
[Proceedings of the Ninth International Congress of Linguists, Cambridge, Mass., August 27-31,
1962 (The Hague: Mouton, 1964)]

THE IMPACT OF LANGUAGE DATA PROCESSING
ON LINGUISTIC ANALYSIS

PAUL L. GARVIN

A number of linguists have in recent years become increasingly involved in language
data processing activities. The purpose of this paper is to assess the effect of this
new area of interest on the field of descriptive linguistics.1

From a linguistic standpoint, language data processing can reasonably be defined
as the application of data processing equipment to natural language text. Of greatest
interest is of course the application of computing machinery.

Language data processing can either serve linguistic ends, as in automatic linguistic
analysis, or more practical ends, as in the fields of machine translation, information
retrieval, automatic abstracting, and related activities. The latter can be summarized
under the heading of linguistic information processing.

All areas of linguistic information processing are concerned with the treatment
of the content, rather than merely the form, of documents composed in a natural
language. This emphasis on content constitutes one of the major differences between
this aspect of language data processing and the field of descriptive linguistics as
presently constituted, where the main emphasis is on linguistic form (although more
recently, descriptive linguists have become increasingly interested in problems of
meaning.).

Within the field of linguistic information processing, a major division can, from
a linguist’s standpoint, be made between on the one hand machine translation and on
the other hand information retrieval, automatic abstracting, and related activities.
This division is based primarily on the manner in which the particular activity is
concerned with the treatment of the content of the document. In machine translation,
the major objective is one of recognizing the content of a document in order to render
it in a different language. In the other activities, for which I have proposed the cover
term content processing, recognition of the content is only the first step. More than
simple rendition is required; the content of the document has to be processed further
for some such purpose as the inclusion of its entirety or portions of it under index
terms, or the retention of certain portions and rejection of others in order to create an
extract or abstract. Content processing thus involves not only the recognition but

1 Work on this paper was done under the sponsorship of the AF Office of Scientific Research of
the Office of Aerospace Research, under Contract No. AF 49(638)-1128.

 LANGUAGE DATA PROCESSING AND LINGUISTIC ANALYSIS 707

also the evaluation of content, since for both indexing and abstracting, pertinent
relevance judgments have to be applied.

There are two areas of language data processing in which linguistic work has
found serious application in fact as well as in theory. These are automatic linguistic
analysis and machine translation. While automatic linguistic analysis is as yet still in
the planning stage, some of the proposed approaches are set forth in sufficient detail
to deserve discussion. Machine translation has progressed beyond the planning stage
some time ago, though it is still far from being fully operational. In other areas of
language data processing, linguistic contributions are as yet so ill-defined that their
discussion from the viewpoint of this paper is premature.

In assessing the impact of language data processing on linguistics, the empirical
principle as stated by Hjelmslev2 provides three generally acceptable evaluation cri-
teria by its stipulation of the requirements of consistency, exhaustiveness, and sim-
plicity. It is the contention of this paper that language data processing has served to
pinpoint the difficulties that are encountered in carrying out what everybody agrees on
as a desirable goal: a maximally consistent, exhaustive, and simple linguistic descrip-
tion.

This is most evident in the case of consistency. In data processing, inconsistency
is not merely undesirable, it carries a severe penalty: it is almost trivial to make
the point that a computer program just will not run unless the set of instructions is
consistent within itself. The linguistic information underlying the program must ob-
viously be equally consistent. The avoidance of inconsistency therefore becomes an
overriding operational objective. The means of meeting this objective is explicitness,
since this is the mechanism by which inconsistencies are uncovered for correction.

Language data processing applications require the formulation of linguistic in-
formation with a degree of explicitness that is often not met in ordinary linguistic
discourse. I should like to exemplify this from the area of automatic linguistic analysis.

One of the basic assumptions of my conception of automatic linguistic analysis is
that linguistic techniques can be made computable. Let me here discuss the difference
in explicitness between the verbal statement of a technique and its formulation for
purposes of automation.

