considered legitimate. If the period is fol-
lowed by another capital letter and another pe-
riod, then a special glossary must be consulted,
and the periods must be disregarded. If the
capital letters represent initials of proper
names, they could not be found in the glossary;
they would, however, have been eliminated
from consideration by being enclosed between
asterisks, as previously explained. A glossary
must also be set up for the abbreviations men-
tioned under (2) above. Such glossaries should
be fairly inclusive; in their construction, much
help can be obtained from textbooks on punctua-
tion, which usually contain long lists of these
special words.

The punctuation marks in (3) and (4) can be
eliminated by classifying them as arithmetic
uses of punctuation. An expression such as
7:14:30 is then transmitted as *7:14:30*.

Additional work remains to be done if all non-
punctuational uses of punctuation marks are to
be eliminated. The rules specified here are
sufficient, however, to dispose of the more
troublesome cases.

Punctuation and Sentence Structure

Conventional textbooks on grammar generally
classify punctuation marks in accordance with
their function within a given sentence. Unfor-
tunately, such a classification is difficult to

18 G. Salton

carry out by machine, since it requires the de-
termination of syntactic or semantic character-
istics of the related clauses or phrases. For
this reason, it is convenient to let the punctua-
tion patterns themselves serve as primary basis
for classification in this study. 2 The classifica-
tion is then independent of any relation which
might exist between the punctuation and the sur-
rounding text.

A sentence will be defined as a string of words
between two punctuation marks of a certain type,
and the parts of the sentence will be distinguished
by their occurrences between two commas, or
between a comma and a period, and so on. No
consideration will be given to semantic charac-
teristics, and syntactical relations will be used
only when easily determinable. Instead, each
word string between two punctuation marks will
be treated as consisting of words belonging to
specific word classes. These word classes will
then be used in conjunction with the punctuation
marks for analyzing the sentence. Usually a
unique determination of the word class to which
a word belongs will not be required; it is usually
sufficient to store next to each word in the dic-
tionary a code indicating the applicable word
class or classes — noun, verb, adjective, etc.
For present purposes the word classes are the
conventional "parts of speech" of elementary
grammar.

Proposed Analysis of Scientific Texts

Since the analysis of punctuation is to be done
with the help of a computing machine, it is im-
portant to note a basic difference between the
application of such a machine to the analysis of
sentence structure, and the application of a
computer to the solution of mathematical prob-
lems. When solving a mathematical problem,
it is imperative that all possible special cases
and exceptions be properly taken into considera-
tion. A machine program which handles 95% of
the cases which arise in the solution of a mathe-
matical problem is not, in general, more useful
than one which takes care of only 10% of the
cases since neither program can be used to
solve the problem. When analyzing sentence

2. An attempt to use punctuation marks for the
determination of certain types of grammatical
clauses was made by V. A. Oswald, Jr., and
Stuart L.. Fletcher, Jr., "Proposals for the
Mechanical Resolution of German Syntax Pat-
terns, "Modern Language Forum 36, No. 3-4,
1951.

structure with the objective of improving word-
for-word translation, the situation is quite dif-
ferent. Indeed, a program which could deter-
mine certain structural elements of 95% of the
sentences analyzed would be very valuable.
The 5% whose structure could not be success-
fully analyzed by the program could still be
treated by word-for-word translation, so long
as all the words were stored in the dictionary.
The present analysis was made with this philo-
sophy in mind, and not with the intention of
achieving perfect sentence-for-sentence
translation.

It has been suggested already, that the tech-
nical texts to be analyzed exhibit certain very
special characteristics, so far as punctuation
is concerned. The patterns of punctuation found
in the texts that were considered during this
study were invariably of a simple nature. A
text of ten pages which was examined in detail
was found to contain only two semi-colons, a
few parentheses, and a few dashes, in addition
to the liberal use of commas and periods. The
sentences were comparatively long, however,
averaging over twenty-five words per sentence.
In view of the comparative length of the sen-
tences, the main objective has been to reduce
the size of the string of words to be translated
as a unit by taking into account the punctuation
pattern occurring in the sentence. This reduc-
tion of each sentence into parts or substrings
was accomplished by specifying criteria to in-
dicate which words belonged to the same sub-
string, and which did not.

Two main criteria were used for reducing a
sentence into substrings: for certain strings of
words, the initial and final punctuation marks
were found to be sufficient; for the remaining
strings it was necessary to determine the word
class of the various words between two succes-
sive punctuation marks. Wherever possible,
exact determination of word classes was
avoided by basing the rules on more general
criteria. Thus, if a substring did or did not
contain a verb, or if it did or did not contain a
present participle; it was often possible to make
a decision without the necessity of determining
uniquely the word class of each word in that
substring.

In order to reduce possible ambiguities to a
minimum, the use of a few lists of words was
introduced. The lists were always kept small,
so that they could be searched quickly and
would
use little storage space. For example, a list
was made of the most frequent words of inclu-
sion. If a word appeared on the list, it was

Punctuation Patterns 19

treated in some specified manner, without the
necessity of determining its word class. It was
decided that any remaining ambiguities would
be ignored by the machine.

The reduction of the length of the strings of
words was achieved by two basic operations:
separation and compression. The process of
separation may be described by noting that un-
der certain circumstances a string of words, S,
can be broken down into substrings S1, S2, . . .,
Sn, which may be treated separately so far as
the translation process is concerned. Such sub-
strings might be separate clauses within a
given sentence, or parenthetical thoughts, or
any other parts of the sentence which may be
treated apart from the remaining words. A
transformation T may then be defined, which
transforms the sentence S into its transform
T(S). If T is translation, the T(S) stands for
a new sentence in the output language. In gen-
eral, the transformation T is not a uniquely de-
fined operation and there is no reason why the
same T should apply to all the substrings Si.

There are, however, circumstances where T
consists of exactly the same operations for a
set of substrings in a given sentence. Under
these special circumstances the second basic
process, compression, can be used. To apply
compression to a set of substrings, it is first
necessary to identify the substrings by noting
the similarity in their formal structure; this,
in turn, requires an exact determination of the
word classes. However, once the substrings
have been identified, the operator T need be
determined for only one of the substrings, and
can then be applied automatically to the others.
Elements in an enumeration or a series, usu-
ally separated by commas in the sentence, are
substrings of this type. Consider, as an ex-
ample, the following string of words:

"Here we have a peach, an orange,
an apple, a pear and thirty, per-
haps thirty-one, grapes."

It may be noted first that the words "a peach,
an orange, an apple, a pear" constitute a set of
four indefinite articles each followed by a noun
which is separated from the next article by a
comma. Clearly, four substrings may be rec-
ognized, each consisting of one indefinite article
and the noun immediately following it. As soon
as a set of operations, Ti, has been specified
which may be applied to one of the substrings,
the same Ti may be applied to the other three
substrings. It may be noted next that the words

"perhaps thirty-one" between the remaining
two commas really express a parenthetical
thought, which may be treated separately from
the remaining parts of the sentence. The sen-
tence may now be written as follows:

The punctuation, in this instance a set of five
commas, was used to "separate" the parenthesis
as indicated by a loop, and to "compress" the
series as indicated by the brackets. In addition
to the punctuation, the pattern of word classes
in the sentence was also taken into account to
assist in the appropriate classification of the
substrings.

A set of specifications for a machine program
is presented below. It is believed that any mod-
erately experienced programmer can easily
write a program for these specifications. An
actual program has not been written, because
it is felt that some of the rules could be im-
proved, after further analysis. Specifically,
some of the word lists require more extensive
research. However, it is believed that the spec-
ifications as they stand, are capable of treating
adequately about 95% of the word strings likely
to be encountered in technical texts, and that
they contain the main bulk of the results which
can be hoped to be achieved by punctuation
anal-
ysis. This, of course, requires experimental
confirmation. No machine analysis was made.
The sample text reproduced at the end of this
article was analyzed by hand, care being taken
to proceed with the analysis in the same step-
by-step manner which would have been used,
had the analysis been carried out by machine.

Program Specifications
(A) Step One
Consider one sentence at a time, that is, one
string of words included between any two of the
following: exclamation point, question mark,
period. Mark the beginning and end of the
sentence by two strokes and eliminate the cor-
responding punctuation mark.

Of course, before being eliminated, any punc-
tuation mark must first be tested as to whether
it might be used in some non-punctuational
manner. If this is the case, it is merely
passed over, and the next punctuation mark is
considered.

20 G. Salton

(B) Step Two
Within every sentence mark the position of any
pair of parentheses, dashes, or quotation marks
by square brackets. When a dash (or parenthe-
sis) is followed by another dash (or parenthesis)
in the same sentence, the two will be con-
sidered a pair. Four dashes in the same sen-
tence will be considered two pairs, and so on.

(C) Step Three
Mark the position of any semi-colon, colon, or
single dash in the sentence by two strokes, ex-
cept when these punctuation marks occur within
a pair of parentheses, quotation marks, or
dashes, in which case mark their position by
one stroke. The strokes again replace the
punctuation.

(D) Step Four
Consider the occurrence of commas within ad-
joining two-stroke marks; commas which are
included in the brackets which have been set up
in Step Two must be considered separately from
those commas not within the brackets. If a
series is detected, compress the terms of the
series and mark by braces as shown in the
example previously given.

Series use of the comma is defined as the oc-
currence in any sentence, of two or more terms
of similar grammatical construction and com-
mon dependence, the terms of the series being
separated by a comma. In a series of more
than two terms, the last comma may or may
not be followed by a conjunction. The terms of
the series may be nouns, pronouns, adjectives,
verbs, adverbs, prepositions, or combinations
of the foregoing.

Some series will not be recognized because
of small deviations in word patterns. Such sub-
strings will be treated as parenthetical in Step
Five without substantial loss in meaning. Ex-
amples are given below:

Good jobs are now plentiful, construction
activity high, and employment at its peak.

Here the words "are now" or "is now" are not
repeated in the second and third term of the
series. These will, however, be treated as
parenthetical by Step Five.

The strengthening of technical, college level,
and advanced education is of paramount im-
portance to the United States.

Here "college level" is used as an adjective
and will not be recognized as such by the ma-
chine. The term will again be treated as par-
enthetical.

(E) Step Five
Consider the remaining commas within adjoin-
ing two-stroke marks, and mark by a loop any
substring which may be considered a paren-
thesis and may therefore be treated without ref-
erence to the remaining words within the two-
stroke marks. A parenthesis may be placed at
the beginning of the string within adjoining two-
Stroke marks, if it starts with a two-stroke
mark and ends with a comma; in the middle of
the string if it starts with a comma and ends
with a comma; and at the end of the string if it
starts with a comma and ends with a two-stroke
mark. Commas occurring within square brack-
ets must be treated separately from those out-
side the square brackets. The parentheses
will be marked in the following sequence:

(a) strings of words in the middle (that is, both
preceded and followed by a comma) not contain-
ing any verb

(b) strings of words in the middle containing no
verb form except a present participle (a verb
form ending in "ing")

(c) strings of words in the middle containing no
verb form except a past participle. (If past par-
ticiples are not stored explicitly in the machine,
this step may be omitted.)

(d) strings of words as defined in (a), (b), or
(c) if they occur at the beginning or at the end
of the substrings instead of occurring in the
middle, except that any string of words at the
beginning or at the end which adjoins a string
already looped will not be looped, since it is
already separated from the remainder of the
substring

(e) strings of words which contain one of the
verbs used to interrupt a narrative or quotation
(say, tell, observe, suppose, interrupt, etc.)
accompanied by any of the following: pronoun,
noun, article, adjective, adverb, or any com-
bination thereof. (This category is not believed
important in technical texts and could be
ignored.)

(f) strings of words containing no verb form
other than an infinitive

(g) strings of words in the middle of a substring,
starting with an adverbial clause or phrase (in
order to do this, on the same day, etc.). If an
exhaustive list of such adverbial clauses is not
available, this category could also be ignored.

Punctuation Patterns 21

(h) strings of words in the middle starting with
any of the following words of inclusion (words
which refer to clauses after them):
 after since wherever

although that whether
as unless which
because what whichever
before whatever while
how when who
if whenever whoever
in order that where why

(i) strings of words in the middle containing
in juxtaposition two conjunctions, or adverb and
conjunction, or conjunction and adverb (these
are always subordinate clauses of some sort).
Some of the more frequent occurrences are:
whether if, that since, since even, then if, that
if, even if, even while, even though, etc.
(F) Step Six
Consider the remaining commas, within adjoin-
ing two-stroke marks, (that is, those not al-
ready eliminated by brackets, braces, or loops)
and mark the position of the comma by one
stroke in the following order:

(a) strings of words starting with any simple
coordinating conjunction (and, or, but, for,
nor, neither)

(b) strings of words which fall under (e), (f), or
(g) of Step Five, but which are at the beginning
or at the end of the substring

(c) any comma not already eliminated should be
replaced by one stroke.

In connection with Steps Five and Six, it should
be mentioned that the machine program associ-
ated with each of the above steps is obvious from
the description of the steps themselves, since
these are based either on lists of words which
must be searched or on certain easily recogniz-
able word forms or classes.

Residual Problems
The program specifications outlined in the

preceding section will properly recognize most
punctuation patterns. There are, however,
certain exceptions which are not covered as yet.
Some examples are given below:
1. How could a comma used to replace missing
words be properly recognized? For example,
in the sentence

"I am fond of apples; he, of pears."

"he" and "of pears" would be recognized as par-
enthetical by Step Five.

2. How can series commas be recognized?
Consider for example:

"The stooped, meticulously clad figure... "

Here "stooped" and "meticulously clad" ought
to be recognized as two adjectives.

3. How can inversions be recognized?
Consider

".., the treatment of which may be stopped..."

Here the preposition and conjunction do not im-
mediately follow the comma because of the in-
version; however, the sentence ought to be
treated as if preposition and conjunction did
introduce the subordinate clause.
While these and other cases may not be in-
cluded in the program specifications, the effi-
ciency of the punctuation analysis is not greatly
reduced, since constructions of this kind are
relatively rare.

Conclusion

A text is analyzed in the next section to show
the possibilities inherent in the proposed meth-
od. The sentences were almost invariably anal-
yzed correctly. For some sentences no addi-
tional information was furnished by the analysis;
for others, a correct analysis was dependent
either on the correct determination of word
classes or on the recognition of abbreviations
and other non-punctuational uses of punctuation.

In spite of the difficulties, it is believed that
the modest attempt made here at analyzing the
structure of punctuation has been worth while.
If a sufficient number of structural elements in
the language are analyzed, and rules are speci-
fied for inclusion in an automatic translation
program, it may eventually be possible to at-
tain the accuracy of sentence-by-sentence
translation.

Sample of Simulated
Automatic Punctuation Analysis

The paragraph chosen for analysis is not from
a scientific text but rather reproduces a con-
versation. It was chosen because no scientific
text could be found which would exhibit a large
enough variety of punctuation within a short
paragraph to illustrate many of the steps de-
scribed in the previous section. An immediate
consequence of the non-technical character of
the text is the fact that the sentences tend to be
rather short, making for greater simplicity in
the analysis. This should not, however, de-

22 G. Salton

tract from the fact that all the sentences in this
text could be analyzed properly, despite a great
variety of punctuational patterns. In further
experiments with technical material long sen-
tences were successfully analyzed.

The text is first given unaltered. Thereafter
the text is reproduced after each of the six
steps. Wherever the number of changes for any
one step was very small, only the sentences
which were actually changed are reproduced.
The last copy of the text is broken down into
substrings which start and end with a double
stroke.

Text Before Simulated Automatic Analysis

Well, well, well! What are you* doing here,
you old rascal?

Oh, nothing much.
Just looking around for what you can pick up,

I suppose?
Tut, tut! Don't make me out to be a thief.

I'm only an opportunist, after all, you know.
But a very unusual sort of opportunist: You

don't merely grasp such opportunities as offer
themselves to your remarkably observant eyes,
Charles; you do a great deal — or so, at least,
I suspect — to create the opportunities.

Why, Robert! The conversation is taking a
strange turn. You began by almost insulting
me; now you are paying me what is, in effect,
a compliment — indeed, in its way, a very high
compliment.

Darn it! That's not quite correct — I mean
about the compliment — for although I admire
your versatility, your resourcefulness, your
adaptability —

Don't pile it on too thick, old man!
Don't interrupt! As I was saying, I admire

these qualities; others I deplore. But you are
quite right: we seem to be dropping into a fin de
siecle persiflage and hatred of being earnest.
However, I wanted to ask you for —

Sorry, old chap! Must tear myself away —
my bus, you know.

Text After Step One
// Well, well, well // What are you doing here,

you old rascal //
// Oh, nothing much //
// Just looking around for what you can pick up,

I suppose //

* The words which are underlined were itali-
cized in the original text.

// Tut, tut // Don't make me out to be a thief //
I'm only an opportunist, after all, you know //

// But a very unusual sort of opportunist: You
don't merely grasp such opportunities as offer
themselves to your remarkably observant eyes,
Charles; you do a great deal — or so, at least,
I suspect — to create the opportunities //

// Why, Robert // The conversation is taking a
strange turn // You began by almost insulting
me; now you are paying me what is, in effect,
a compliment — indeed, in its way, a very
high compliment //

// Darn it // That's not quite correct — I mean
about the compliment — for although I admire
your versatility, your resourcefulness, your
adaptability —

Don't pile it on too thick, old man //
// Don't interrupt // As I was saying, I admire

these qualities; others I deplore // But you are
quite right: we seem to be dropping into a fin de
siecle persiflage and hatred of being earnest //
However, I wanted to ask you for —

Sorry, old chap // Must tear myself away —
my bus, you know //

Excerpt from Text after Step Two
//But a very unusual sort of opportunist: You

don't merely grasp such opportunities as offer
themselves to your remarkably observant eyes,
Charles; you do a great deal [or so, at least,
I suspect] to create the opportunities//

- - -
//That's not quite correct [I mean about the

compliment] for although I admire your versa-
tility, your resourcefulness, your adaptability —

Don't pile it on too thick, old man//

Text after Step Three

//Well, well, well / What are you doing here,
you old rascal//

//Oh, nothing much //
//Just looking around for what you can pick

up, I suppose //
//Tut, tut //Don't make me out to be a thief//

I'm only an opportunist, after all, you know //
//But a very unusual sort of opportunist // You

don't merely grasp such opportunities as offer
themselves to your remarkably observant eyes,
Charles // you do a great deal for so, at least,
I suspect] to create the opportunities //

//Why, Robert // The conversation is taking a
strange turn // You began by almost insulting
me // now you are paying me what is, in effect,
a compliment // indeed, in its way, a very high
compliment //

Punctuation Patterns 23

//Darn it// That's not quite correct [I mean
about the compliment] for although I admire
your versatility, your resourcefulness, your
adaptability //

// Don't pile it on too thick, old man//
//Don't interrupt //As I was saying, I admire

these qualities // others I deplore // But you are
quite right // we seem to be dropping into a fin
de
siecle persiflage and hatred of being earnest //
However, I wanted to ask you for //

// Sorry, old chap // Must tear myself away //
my bus, you know//

24 G. Salton

A Programming Language for Mechanical Translation†
Victor H. Yngve, Massachusetts Institute of Technology, Cambridge, Massachusetts

A notational system for use in writing translation routines and related programs is
described. The system is specially designed to be convenient for the linguist so
that he can do his own programming. Programs in this notation can be converted
into computer programs automatically by the computer. This article presents com-
plete instructions for using the notation and includes some illustrative programs.