A technique which I have found extremely useful in the syntactic analysis of an
exotic language is the dropping test, serving as an operational means of ascertaining
the presence of a relation of occurrence dependence (one in which a unit A presup-
poses a unit B for its occurrence). At the Congress in Oslo, I defined this test as fol-
lows:

The procedure is what I have called dropping: that is, in an utterance containing both A
and B (or both A, B, and C), omit one of the units and inspect the resultant truncated
utterance.
 For occurrence dependence, the dropping test will work as follows: A is dependent on

2 See Louis Hjelmslev, Prolegomena to a Theory of Language, Francis Whitfield transl. (Baltimore,
1953), p. 6.

708 PAUL L. GARVIN

B in an utterance containing both, if an otherwise identical utterance, but from which A
is dropped, is also occurrent in the text, or is accepted by the informant as viable. B is
dependent on A if the utterance from which A is dropped is non-occurrent in the text, or
is not accepted by the informant as viable.3

For the purposes of the linguistic analyst, “utterance” can be accepted as a common-
sense behavioral unit, it can be assumed that units A and B will have been previously
specified by some linguistic method, and the statements “occurrent in the text”
and “accepted by the informant as viable” seem to be adequate enough descriptions
of the conditions for the positive or negative result of the dropping test.

For purposes of automatic linguistic analysis (even though at present only the
processing of text but not the computer simulation of informant work can be en-
visioned) all of the above factors have to be specified in considerably more detail in
order to formulate a computer subroutine simulating the dropping test:

The dropping test can be simulated by an essentially cumbersome series of comparisons
(which ... can be simplified, once certain conditions are met). For each comparison, the
[computer] routines will have to identify a pair of unequally long strings of elements, such
that the longer of the two strings contains all the elements of the shorter one, plus one
additional element. The one element present in the longer string and absent in the shorter
one can be said to be ‘droppable’ from the longer one, if both strings have been found to
recur in the text sufficiently frequently to allow the assumption that the difference in their
length is not due to chance. For every identified longer string, the droppability of each
element will have to be tested by finding an appropriate shorter string. Those elements for
which shorter strings are not found in the input text can then be assumed not to be drop-
pable, provided enough recurrences have been found so the that absence of a particular
shorter string is not attributable to chance. In order to allow for the necessary recurrence,
[an extremely] large input text would ... be required. ...

For a dropping routine to operate within the logically prescribed restrictions - that is,
without an initial dictionary or grammar code - each trial would have to compare every
string of n elements present in the input text to all appropriate strings of n ̶ 1 elements.
A series of passes could be envisioned, with the value of n increasing for each pass from a
minimum of 2 for the first pass to the maximum found in the text, for the last pass. As-
suming a punctuated text, this maximum value of n could be made very much smaller than
the total number of elements in the entire text by requiring that no string be allowed to
contain a period or other final punctuation mark - this would restrict the permissible length
of a string to the span between two such punctuation marks, or between one such mark
on one side, and the beginning or end of the entire text on the other. That is, the maximum
permissible length of a string would be that of the longest sentence in the text.

The reverse procedure, in which the program first ascertains the maximum value for n
and then decreases it with each pass, is equally thinkable.

Either procedure for applying the dropping test, to be carried to its logical conclusion,
seems to require a program of quite unmanageable proportions.4

3 Paul L. Garvin, “Syntactic Units and Operations”, Proc. VIII Internat. Congress of Linguists
(Oslo, 1957), p. 629. -
4 Paul L. Garvin, “Automatic Linguistic Analysis - A Heuristic Problem”, 1961 Internat. Conf.
on Machine Translation of Languages and Applied Language Analysis, National Physical Laboratory,
Symposium No. 13 (London, Her Majesty’s Stationery Office, 1962), p. 663.

 LANGUAGE DATA PROCESSING AND LINGUISTIC ANALYSIS 709

Let me now compare the above description of the dropping subroutine for automatic
linguistic analysis to the dropping test as practiced in linguistic field work.

The first observation that can be made is that the computer simulation of the test
reduces itself to a series of comparisons of strings of unequal length. Next, it may
be observed that the units to be tested for droppability are in both instances either
observationally given or defined by prior procedure. In the case of automatic lin-
guistic analysis, the units dealt with are simply printed English words which by virtue
of being “observable” to the input mechanism become the proper units for processing
by the program. The most significant difference between the test as used in field
work and its automation lies, however, in the practice of the linguistic investigator
of selecting particular utterances and particular units within these utterances as the
objects upon which to perform the behavioral test. In the computer subroutine as
described above, this is clearly not possible, and hence its execution would result in a
computer run of quite unmanageable proportions. It is, in other words, necessary
to explicitate not only the conditions of the test itself, but also to explicitate the set of
conditions under which the test becomes capable of execution. In my plan for auto-
matic linguistic analysis, I have attempted to do this by deferring the use of dropping
routines in the analysis program to a stage in the process at which the conditions for
its application have been created by the use of subroutines based on other linguistic
techniques. In particular, I am proposing not to use dropping routines until after the
program has led to the specification of certain linguistic classes and to use the dropping
routines then to test for occurrence dependences of classes of words, which can be
expected to be quite finite in number, rather than for occurrence dependences of
individual words, the number of which can be expected to be unmanageably large.