IT HAS BEEN SAID that the automatic digital
computer can do anything with symbols that we
can tell it in detail how to do. If we are inter-
ested in telling a digital computer to translate
texts from one language into another language,
we are faced with two tasks. We first have to
find out in detail how to translate a text from
one language to another. Then we have to "tell"
the computer how to do it. This paper is con-
cerned with the second task. We will present
here a specially devised language in which the
linguist can conveniently "tell" the computer
to do things that he wants it to do.

The automatic digital computer has been de-
signed to handle mathematical problems. It is
able to carry out complicated routines in
terms of a few different kinds of elementary
operations such as adding two numbers, sub-
tracting a number from another number, mov-
ing a number from one location to another, tak-
ing its next instruction from one of two places
depending on whether a given number is negative
or positive, and so on. In order to instruct the
computer to carry out complicated routines,
simple instructions for the elementary opera-
tions are combined into a program. The writ-
ing of a program to carry out even an apparently

† This work was supported in part by the U. S.
Army (Signal Corps), the U. S. Air Force
(Office of Scientific Research, Air Research
and Development Command), and the U.S.Navy
(Office of Naval Research); and in part by the
National Science Foundation.

rather simple procedure can be an exacting task
requiring a high degree of skill on the part
of the programmer.

It has been the custom for the linguist who
wanted to try out a certain approach to mechan-
ical translation to ask an expert programmer
to program his material rather than to learn
the art of programming himself. Besides the
usual inconveniences and difficulties attending
the communication between experts in two
separate fields, this practice has certain more
basic difficulties: Neither the linguist nor the
programmer has been able to be fully effective.
The linguist has not become aware of the full
power of the machine, and the programmer,
not being a linguist, has not been able to use
his special knowledge of the machine with full
effectiveness on linguistic problems.

The solution offered here to these difficulties
is an automatic programming system. The
linguist writes the results of his research in a
notation or language called COMIT, which has
been specially devised to fill his needs. The
programmer writes a conversion program or
compiler capable of converting anything written
in this notation into a program that can be run
on the computer.* Thus the expense, time, and
effort needed to separately program each lin-
guistic approach is saved, and, even more im-
portant, the linguist is given direct access to
the machine. He becomes more fully aware of
its potentialities, and his research is greatly
facilitated.

* This is being done by the programming re-
search staff of the M.I. T. Computation Center.

26 V. H. Yngve

What COMIT Is

COMIT is an automatic programming system
for an electronic digital computer that provides
the linguist with a simple language in which he
can express the results of his researches and
in which he can direct the computer to analyze,
synthesize, or translate sentences. It is cap-
able of being programmed on any general pur-
pose computer having enough storage and appro-
priate input and output equipment. The language
has been devised to meet the needs of the lin-
guist who wants to work in the fields of syntax
and mechanical translation. Some of the lin-
guistic devices and operations that COMIT has
been designed to express are: immediate con-
stituent structure, discontinuous constituents,
coordination, subordination, transformations
and rearrangements, change in the number of
sentences or clauses in translation, agreement,
government, selectional restrictions, recur-
sive rules, etc.

A program written in COMIT consists of a
number of rules written in a special notation.
The computer executes these rules one at a
time in a predetermined order. In seeking an
appropriate notation in which to write the rules,
we were guided by several considerations.
1. That the rules be convenient for the linguist
- compact, easy to use, and easy to think in
terms of.
2. That the rules be flexible and powerful —
that they not only reflect the current linguistic
views on what grammar rules are, but also that
they be easily adaptable to other linguistic views,

A linguist can use the computer in the follow-
ing simple way. He expresses the results of
his linguistic research in COMIT. He tran-
scribes his rules onto punched cards using a
device with a typewriter keyboard. He supplies
text or special instructions to the machine also
on punched cards. He then gives these packs of
cards to an operator and subsequently receives
his results in the form of printed sheets from
the machine.

The way that a COMIT program works in the
computer is shown in figure 1. The rules mak-
ing up the COMIT program can be thought of as
stored in the computer at A. Material to be
translated or otherwise operated on enters the
computer under the control of the rules from
the input B. It is operated on by the rules and
translated in the workspace C. It then goes to
the output E. The dispatcher D contains spe-
cial information, stored there by the rules,

Fig. 1. How a COMIT program works in the
computer.

The way in which COMIT rules are written,
how they direct the computer to perform the
desired operations, and how they are assembled
into programs will now be described. The re-
mainder of the paper is thus a complete manual
of detailed instructions for using this special-
purpose programming language.

COMIT Rules and Their Interpretation
A rule in COMIT has five sections, the name,

the left half, the right half, the routing, and
the go-to, each with its special functions. Fig-
ure 2 shows how a rule is divided into these

Fig. 2. The five sections of a rule in COMIT.
five sections. The name and left half are sepa-
rated by a space, the left half and the right half
are separated by an equal sign, the right half
and the routing are separated by two fraction
bars, and the routing and the go-to are sepa-
rated by a space;

— flow of control —
We will discuss first the function of the name

and the go-to, which have to do with the flow of
control from one rule to another. A program
written in COMIT always starts with the first
rule in sequence. After a rule has been car-
ried out, the computer obtains in the go-to the
name of the next rule to be carried out. The
name of each rule is to be found in the left-
hand part of the name section of that rule. (The

which governs the flow of control or the order
in which the rules of the program are carried
out.

A Programming Language 27

right-hand part of the name section is reserved
for the subrule name, to be discussed later.)

In addition there are three cases when control
is automatically transferred to the next rule in
sequence regardless of its name. One of these
will be immediately clear; the other two will
be clarified in the explanations of the left half
and the routing. The three are: (1) an asterisk
is written in the go-to, (2) the constituents
written in the left half of the rule were not
found in the workspace, (3) an *R in the rout-
ing finds no more material at the input. A rule
to which control is always transferred automat-
ically in this fashion so that a rule name is not
needed, may have an asterisk in the name sec-
tion in place of a rule name. When this auto-
matic transfer of control takes place from the
last rule in sequence so that there is no next
rule, the COMIT program stops.

Figure 3 shows an example of how control
proceeds from one rule to another under the
direction of the rule name and the go-to sec-
tions. In this program, rule A would be the
first one executed, then C, then the rule with
an asterisk in the name section, then B, then
C, then *, then back to B again, and so on
round and round in what is known as a loop,
until one of the conditions occurs in the rule
marked asterisk that will automatically trans-
fer control to the next rule D. After D has
been executed, the program will stop.

Fig. 3. A COMIT program to illustrate the
flow of control under the direction of
the rule name and the go-to sections
of the rules.

As an aid to the memory, we will give a way
in which each part of a rule in COMIT can be
read in English. This will be done by providing
English equivalents for all abbreviations used
in COMIT, and by providing certain convention-
al wordings that will always be used between the
various sections and between the various ab-
breviations. For the parts of the rule already
discussed we need the following conventions: A
rule is preceded by the word "in", rule names
are preceded by the words "the rule", the go-to
is preceded by the words "then go to", an * in

the name section is read "this rule", an * in
the go-to is read "the next rule, " and the rule
is followed by a period to make a sentence.
These conventions are enough to read the pro-
gram in figure 3. These and the other conven-
tions are conveniently tabulated in a later sec-
tion. According to the conventions, the pro-
gram in figure 3 should be read:

In/the rule A/... /then go to/the rule C/.
In/the rule B/... /then go to/the next rule/.
In/the rule C/... /then go to/the next rule/.
In/this rule /... /then go to/the rule B/.
In/the rule D/... /then go to/the next rule/.
The dispatcher also can influence the flow of

control in the following way: A rule in COMIT
may have several subrules. In figure 4, the
rule B has four subrules. The rule name is

Fig. 4. A COMIT program to illustrate a rule
with subrules. The rule B has four
subrules.

in the left hand part of the name section of the
first subrule. The name of each subrule is in
the right hand part of the name section of that
subrule. A rule that does not have several sub-
rules may be thought of as a rule with just one
subrule. A rule with only one subrule does not
have a subrule name. When control is trans-
ferred to a rule with several subrules, the dis-
patcher is consulted for an indication of which
subrule is to be carried out. For this purpose
the dispatcher contains dispatcher entries. A
dispatcher entry of the form B E would cause
the computer to execute the subrule E in rule B
each time it comes to that rule. If there is no
entry in the dispatcher for this particular rule,
or if there is an entry, but it contains more
than one subrule name, the choice is made at
random. In other words, if the dispatcher con-
tains the entry B E G, the computer will choose
at random between the two alternative subrules
E and G. A dispatcher entry having a minus
sign in front of its values (subrule names) has
the same meaning as it would have if it had all
its possible values except those following the
minus sign. A dispatcher entry with a rule

28 V. H. Yngve

name but no values has the same meaning as
one with all possible values, that is, choose
completely at random. The contents of the dis-
patcher are not altered by any of these proces-
ses. How the contents of the dispatcher may
be altered will be discussed in the section on
the routing.

The English reading of a rule with several
subrules is the same as that for a rule with one
subrule except that the words "consult the dis-
patcher and select" are read following the rule
name. In figure 4, the rule B with four sub-
rules is read:
In/the rule B/consult the dispatcher and select/

the subrule D/. . . /then go to/the rule H/.
the subrule E/... /then go to/the rule H/.
the subrule F/... /then go to/the rule I/,
the subrule G/... /then go to/the rule I/.

— workspace —

Having discussed the flow of control, we will
turn to the workspace and describe how text to
be translated or other material to be worked on
is represented there. This will prepare us for
a discussion of the remaining three parts of
the rule whose function it is to operate on the
material in the workspace.

Material is stored in the workspace as a
series of constituents separated by plus signs.
A constituent consists either of a symbol alone
or a symbol and one or more subscripts. The
symbol is written first. It may be the textual
material itself, a word, phrase, or part of a
word; or it may be any temporary word or ab-
breviation that the linguist finds convenient to
use. Subscripts are of two kinds, logical sub-
scripts and numerical subscripts. Logical sub-
scripts are potential dispatcher entries and thus
have the form of a rule name (subscript name)
followed by one or more subrule names (values).
Numerical subscripts are used for numbering
and counting purposes. They consist of a period
for the subscript name followed by an integer
n in the range 0 ≤ n < 215. A constituent may
have any number of logical subscripts, but only
one numerical subscript.

An example of how linguistic material can be
represented in the workspace is given in figure
5. This could be read in English as follows:
"a constituent consisting of/the symbol IN/
with/the numerical subscript/1/ , followed by/
a constituent consisting of/the symbol DER/
with/the numerical subscript/2/ , followed by/
a constituent consisting of/the symbol ADJ/with/
the numerical subscript/3/ , and with/the sub-

script AFF/having/the value EN/ , followed
by/a constituent consisting of/the symbol NOUN/
with/the numerical subscript/4/ , and with/the
subscript GENDER/having/the value FEM/."
The conventional wordings and the readings for
the abbreviations used may be found tabulated
near the end of this article.

Fig. 5. Example of how linguistic material

may be represented in the workspace.

- left half -
Having discussed the name and go-to sections

and shown how material is represented in the
workspace, we are now ready to discuss the re-
maining three sections of a rule. First we will
take up the left half. A rule with several sub-
rules may have no more than one left half. It
is written in the first subrule. The function of
the left half is to indicate to the computer which
constituents in the workspace are to be operated
on by the rest of the rule. The constituents in
the workspace to be operated on are indicated
by writing constituents in the left half that
match them in certain definite respects.

A match condition between a constituent in the
workspace and a constituent written in the left
half will be recognized if the following condi-
tions hold: (1) The symbols are identical. (2)
If the constituent in the left half has any sub-
scripts written on it, the constituent in the work-
space must also have at least subscripts with the
indicated subscript names — the order of writ-
ing the subscripts has no significance. (3) If
the logical subscripts in the left half have any
values indicated, the subscripts in the workspace
must also have at least these values — again the
order is unimportant. (4) If a numerical sub-
script is written in the left half, the numerical
subscript in the workspace must have an identi-
cal numerical value, but if . G or . L is written
in the left half before the value of a numerical
subscript, a numerical subscript in the work-
space will be matched if it has, respectively, a
value greater than or less than the value writ-
ten in the left half.

Dollar signs written in the left half have spe-
cial meanings. $1 may be written in the left
half to match any arbitrary symbol. If the $1
is followed by subscripts, they are matched in
the normal fashion. A dollar sign followed by
any number greater than 1 ($4) will match the

A Programming Language 29

indicated number of constituents. It cannot have
subscripts. A dollar sign without a number
can be written as a constituent in the left half
and can match any number of constituents in the
workspace, including none. This is called an
indefinite dollar sign, while those with numbers
are called definite dollar signs.

Fig. 6. Examples of match and no-match con-

ditions. The top lines in a) and b) re-
present constituents in the workspace.
The bottom lines represent constitu-
ents as written in the left half.

As an example of how constituents written in
the left half can match constituents found in the
workspace, figure 6 a shows several of the pos-
sibilities. Each constituent in the second line
represents a constituent as it might be written
in the left half. It matches the workspace con-
stituent written directly above it in the first line.
In figure 6 b, none of the constituents meet the
match conditions.

The computer carries out a search for a
match condition between each of the constituents
written in the left half and corresponding con-
stituents in the workspace in the following way:
The first constituent on the left in the left half
is compared in turn with each constituent in the
workspace starting from the left until a match
is found. The computer then attempts to match
the next constituent in the left half with the next
constituent in the workspace and so on until
either all constituents written in the left half
have been matched, or one constituent fails to
match. In this case, the computer starts again
with the first constituent in the left half and
searches for another match in the workspace.
Finally, either a match is found for all of the
constituents and the computer goes on to execute
the rest of the rule, or the computer cannot find
the indicated structure in the workspace, in
which case control is automatically transferred
to the next rule. It can be seen that a struc-
ture will be found in the workspace only if it
has matching constituents that are consecutive

and in the same order as those written in the
left half.

If an indefinite dollar sign is the first con-
stituent in the left half, it will match all of the
constituents in the workspace to the left of any
constituent that is matched by the second con-
stituent in the left half. If the indefinite dollar
sign is the last constituent in the left half, it will
match all of the constituents in the workspace
to the right of any constituent that is matched by
the next to the last constituent in the left half.
If there are two or more indefinite dollar signs
written in the same left half, they must be sep-
arated by constituents that are not dollar signs,
or by $1 with subscripts, in order to prevent an
ambiguity as to which constituents in the work-
space are to be found by the several indefinite
dollar signs.

If an indefinite dollar sign has constituents
written on each side of it in the left half, the
computer will first try to match all constituents
to the left of the indefinite dollar sign. It does
not have to search again for the constituents to
the left of the dollar sign unless a number (as
will be explained shortly) referring to a constit-
uent to the left of the indefinite dollar sign is
written to the right of the indefinite dollar sign.
In this case, the computer will search for a new
match for constituents to the left of the indefinite
dollar sign if it fails to find a match with the con-
stituents to the right of the indefinite dollar sign.

Constituents in the left half are conceived of
as being numbered starting with one on the left.
The leftmost constituent is called the number
one constituent in the left half. When the con-
stituents written in the left half have been suc-
cessfully matched with constituents in the work-
space, the constituents in the workspace that
have been found are temporarily numbered by
the computer in the same way as the constitu-
ents in the left half. The constituent in the work-
space found by the number one constituent in the
left half thus becomes the number one constitu-
ent in the workspace. The temporary number-
ing of constituents in the workspace remains un-
til it is altered by the right half or until the rule
has been completely executed. Its purpose is to
allow expressions in the left half, right half and
routing to refer to constituents in the workspace
by their temporary number.

The various steps in a search are indicated
in the example given in figure 7. The lower
two lines give the constituents as they are writ-
ten in the left half of a rule, and the way in

30 V. H. Yngve

Fig. 7. Example of the search steps that the
computer goes through in order to find
in the workspace (top line) the struc-
ture written in the left half of the
rule (next to bottom line).

which the computer numbers these constituents.
The top line indicates the current contents of the
workspace. Lines a) through e) represent the
way in which the computer temporarily numbers
the constituents in the workspace that have been
successfully matched at each step of the search.
The first step is indicated in line a): an at-
tempted match between the number one constit-
uent in the left half and the first constituent on
the left in the workspace fails. In line b), the
number one constituent matches the second con-
stituent in the workspace, but an attempted
match between the number two constituent in
the left half and the third constituent in the work-
space fails. In line c), the number one constit-
uent in the left half matches the third constitu-
ent in the workspace, and the number two the
fourth, but since the number three constituent
is an indefinite dollar sign and can match any
number of constituents including none, the next
constituent, number four is matched with the
fifth in the workspace. The match fails. Hav-
ing already matched the constituents in the left
half to the left of the indefinite dollar sign, the
computer now tries to match the constituents to
the right of the indefinite dollar sign. In line d),
it finds a match of the number four constituent
with the sixth, but the number five constituent
in the left half fails to match the seventh con-
stituent in the workspace. The computer then
tries again with the number four constituent,
and in e) finds a match between the number four
and number five constituents in the left half and
the seventh and eighth constituents in the work-
space. Since all of the constituents in the left
half have now been found in the workspace, the
constituents in the workspace that have been
found are left with the numbers as shown in line
e). The third, fourth, fifth and sixth, seventh,

and eighth constituents in the workspace become
respectively the number one, two, three, four,
and five constituents in the workspace. Note
that two or more constituents in the workspace
may be given one number if they are referred
to by a dollar sign in the left half.