The essential features of the dropping test, by virtue of which it is diagnostic of
a dependence relation, thus remain unaltered when the test is automated. Some
important attendant conditions, on the other hand, have to be adjusted to the con-
strains imposed by automation: firstly, form classes which in linguistic field work are
implicit in the systematic similarities of questions to informents and informant
responses, must be made explicit; secondly, field work allows the random access to
the readymade store of the informant’s memory, whereas in automatic linguistic
analysis the necessary store of accessible forms has to be prepared by previous
procedures.

Let me now turn to the questions of exhaustiveness and simplicity. I should like
to discuss these on the basis of some illustrations taken from machine translation.

First, the matter of exhaustiveness. This is one of the most difficult requirements
to define in linguistic analysis. I have commented on it in a previous context, and
at that time I stated that a significant consideration is whether or not the analyst is
dealing with classes of unrestricted or restricted membership.5 In the first case,
exhaustiveness can only be achieved by a listing of classes, since obviously a complete

5 Paul L. Garvin, “On the Relative Tractability of Morphological Data”, Word, 13 (1957), 22-3.

710 PAUL L. GARVIN

listing of an unlimited membership is self-contradictory. In the second case, a listing
of not only all classes but also of all members is possible. This is, however, a purely
theoretical definition of exhaustiveness. It does not touch upon the heart of the
matter, which is the extent to which exhaustiveness can be achieved, or must be
achieved, in a particular task of linguistic analysis and how the requirement can be
met in practice. In machine translation, the program as was stated further above is
to a significant extent based upon a linguistic description of the source language.
Since the aim of machine translation research is to produce ultimately a program that
will be capable of dealing with randomly selected text, the question of exhaustiveness is
of extreme practical importance and has to be faced from the beginning. There are
two areas in which the problem of exhaustiveness arises: first, the lexicon, where in
machine translation the problem concerns the machine dictionary; second, the gram-
matical description of the language, where in machine translation the grammar code
and the syntax routines of the translation algorithm are involved. The field has not
yet progressed sufficiently to allow the inclusion of problems of semantic equivalence
and multiple-meaning resolution in the present discussion.6

Operationally, the problem is that the research has to be conducted, and the system
developed, in stages. This remains equally true if the point of view is adopted that
a complete linguistic description must precede the development of a machine trans-
lation system; such a prior complete description must still be prepared gradually.
In either case, research in stages means dealing with one linguistic problem area at
a time, without violating the requirement of exhaustiveness. The planning of the
research stages thus becomes the primary question.

The details of planning for exhaustiveness involve the following:
In machine translation research, it is not possible to use the convenient scholarly

device of the “et cetera”, or of suggesting, “If this technique is carried further, it
will then allow the treatment of the rest of the data.”7 The computer will not accept
this kind of instruction. It is therefore necessary to make other provisions for exhaus-
tiveness in spite of the limited scope of the dictionary and syntax program that the
realities permit at any one given stage before the final aim has been achieved.

In regard to the machine dictionary, the question of exhaustiveness as to the number
of dictionary entries is not of great theoretical interest, since it differs very little from
the problem of exhaustiveness faced by lexicography in general. The only problem
faced by machine translation researchers is that of having efficient procedures for
6 Don R. Swanson, “The Nature of Multiple Meaning”, Proceedings of the National Symposium
on Machine Translation. H. P. Edmundson, ed. (Englewood Cliffs, N. J., 1961), p. 386: “Now that
the stage has been set in previous discussion by the picturing of polysemia as a ‘monster’ or a ‘blank
wall’, let me say that there isn’t a great deal more to be said about multiple meaning that isn’t either
obvious or else wrong. ...”
7 Cf. George L. Trager and Henry Lee Smith, Jr., Outline of English Structure (= Studies in
Linguistics, Occasional Papers No. 3) (Norman, Okla., 1951), p. 55: “A full presentation would
[include a complete description of phonemics, morphophonemics, morphology, and syntax]...
No such full grammar is attempted here. The purpose is to present enough material for discussion
to illustrate the procedures and techniques involved.”