It is possible for the left half to be modified
to some extent by what is found in the work-
space . This can be done by writing a number
as a constituent in the left half. The number
then refers to the constituent already found in
the workspace that has been given that number.
The rest of the left half is then executed as if
the constituent referred to in the workspace had
been written originally in the left half in place
of the number. A number written in the left
half can only refer to a constituent in the work-
space that has already been found by a constitu-
ent to the left of it in the left half. It can refer
only to a single constituent, one matched by $1
for example. A number written in the left half
cannot have subscripts written on it.

Fig. 8. Example of use of a number in the left

half (bottom two lines). Attempted
match indicated at a) fails, but the one
at b) is successful. The contents of
the workspace are represented on the
top line.

Figure 8 gives an example of the use of a
number in the left half. After two unsuccessful
matches, the number one constituent in the left
half finds the third constituent in the workspace.
The number two constituent in the left half is
then considered to be replaced by this constitu-
ent that has just been found (C/S). The match
then fails because the fourth constituent in the
workspace does not have at least the subscript
S, required for a match condition. But when the
number one constituent in the left half finally
finds the sixth constituent in the workspace, the
number two constituent in the left half is con-
sidered to be replaced by this constituent (C),
and the next match is successful because this
C will, according to the conditions for a match,
find the C/S that is next in the workspace.

A Programming Language 31

The English reading of the left half is the
same as the reading of the material in the work-
space except that it starts with ", search for a
match in the workspace for", ends with ",and
if not found, go to the next rule, but if found ",
and includes conventional wordings for several
abbreviations including the dollar signs and the
numbers. For example, A/.G3 + $1 + $ + $2 + 2
in the left half would be read: ", search for a
match in the workspace for /a constituent con-
sisting of /the symbol A/with/the numerical
subscript/greater than/3/, followed by/a con-
stituent consisting of/any symbol/, followed by
/a constituent consisting of/any number of con-
stituents/, followed by/a constituent consisting
of/two constituents/, followed by/a constitu-
ent consisting of/the number two constituent in
the workspace /, and if not found, go to the next
rule, but if found".

- right half -
The function of the right half is to indicate

how the structures found in the workspace by
the left half are to be altered. If there is no
right half, the structures found in the workspace
are left unaltered.

Rearrangement of the constituents found by
the left half and temporarily numbered will take
place when the appropriate numbers are written
in the right half in the desired new order. If
any of the numbers referring to constituents in
the workspace are not written, these constitu-
ents will be deleted. The single digit zero as
the only constituent in the right half will cause
everything found by the left half to be deleted.
The single digit zero is never entered in the
workspace.

New constituents will be inserted in any de-
sired place in the workspace when they are
written complete with symbol and any desired
subscripts and values in the desired place in
the right half.

The computer will add or alter subscripts
when they are written on a constituent or num-
ber in the right half. If this constituent already
has a logical subscript with the same subscript
name as the one that is being added, the two
subscripts are combined in a special way called
dispatcher logic. If there is no overlap in
values, that is, if the two subscripts do not have
any values in common, the old subscript is re-
placed by the new one. But if the two subscripts
have any values in common, only the values that
are common to the two will be retained. An ex-
ample is shown in figure 9.

Fig. 9. Example of the combining of subscripts
by dispatcher logic. a) shows the num-
ber two constituent in the workspace,
b) shows the entry in the right half, c)
shows the resulting number two con-
stituent in the workspace.

A logical subscript written in the right half
with *C in place of its values complements the
values of the subscript found in the workspace,
that is, all the values that it has are replaced
by just those values that it doesn't have. In
other words, *C effectively adds a minus sign
in front of the subscript values. In the case of
numerical subscripts, the new value replaces,
increases, or decreases the old depending on
whether the value written in the right half fol-
lows the period immediately or with an inter-
vening I or D. Since numbers are treated mod-
ulo 215, 1 added to 215 - 1 will give 0, and 1
subtracted from 0 will give 215- l. Subscripts
will be deleted from a constituent when they are
preceded by minus signs in the right half. A
dollar sign preceded by a minus sign will cause
all subscripts on that constituent to be deleted.
Subscripts are added, altered, or deleted in
the order from left to right in which they are
written in the right half. The same subscript
will be altered several times if several expres-
sions involving it are written in the right half.

The computer will carry over subscripts from
any single numbered constituent in the work-
space to any other single numbered constituent
indicated by the right half. For this purpose a
subscript name in the right half is followed by
an asterisk and a number indicating the number
of the constituent from which the subscript is
to be carried over. Carried over subscripts
go onto the new constituent in the order from
left to right in which they are written in the
right half. Logical subscripts go onto the new
constituent with dispatcher logic. Numerical
subscripts carried over either replace, in-
crease, or decrease the old value depending on
whether . or .I. or .D. precedes the asterisk.
A dollar sign preceding the asterisk will cause
all the subscripts from the indicated constitu-
ent to be carried over.

32 V. H. Yngve

After all of the operations indicated by the
right half have been carried out on the constitu-
ents in the workspace, the numbered constit-
uents remaining in the workspace and any new
ones that have been added are given new tempo-
rary numbers by the computer in the order in
which they are represented in the right half.
These new temporary numbers will be of use
when the routing is executed.

Fig. 10. An example of some right-half opera-

tions, a) the numbered constituents
in the workspace initially, b) the right
half, c) the numbered constituents in
the workspace finally, and after re-
numbering.

An example of some of the operations indi-
cated by a right half is given in figure 10.
In this example, the number one constituent in
the workspace is deleted. The number two con-
stituent has its numerical subscript increased
by the numerical subscript carried over from
the number one constituent, and then decreased
by 3 to give 8 (7+4-3 = 8). The B subscript
is carried over from the number one constitu-
ent, the D subscript, not being mentioned, re-
mains unaltered. The E subscript is added
from the right half. The F subscript has its
values complemented. (We assume that its pos-
sible values are Q, R, S, and T.) The G sub-
script is deleted. Finally, a new constituent is
added to the workspace and the constituents in
the workspace are renumbered.

The English reading of the right half involves
only a few new wordings for abbreviations.
These will be found in the section on English
reading.

— routing —
The function of the routing section of the rule

is to alter the contents of the dispatcher, con-
trol input and output functions, direct the com-
puter to search a list, and add or remove plus
signs in the workspace.

Dispatcher entries may be written in the rout-
ing section. When the routing part of the rule

is executed by the computer, these entries are
sent to the dispatcher where they combine with
the entries there according to dispatcher logic.
Logical subscripts on a constituent in the work-
space may also be sent to the dispatcher as dis-
patcher entries. Conversely, dispatcher en-
tries may be carried over as subscripts onto a
constituent in the workspace. This latter, to
return to the right half for a moment, is done
by using the normal notation for carrying over
subscripts but by using the letter D to refer to
the dispatcher. 1 /CASE*D written in the right
half would cause the CASE dispatcher entry to
be carried over and added to the number one
constituent in the workspace as a subscript.
2/$*D written in the right half would cause all
of the dispatcher entries to be carried over as
subscripts onto the number two constituent in
the workspace. If the constituent in the work-
space already has subscripts of the same kind,
the dispatcher entries are combined with them
according to dispatcher logic.
*D followed by a number in the routing section
will cause all of the subscripts on the indicated
numbered constituent in the workspace to be
sent to the dispatcher as dispatcher entries
where they combine with any entries already
there according to dispatcher logic. When the
computer executes a rule, subscripts designated
in the routing section of the rule and dispatcher
entries written directly in the routing section of
the rule are sent to the dispatcher in the order
in which they are written from left to right in
the routing section. This is done after the left
and the right halves are executed and before the
go-to is executed. When subscripts are sent to
the dispatcher from the workspace, they are
not deleted from the workspace; when they are
sent to the workspace from the dispatcher, they
are not deleted from the the dispatcher.

COMIT has a special provision for rapid dic-
tionary search. Dictionary entries may be writ-
ten in a list which will be automatically alpha-
betized by the computer. This list may be en-
tered from one or more rules called look-up
rules. A look-up rule has two special features:
*L in the routing section of a look-up rule, fol-
lowed by one or more numbers referring to
consecutively numbered constituents in the
workspace, serves to indicate what structure
in the workspace is to be looked up in a list.
The name of a list, written in the go-to section
of the look-up rule, serves to indicate what list
the structure is to be looked up in. A list can-
not be entered by an automatic transfer of con-
trol to the next rule.

A Programming Language 33

When entering a list, the computer tempo-
rarily deletes all subscripts from the constitu-
ents in the workspace indicated by the *L, and
all plus signs between the constituents, thus
forming one long symbol. It is this long sym-
bol that is looked up in the list.

The list itself has the following structure:
The entries are separate rules. The first rule
of a list has a hyphen followed by the name of
the list in its name section. The rest of the
list rules have nothing in their name sections.
List rules have only one subrule each. The long
symbol formed by a look-up rule is looked up in
the left halves of the list rules. Each left half
thus contains only one constituent with a symbol
only and no subscripts. Each list rule may also
have a right half, routing, and go-to. If the long
symbol is found in the list, the corresponding
right half is executed in normal fashion. If the
number one is written in the right half of the
list rule, the long symbol remains in the work-
space. If the single number zero is written in
the right half, the structure indicated by the
look-up rule is deleted. If nothing is written
in the right half of the list rule, the items tem-
porarily deleted by the look-up rule are re-
stored and the workspace remains unaltered. If
the long symbol is not found in the list, the items
temporarily deleted by the look-up rule are re-
stored, leaving the workspace unaltered, and
control is automatically transferred to the first
rule after the list.

Fig. 11. Example of a list rule with look-up rule
and two rules to take care of failure to
find the indicated structure.

An example of a list is given in figure 11.
Rule A is the look-up rule. It serves to find
any number of constituents between spaces in
the workspace. (Spaces are indicated in the
workspace by hyphens.) If the workspace does
not have two spaces, the left half is not found
and control is transferred to the next rule and
then goes to C. If the indicated structure is

found, the symbols of the constituents between
the spaces are formed into one long symbol
which is looked up in list B. If it is not found
in the list, control goes to the rule after the
list and then to G.

In addition to the look-up rule with its *L ab-
breviation, there are two other ways of altering
the number of plus signs in the workspace.
*K followed by one or more numbers referring
to consecutively numbered constituents in the
workspace will cause the symbols of these con-
stituents to be compressed into one long sym-
bol, and any subscripts that they may have had
will be lost.
*E followed by one or more numbers referring
to consecutively numbered constituents in the
workspace will cause the symbols of these con-
stituents to be expanded by the addition of plus
signs so that each character becomes a sep-
arate constituent. A list of characters is given
in the center column of figure 12. Any sub-
scripts that the original constituents may have
had will be lost.

Only one of the abbreviations *L, *K, or *E
may be used in any one rule, and when it is
used, it must be last in the routing section to
avoid confusion in the numbering of the constit-
uents in the workspace.

The COMIT program communicates with the
outside world through input and output
functions
under control of abbreviations in the routing
section. Reading of input material and writing
of output material can be done in any one of
several channels and in any one of several for-
mats as follows.

Channels. The particular computer that
COMIT is being programmed for (IBM 704) has
a number of magnetic tape units connected to
it as well as a card reader and punch and a
printer. Magnetic tapes may be prepared for
the computer from information on punched
cards, and material written on tape by the com-
puter may later be read off on a printer or
punched on cards. Each input or output abbre-
viation designates that reading or writing is to
take place in channel A, B, C, or one of the
others. Then, before the program is run on
the computer, the operator connects the chan-
nels used by the programmer to various mag-
netic tape units, printers, etc. Any channel
may be connected to any one of several input
or output devices. This gives the maximum
of flexibility of operation, and allows the out-
put of one COMIT program to become the input
of another no matter what channels are desig-
nated for input and output in the two programs.

34 V. H. Yngve

The abbreviations *RW in the routing section
followed by a channel designation will rewind
the tape unit connected to that channel.

One channel, channel M, is reserved for
monitoring purposes and cannot be rewound.
It can only be written on. The COMIT pro-
grammer can write on this channel any infor-
mation that may be of use to him later concern-
ing the correct or incorrect operation of his
program. Certain information is also written
on this channel automatically if the machine dis-
covers certain mistakes in the program during
operation.

Material may be read or written in any one of
several formats. Format S (specifiers) in-
volves whole constituents, including symbols
and subscripts. Format A is for text, and in-
volves only symbols. Both format S and for-
mat A are designed for the particular charac-
ters available on the printers and card punches
in current use. Other formats may be made
available if and when other types of input or out-
put equipment become available.

When material is punched on cards for read-
ing into the computer in format S, it is punched
in exactly the way that it is to appear in the
workspace, including symbols, subscripts, and
plus signs between constituents. Any number
of characters up to a maximum of 72 may be
punched on a card. When material extends
over onto another card, the break between cards
can be made at any point where a space is al-
lowed, or anywhere in the middle of a symbol.

When the computer executes a rule with an
abbreviation in the routing section that calls
for reading in format S from a designated
channel, the next constituent from the input is
brought into the workspace where it replaces
the designated numbered constituent. For ex-
ample, *RSA2 would cause the computer to
read in format S the next constituent from
channel A and send it to the workspace where
it will replace the number two constituent.

When the computer executes a rule with an
abbreviation in the routing section that calls
for writing in format S, the designated num-
bered constituents in the workspace are writ-
ten in the designated channel. They are not de-
leted from the workspace by this process. For
example, *WSM3 5 would cause the computer
to write in format S in channel M the number
three and the number five constituents from
the workspace.

The computer will start a new line or card
each time it executes an abbreviation calling
for writing in format S. Each line requiring

more than 59 characters will end after the
next space, fraction bar, or comma, or before
the next plus sign, or after 72 characters,
whichever comes first. Lines are thus usually
ended at a natural break.

Format A is for text, and involves only ma-
terial written in the symbol sections of constit-
uents . When material is transmitted between
the workspace and the input or output channels
under the direction of an abbreviation in the
routing calling for format A, a special trans-
literation takes place. The purpose of this
transliteration is to allow all of the characters
available on the input and output devices to be
used in the text. Since many of the available
characters have special meanings in the rule —
the plus sign separates constituents, the frac-
tion bar separates symbol from subscripts, and
so on — these must be represented in a differ-
ent manner when they are written in the symbol
part of a rule if ambiguities are to be eliminated.
Accordingly, format A uses the transliteration
scheme presented in figure 12.

Fig. 12. Format A transliteration table. When

the text characters of column one are
read in by an *RA abbreviation, they
appear in the workspace as in column
two. When the characters of column
two are written out by an *WA abbrev-
iation, they appear in the output as in
column three.

Note that the characters available for use in
symbols consist of the letters, period, comma,

A Programming Language 35

and hyphen, and an asterisk followed by any
character but space.

The first column of figure 12 lists all of the
characters available on the printer and card
punch. The second column shows how these
characters appear in the workspace after they
have been brought in by an input operation cal-
ling for format A. Note that the letters, period
and comma are brought in unchanged, the space
becomes a hyphen in the workspace, and all
other input characters are prefixed by an aster-
isk in the workspace. The end of line symbol *.
is brought in after the last non-space character
on the card.

The second column also lists all possible
characters that can be written unambiguously
in symbols in a rule. Some of the characters
are single and some are double, consisting of
an asterisk followed by another character.
(An *E expand abbreviation written in the
routing does not insert a plus sign between the
asterisk and the other character of a double
character.)

The third column of figure 12 shows how the
characters of the second column will be printed
after a write abbreviation calling for format A
has been executed. The hyphen is written as a
space, *. is interpreted as end of line, or car-
riage return, all other characters are un-
changed except that the asterisk is removed
from the double characters. Since the printer
can print a maximum of 120 characters in a
line, the computer will automatically end a line
after 120 characters have been written if the *.
abbreviation has not ended it sooner.

When the computer executes a rule with an
abbreviation in the routing section that calls
for reading in format A from a designated
channel, the next character is brought in from
the input, transliterated, and entered into the
workspace in place of the designated constitu-
ent. For example, *RAB2 would cause the
computer to read in format A the next charac-
ter from channel B and send it to the workspace
where it will replace the number two constituent.

When the computer executes a rule with an
abbreviation in the routing section that calls
for writing in format A, the symbols from the
designated numbered constituents in the work-
space are assembled into a long symbol, trans-
literated, and written in the designated channel.
For example, *WAM1 2 4 would cause the com-
puter to write in format A in channel M the
symbols from the number one, two, and four
constituents in the workspace. The workspace
remains unchanged in this process.

The input and output abbreviations used in the
routing section of a rule start with an asterisk
followed by R or W for read or write, then
there follows a letter designating format A or
S, then a letter designating a channel, usually
A, B, or C (or M in the case of a write abbre-
viation only) and finally one number in the case
of a read abbreviation and one or more num-
bers in the case of a write abbreviation desig-
nating the numbered constituents in the work-
space that are involved. Examples have been
given in previous paragraphs.

Summary

This notational system is convenient and well
adapted to a large class of problems including
language translation and formal algebraic ma-
nipulation. The computer automatically con-
verts programs in this notation into actual com-
puter programs. Programs are written in the
notation as a series of rules, each of which may
have five parts, the name, the left half, the
right half, the routing, and the go-to.

An arbitrary rule name may be written in the
name section of each rule. In the go-to is writ-
ten the name of the next rule to be executed.

The material to be operated on exists in the
computer as a series of constituents in the
workspace. The function of the left half is to
indicate which constituents are to be operated
on by the computer. This is done by writing
in the left half only enough about the constitu-
ents or their context to uniquely identify them.
In this way, the same rule can be made to apply
in a variety of situations that are the same in
certain respects. There is a convenient way of
locating two or more constituents in the work-
space that match each other in a certain way
without having to know what the way is in which
they match.

If the constituents indicated in the left half
cannot be found in the workspace, control goes
to the next rule instead of to the rule mentioned
in the go-to. This is one type of program
branch.