 LANGUAGE DATA PROCESSING AND LINGUISTIC ANALYSIS 711

dictionary updating, and this problem has been solved satisfactorily by most groups.
The question of making provisions for exhaustiveness in the actual translation

algorithm is much more interesting. It must first be noted that there are essentially
two technical aspects to every computer program: first, a table-lookup procedure, in
which the program looks up information in a table for use in later processing; second,
a logical-tree-type algorithm, in which the program goes through a series of yes-no
decisions (often based on information looked up in a table), in order to arrive at an
appropriate end result. Provisions for exhaustiveness here consist essentially in
writing a program that allows room for later additions as more information becomes
known and can be included. The “et cetera” is replaced by a more explicit device.
In the tables of a program, provisions for the addition of further information are made
by leaving sufficient blank fields, that is, spaces to be taken up by later instructions
and information. An important consideration in the design of the program then
becomes the size of these fields that are to be left blank for later use. In a logical-tree-
type algorithm, provisions for later additions can be made by building into the algo-
rithm end points to which further branches can be added by which to treat information
that may later turn out to be of importance. Thus, the linguist’s statement that
“additional data can be handled by the same technique” is replaced by an open-ended
exit in the program.

In the machine translation program with which our department is operating, this
can be exemplified by the blank fields that are contained in our grammar code for the
addition of grammatical information for which we have planned, but which we have
not yet been able to pin down sufficiently to include in the in the program. The
open-ended exits are exemplified by the provisions of our syntax program to print out
under certain conditions “notices of syntactic difficulty” whenever the algorithm for
coping with such a difficulty has not yet been written.

Now to consider the matter of simplicity. I have on a previous occasion pointed
out the difficulty inherent in a criterion of simplicity.8 At that time I raised the ques-
tion of defining simplicity more clearly by stipulating whether or not it is to be gauged
in terms of minimizing the inventory of units, or by minimizing the number of rules.
It seems to me now that the question cannot be answered in the abstract. It is impos-
sible to specify the simplicity of a sequence of procedural steps or of the logical
structure of a description in an objective way. It is too much a matter of esthetics.

It is not unreasonable, on the other hand, to attempt to specify simplicity in terms
of the attainment of a particular aim, such as efficiency in the use of equipment.
I should like to exemplify this by a brief discussion of the grammar code used in our
machine translation program.

The purpose of our grammar code is to provide all the grammatical information
that is required for the efficient operation of the syntax routines. One important task

8 Paul L. Garvin, review of Prolegomena to a Theory of Language by Louis Hjelmslev, in Language,
30(1954), 70.

712 PAUL L. GARVIN

of these routines is to carry out an agreement check, that is, to ascertain on the basis
of the grammar codes that have been furnished to the program whether or not
certain adjacent words are in grammatical agreement with each other, such as for
instance a noun and preceding adjectives. For purposes of maximum efficiency of
operation, we have devised a grammar code which takes up more space in the com-
puter memory but allows the rapid completion of agreement checks by a computer
operation similar to ordinary subtraction of one digit at a time, an operation called
“masking”. The drawback of this type of grammar code is that it takes up a con-
siderable amount of memory space. From the standpoint of storage, a grammar code
compressed into the minimum amount of space is obviously vastly preferable,

It turns out, therefore, that in this particular case the requirement of simplicity
has to be formulated quite differently in terms of the different purposes to which a
particular set of elements is put. For purposes of the operation of agreement checks,
a grammar code spread out over more space but allowing rapid completion of the
check, is the most efficient and consequently the simplest. For purposes of saving
memory space, the maximally condensed code is most efficient. It is thus possible
to formulate a requirement of simplicity - if one equates efficiency with simplicity -
quite clearly in terms of a particular purpose.9

The above discussion may explain why I have come to regard language data pro-
cessing a very important application of linguistics. It is a challenge to linguistics as a
science. The challenge is not theoretical, but operational - it is directed at both the
methods and the results of linguistics. The strong requirement of exhaustiveness
forces the treatment of minor subpatterns of a language, and not merely of its major
patterns.

By enforcing its requirements, the computer has become an analytical instrument
for linguistics, where previously only recording instruments were available. This may
have important theoretical implications.

Thompson Ramo Wooldridge Inc.
Los Angeles

9 We use both solutions in our machine translation program. We store the grammar code in its
condensed form, and we have a simple subroutine which transforms the condensed grammar code
into the spread-out grammar code for use in agreement checking.