The function of the right half is to indicate
what operations are to be performed on the
constituents found by the left half. It is possible
to add, delete, and rearrange constituents. It
is also possible to add subscripts to any con-
stituents, and to rearrange, delete, and calcu-
late with them. There are two kinds of sub-
scripts, numerical subscripts that can be used
for counting and simple arithmetic operations,
and logical subscripts that can conveniently be
used for logical calculations. Both types of

36 V. H. Yngve

subscripts may be used in the left half to help
indicate the material to be operated on. They
can thus enter into the condition for a program
branch. Logical subscripts can in addition be
sent to the dispatcher where, as dispatcher
entries, they become effective in controlling
n-way program branches. Each dispatcher en-
try controls which of several subrules is to be
carried out in a given rule.

A third type of program branch is provided
by the facility for looking up material from the
workspace in a list expressed as a series of
list rules. This facility can be used for dic-
tionaries. The computer will automatically al-
phabetize all material in lists to facilitate the
look-up operation.

The function of the routing section is to con-
trol input and output operations, to control flow
of information to and from the dispatcher, to
control list look-up operations, and to bring
several constituents together into one constitu-
ent, or separate a constituent into several con-
stituents, one for each character.

Input and output facilities provide the max-
imum of convenience for the user. In addition,
the system has a number of checks built in that
will help the programmer find any mistakes he
may make in writing his program.

How to Read a Rule in COMIT
The purpose of this section is to present a

summary of the various conventions used for
reading a rule of COMIT in English. The
readings are, of course, purely mnemonic, for
they cannot describe completely what the com-
puter does when it executes the rule.

The various abbreviations used in a rule are
tabulated in figure 13. Some abbreviations
have several different English readings depend-
ing on what part of the rule they are in. When
this is the case, a note has been inserted in
the table to give an indication of the contexts in
which the abbreviation should be given the
various readings.

In addition to the English readings associated
with the abbreviations, there are conventional
wordings that are not associated with any par-
ticular abbreviations, but instead with certain
positions in the various sections and parts of
the rule. In order to summarize these conven-
tional wordings, figure 14 presents a sample
rule and its complete reading. The wordings
that are associated with the format are pro-
vided with an explanatory note giving the cir-
cumstances under which they are used. Fig. 13. Abbreviations used in COMIT and

their English readings.

A Programming Language 37

Fig. 14. Conventional wordings that are associated with the format of a rule. The left hand
column names the various sections and parts of the sample rule with which the word-
ings of the last column are associated.

38 V. H. Yngve

How to Write a Rule in COMIT
The purpose of this section is to present the

conventions that must be adhered to when writ-
ing a COMIT rule.
General: The left hand 72 columns of the
punched card are available for writing COMIT
rules. The other 8 columns can be used for
numbering the cards if so desired. If a rule
requires more than 72 columns to write, a hy-
phen may be used at the end of one card and the
rule continued on the next card in any column.
To indicate a space between the hyphenated
parts of the rule, leave a space before the
hyphen.

Comments enclosed in parentheses are inter-
preted by the computer as spaces. No paren-
theses may be included within a comment. A
comment continued onto the next card should be
hyphenated.
Name section: The first subrule of a rule has
a rule name starting in column one. A rule
that is never referred to by name in a go-to or
in the dispatcher may have an asterisk in col-
umn one instead of a name.

All subrules of a rule with more than one sub-
rule have a subrule name. The subrule name is
separated from the rule name by one or more
spaces, otherwise it starts in any column after
the first. A rule can have a maximum of 36
subrules. If there are several rules with the
same rule name, they must have identical sets
of subrule names.

The first rule of a list has a hyphen in column
one followed by the list name. The rest of the
rules in a list have nothing in the name section.

A name consists of 12 or fewer consecutive
characters. The characters available are the
letters of the alphabet, the numbers, and the
period and hyphen in medial position, that is
not at the beginning or end of the name.
Left half: The first subrule of a rule carries
the left half if there is one. All list rules have
a left half and only one subrule. The left half
is separated from the name by one or more
spaces, otherwise it starts in any column after
the first.

When the left half could be confused with a
subrule name, it should be followed by an equal

Fig. 15. A tabulation of all the types of subscripts allowed in the left and the right halves of rules.

A Programming Language 39

sign to resolve the ambiguity. The possible am-
biguity is between a left half consisting of a
sym-
bol with no subscripts in a rule with no subrule
name or right half, and the subrule name of a
first subrule with no left or right half.

The left half consists of one or more con-
stituents separated by plus signs and optional
spaces. A constituent may be a symbol or $1
with or without subscripts, or it may be a def-
inite or indefinite dollar sign without subscripts,
or it may be a number, without subscripts, re-
ferring to a numbered constituent already found
in the workspace.

The left half of a list rule consists of a single
constituent composed of a symbol only.

A symbol is any uninterrupted sequence of
characters. A character in a symbol may be
a letter; period, comma, or hyphen, or an
asterisk followed by any character except space.
These latter double characters are treated as
single characters by the *E abbreviation. The
characters have been summarized in figure 12.

If a constituent has subscripts, these follow
the symbol and are separated from it by a
fraction bar and optional spaces. Subscripts
are separated from each other by commas and
optional spaces.

A logical subscript has a subscript name writ-
ten like a rule name. If it has values, these
have the form of subrule names and are sepa-
rated from it and from each other by one or
more spaces. A logical subscript need not re-
fer to a rule name, but if it does, its Values
are restricted to the subrule names of that
rule.

The types of logical and numerical subscript
expressions available for use in the left half are
tabulated in figure 15 and indicated by an L.
The table also gives an indication of the mean-
ing of the subscripts and how the logical sub-
script values are stored in the computer in
terms of zeros and ones.
Right half: Any rule that has a left half may
have right halves in its subrules. Each right
half is marked by a preceding equal sign and
optional spaces.

The right half consists of one or more con-
stituents separated by plus signs and optional
spaces. A constituent in the right half may be
a symbol with or without subscripts, or it may
be a number, with or without subscripts, refer-
ring to a numbered constituent in the workspace.
The types of logical and numerical subscripts
available for use in the right half are also
listed in figure 15, and indicated by an R.

Routing section: The routing section, if writ-
ten, is preceded by two fraction bars and op-
tional spaces. In the routing section, dispatcher
entries may be written in the same way that sub-
scripts and values are written in the right half.
In addition the input abbreviations *RAA,
*RAB,
etc., and *RSA, *RSB, etc. may be written
followed by a number designating one numbered
constituent in the workspace. The output ab-
breviations *WAA, *WAB, etc., and *WSA,
*WSB, etc. may be followed by one or more
numbers referring in any order to numbered
constituents in the workspace. The *L, *K,
and *E may be written followed by one or more
numbers referring to consecutively numbered
constituents in the workspace. The numbers
are separated by one or more spaces. Separate
entries in the routing section are separated
by commas and one or more spaces. Only one
*L, *K, or *E abbreviation may be written in
any rule, and it must be the last thing written
in the routing section.
Go-to: In the go-to is written either the name
of the rule or list that is to be executed next,
or an asterisk signifying that the next rule in
sequence is to be executed next. The go-to is
separated from the rest of the rule by one or
more spaces.

The author wishes to express his appreciation
to S. F. Best, F. C. Helwig, G. H. Matthews,
A. Siegel, and M. R. Weinstein for their many
helpful criticisms and suggestions.

Appendix

Some Sample Programs

We now present a few simple programs writ-
ten in COMIT. These programs have been
chosen for their illustrative and pedagogical
value. In order to see how the computer car-
ries out these programs, the reader may have
to keep track of the contents of the workspace
and dispatcher on a separate piece of paper
while going through the programs.

The first seven examples show how some
simple operations on text can be carried out.
The first one will bring 25 characters of text
into the workspace from the input. The remain-
ing six will insert position markers in various
places between the characters in the workspace
or make various substitutions or order changes.
The position markers must be chosen in such a
way that they will not be confused with other
constituents.

40 V. H. Yngve

The ninth example is a simple word-for-
word translation routine. The text is brought
in a character at a time, and each character is
looked up in a list to see if it is a letter or
mark of punctuation. Each continuous string of
letters between punctuation marks or spaces
is looked up in the dictionary. The punctuation
marks and spaces are carried over into the out-

put text unchanged. Any word that is not found
in the dictionary is printed in its original form
and enclosed in parentheses. Alternative mean-
ings are separated by fraction bars. An output
line is printed as soon as a word is translated
that makes the line exceed 55 characters in
length. A slight additional complication would
be needed to prevent a line from starting with

A Programming Language 41

a space or mark of punctuation, and to allow
for the hyphenation of long words at the end of
the line.

The eighth example illustrates another class
of problems that COMIT is convenient for, that

is, problems of an algebraic or manipulational
nature.

Readers who would like to use the COMIT
system should correspond with the author for
further details.

43

Bibliography

Martin H. Weik 135
A Minimum "Ones" Binary Code for English
Text
Ballistic Research Laboratories, Technical
Note No. 1215, September 1958

A binary numerical code for alphabetic letters
is proposed wherein the number of ones occur-
ring in the binary number varies inversely with
the frequency of occurrence of its correspond-
ing letter in English texts. The ratio of holes
to total bit locations in punched cards or tape
for data storage is then c. 3 to 10. This code
is recommended for savings in power, wear,
and trouble shooting in punching equipment.

G. H. Matthews

136
T.N. Moloshnaya, V.A. Purto, I.I. Revzin and
V.Yu. Rozentsveyg
Certain Linguistic Problems in Machine
Translation
Voprosy Yazykoznaniya, no.1, 1957, pp.107-113

This paper is a careful review of the mechanical
translation literature together with a discussion
of the various requirements and features that a
successful mechanical translation program must
have.

V. H. Yngve

Erwin Reifler 137
Some New Terminology
Mechanical Translation, vol. 4, no. 3, pp. 52-53

MT research requires cooperation between en-
gineers and linguists. It is important, there-
fore, to develop a uniform linguistic terminology
that can be understood and used by engineers.
Furthermore, it is necessary that linguists de-
velop an understanding of the engineering prob-
lems involved. The results of cooperation be-
tween linguists and engineers working with the
MT Pilot Model at the University of Washington
are presented here.

Author

B. Zacharov 138
A Refinement in Coding the Russian Cyrillic
Alphabet
Mechanical Translation, vol. 4, no. 3, pp. 76-78

By reducing the number of characters to be
coded the problem of devising a numerical code
for the Cyrillic alphabet can be simplified.
This reduction can be achieved by providing
code-words for only the lower-case forms of
characters that do not occur initially; by dis-
regarding the diacritic of the character ё,
and by disregarding the character ё entirely.
Ambiguities that arise in the latter cases can
be resolved by an examination of the context.

Author

V. H. Yngve 139
A Framework for Syntactic Translation
Mechanical Translation, vol.4, no. 3, pp. 59-65

Adequate mechanical translation can be based
only on adequate structural descriptions of the
languages involved and on an adequate state-
ment of equivalences. Translation is conceived
of as a three-step process: recognition of the
structure of the incoming text in terms of a
structural specifier; transfer of this specifier
into a structural specifier in the other lan-
guage; and construction to order of the output
text specified.

Author

Kenneth E. Harper 140
Contextual Analysis
Mechanical Translation, vol. 4, no. 3, pp. 70-75

Ambiguity, both syntactic and semantic, a prob-
lem that arises in the translation of Russian to
English because of polysemantic forms in Rus-
sian, can be resolved by an analysis of the con-
text in which the polysemantic form occurs.
This requires a systematic study of context so
that word classes which determine the value of
ambiguous forms can be established.

Author

Bibliography 45

A. Koutsoudas and A. Halpin 141
Research in Machine Translation: II, "Russian
Physics Vocabulary, with Frequency Count"
(Project MICHIGAN, No. 2144-312-T)

This report contains an alphabetized list of
words, with frequencies, occurring in a Russian
physics text of 73, 364 running words taken
from the Zhurnal Eksperimental'noy i Teore-
ticheskoy Fiziki. The first volume in which the
words are alphabetized from left to right pro-
vides a basic breakdown of language data for
general research and a compilation of frequen-
cies to be used in examining the problem of dic-
tionary arrangement. The second volume in
which the words are alphabetized from right to
left provides raw data for a morphological anal-
ysis of compound words and derivational and
inflectional suffixes.

J. R. Applegate

142
Tezisy Konferencii po Mashinnomu Perevodu
printed by the Ministerstvo Vyshego Obrazo-
vanija SSSR, 1-i Moskovskii gosudarstvennyi-
pedagogicheskii institut inostrannyh jazykov,
1958

This is a collection of abstracts of the papers
presented at the Conference on Mechanical
Translation, which was held in Moscow, May
15-21, 1958. Some seventy papers were pre-
sented by most of the Soviet linguists and com-
puter experts who have worked with MT. The
problems discussed range from linguistic the-
ory to algorithms for mechanical translation
from particular languages.

V. H. Yngve

Ilse Lehiste 143
Order of Subject and Predicate in Scientific
Russian
Mechanical Translation, vol.4, no. 3, pp. 66-67

A study by Kenneth E. Harper indicates that
word order in Russian scientific writing is suf-
ficiently similar to that of English to permit
word-for-word translation from Russian to Eng-
lish. Further study of Russian texts shows that
word order in scientific Russian is sufficiently
different to require analysis, for translation
purposes, based on form and function rather
than on word-for-word correspondence.

Author

David L. Johnson and Robert E. Wall 144
Logical Processing and Context Analysis in
Mechanical Translation
The Trend, vol. 10, no. 3, July 1958

This paper is a description of the work in the
mechanical translation of general technical
literature from Russian to English that is be-
ing done at the University of Washington. The
work, in many respects, has followed the fa-
miliar research and development pattern; the-
oretical development has been followed to a
certain point, the method is automatized and
tested, then analysis of results yields further
advances upon the theory. The article includes
a summary of general problems and more de-
tailed sections on the specific problems of dic-
tionary storage, logical processing and the
economics of mechanical translation.

J. R. Applegate

145
H. P. Edmundson, D. G. Hays, R. I. Sutton
Studies in Machine Translation— 3: Resume of
Machine Codes and Card Formats
The RAND Corporation, Santa Monica, Calif.,
ASTIA Document Number AD 156048 (Aug. 1958)

This is the third in a series of studies on ma-
chine translation issued by The RAND Corpo-
ration. In it a detailed description of punched-
card formats and codes designed to facilitate
the processing of language data in computers is
presented. The formats and the special codes
described are those in use at The RAND Cor-
poration for research on the machine translation
of scientific texts from Russian to English.

J. R. Applegate

D. Yu. Panov 146
Avtomaticheskii Perevod
Second Edition, Moscow, 1958 (71 pages)

The book presents a general description of the
work of the mechanical translation groups of the
Academy of Sciences, USSR, and the more gen-
eral problems which arose. Although most of
the text treats English-Russian translation,
some mention is made of progress in translat-
ing from languages of the Far East. There are
chapters dealing with the utilization of comput-
ers in mechanical translation, the compilation
of the automatic dictionary, and programming.

E. S. Klima

Bibliography 47

I. K. Belskaja 147
Machine Translation of Languages
Research, vol. 10, no. 10, October 1957
pp. 383-389 (Butterworths, London)

The paper gives a general outline of the
achievements of the mechanical translation re-
search group of the U.S.S.R. Academy of
Sciences. A brief account of earlier experi-
ments in mechanical translation is presented
as well as a summary review of some earlier
notions about translation in general. In exam-
ples of translation into Russian of English, Ja-
panese, and Chinese material, the paper de-
scribes current solutions to problems like that
of selecting items for the dictionary and coping
with relative and contextual meaning.

E. S. Klima

J. P. Cleave 148
A Type of Program for Mechanical Translation
Mechanical Translation, vol. 4, no. 3, pp. 54-58

A program for the mechanical translation of a
limited French vocabulary into English was con-
structed for operation on the computer APEXC.
Its principal features were an improved routine
for dictionary look-up, and an organization per-
mitting systematic incorporation of additional
subroutines. A program for syntactic proces-
sing was constructed but was too large for the
available storage space. It examined preceding
and following items — stems or endings — in
order to choose correct equivalents, and used a
dictionary of syntactic sequences or structures
to effect local word-order change.

Author

Erhard Agricola 149
Elektronische Analyse und Synthese in der
Sprachwissenschaft
Forschungen und Fortschritte, Band 32,
Heft 3, März 1958, Akademie-Verlag, Berlin

In the course of the paper the following areas
are discussed:
1) the way electronic computers designed for
mechanical translation operate,
2) the form in which the material must be en-
tered into the computer,
3) the type of linguistic operations which com-
puters can handle,
4) the nature of the refinement, methodological
and practical, which may accrue to linguistics
through mechanical translation research.

E. S. Klima

Kenneth E. Harper 150
Semantic Ambiguity
Mechanical Translation, vol. 4, no. 3, pp. 68-69

The extent of the problem of multiple meaning
in translation is illustrated in this analysis of a
sample page of Russian scientific text. The use
of an idioglossary represents only a partial so-
lution to the problem.

Author

151
Andreas Koutsoudas and Assya Humecky
Ambiguity of Syntactic Function Resolved by
Linear Context
Word, vol. 13, no. 3, Dec. 1957, pp. 403-414

This is a discussion of the problems involved
in formulating instructions that will enable an
electronic computer to identify the Russian -o/
-e/-ee suffixed adverb, short-form adjective
or participle in its respective function as either
an adverbial modifier or a predicate adjective,
and to supply its correct English equivalent.
A set of instructions is given which will recog-
nize and translate correctly the 686 occurrences
that Occur in the sample text of 31, 000 running
words of Russian scientific text taken from
Zhurnal Eksperimental'noj i Teoreticeskoj
Fiziki, vol. 28, no. 1, pp. 1-128, 1955.

G. H. Matthews

152
D. Yu. Panov, A. Ljapunov, I. S. Mukhin
Avtomatizacija Perevoda S Odnogo Jazyka na
Drugoi
Akademija Nauk SSSR, Moskva, 1956

Some of the earlier work done by the Russian
group on mechanical translation is presented
in this general discussion of machine transla-
tion. The differences in translating literary
vs. scientific texts are considered. The basic
principles of the work done on French-Russian
and English-Russian translations are outlined
and the problems encountered in this work are
defined. Examples of programming for certain
words are given (English noun, Russian verb,
german noun and one Japanese word). The im-
portance of the linguistic end of the problem is
stressed.

E. S. Klima

