
[Proceedings of the National Symposium on Machine Translation, UCLA February 1960]

Session 10: PROGRAMMING

FLEXIBILITY VERSUS SPEED

A. F. R. Brown

Georgetown University

During the description of work in progress at Georgetown, I

briefly described the programming system used on French-to-English

translation, which has been christened the "simulated linguistic com-

puter". Though I would like to say a little more about it now, I did

not want this paper to appear too much like that report, and so I looked

around for something mildly controversial to say. Fortunately,

there is at least one person prominent in machine translation who feels

that a simulation system is bound to be bad, except in certain trivial

cases, because it wastes the computer's time in a most shameful

manner. At least one of my colleagues at Georgetown feels very much

the same way; or asks why, at least, some kind of compiler could not

turn the linguistic statements into a rationalized computer program in

advance of run time, rather than interpret them one by one at run

time. At the moment I believe that only an interpretive program can

offer the flexibility needed for a good translation system, and the

speed that such a method appears to lose was not really available in

the first place.

"Simulated linguistic computer" may be an over-ambitious name,

so I will reduce it to SLC, which can be taken to stand for anything at

all. At any rate, the SLC with a 32, 000-word memory on the IBM 704

begins each cycle of translation by reading about 2, 000 words of the

input text. This looks like a small batch to process with one reading

of the dictionary, but it means that no tape sorting or merging has to

be done, and the output from the dictionary lookup routine can be

stored in the upper half of the memory for the real translation program

to find and work on afterwards. The two programs, lookup and trans-

lation, alternately load themselves from the system tape once per

cycle, and the dictionary tape is read once per cycle. Program load-

ing consumes about 12 seconds, and reading the dictionary consumes

about 30 seconds per 10, 000 entries. But if the system uses an IBM

709 computer, for which the program is now being checked out, the

dictionary reading time covers almost all the computing done during

444

Session 10: PROGRAMMING

the lookup. A minor advantage of the small batch is that the system

can run with only 4 tapes: input, output, programs, and dictionary.

Indeed, the programs and the dictionary could be combined on a

single tape with no loss of speed.

The translation program handles the dictionary output one

sentence at a time, organizing the memory in such a way that two or

more of 128 "item locations" are occupied, and arranged in a ring-

shaped list structure. Naturally these locations have numbers for the

computer to use as their addresses, but they cannot be addressed by

number in the SLC system. After all, the fact that a word is number

10 in a sentence is usually not of much interest to a linguist. And

after a few rearrangements have been carried out, the linguist would

be lucky if he could say with certainty what numbered position the

word now occupied. The first word and the last word have important

locations, and can readily be found; and the linguist can move left-

ward or rightward, word by word, or move directly to some word

that he has previously identified structurally and flagged. So a single

command, in the macro-coding system, contains at least a macro-

operation code, two addresses for control transfer after execution,

and an indication of what item in the sentence is to be tested or

altered or moved. This indication is not in the form of a numerical

address for the item, but rather an indication of whether the item

previously current, or the item at which the operation began, or the

item next on the right or left of either of these, is to become current.

If the command requires constants of some kind for its execution, it

will also include the address of the first constant, and a count of the

number of constants to be used.

What may be called a "linguistic operation" is made up of a

group of these commands, with some of their necessary constants.

The operation is initiated by an instruction either taken from the

dictionary along with the rest of a word-entry, or supplied auto-

matically for every sentence. The most important operations are

held in core memory, and the less frequently used ones can be left

in the dictionary, accompanying the instructions that may initiate them.

So there is practically no limit to the number of linguistic operations

that can be coded into the system. Of course, the more material

there is in the dictionary, the longer it takes to read, and the slower

445

Session 10: PROGRAMMING

the system is, but I think dictionary reading will in fact prove to be

a rather small fraction of the over-all running time for the system

on the IBM 709, as it certainly is in the IBM 704 version.

In principle, then, the SLC system provides a linguist with

almost complete freedom in coding linguistic operations to meet

specific problems, and deciding in what order the operations should

be carried out. An operation can do something as trivial as transla-

ting a two-word idiom, or as fundamental as finding the subject and

predicate of a sentence. The latter function might actually have to

be coded as a series of integrated operations, because there is a

limit to the size of any one operation.

Now we come to the question of how much speed is sacrificed

by this kind of system, compared to an equivalent system coded

directly for the physical computer rather than for a hypothetical

simulated computer. This is hard to answer without doing the experi-

ment, and no-one will ever do that experiment. However, in the

existing IBM 704 program, about 500 linguistic commands per second

are executed; very roughly, the ratio is about 80 computer orders per

linguistic command. A command can be as simple as "go to the end

of the sentence" or as complicated as "go to the item next on the left

of the item where this operation began, and add the following English

equivalent which it already contains". On the whole, I did not think

the interpretive routines do much worse than double the number of

IBM 704 orders that have to be obeyed to do any particular job. When

the IBM 709 program is checked out, I hope the rate of simulation

will turn out to be 1, 000 or 1, 500 linguistic commands per second, be-

cause of the more powerful order code, as well as the avoidance of

many wasteful techniques in the original IBM 704 program. But this

will not affect the equal division of the running time between sub-

routines that accomplish things and interpretive routines that merely

make programming easier.

Is it worthwhile, then, to force the computer to waste half its

time during the translation phase of every cycle? I think it is certain-

ly worthwhile, as long as one is in the research stage of MT, and it

is at least arguable that for high-quality translation the waste of

computer time cannot be avoided until much bigger core memories

are available. In other words, the time may not be wasted at all. A

446

Session 10: PROGRAMMING

set of interpretive routines can make it possible to code operations

much more concisely, and so to fit an immensely complicated algori-

thm into core memory.

Consider the idioms in the French language involving the word

plus. In the SLC system it is possible to code one operation, con-

taining about 100 IBM 704 words, which handles most of them. The

operation can be self-contained; there it sits on two or three pages

of coding paper, instead of being scattered around in several levels

of the program. Even though the operation is self-contained, it can

be coded so that different parts of it are executed at different times

in the translation process. Each 36-bit word in the operation is a

test or an alternation of some linguistic feature in a sentence and, as

such, intelligible to a linguist with no programming experience.

One must admit that it saves the linguistic coder's time and effort to

have the details of the IBM 704 operation handled for him by an

interpretive routine that he need not think about. And as long as one

is in the phase of testing linguistic formulations, it certainly saves

computer time. An error in an IBM 704 program probably causes

the computer to hang up, and hunting for the error is then somewhere

between interesting and infuriating. An error in the SLC coding

probably causes no more than a worse translation; many kinds of mis-

coding can be detected and bypassed, and looping can be detected and

terminated automatically. But if the computer does hang up occasion-

ally, the operator merely transfers control to a routine that dumps

the offending sentence and begins normal processing of the next one.

If the switch for monitoring was on, there will be a complete record

of every step taken, and a post-mortem dump.

To defend the thesis that some kind of macro-programming and

simulation is probably essential, let me compare an MT system with,

for example, the FORTRAN system. With FORTRAN, the user can

program an elaborate calculation in a convenient language. But this

program will not be interpreted step by step while the calculation is

being done. Instead, the FORTRAN system will read the user's pro-

gram, understand it, so to speak, and convert it fairly intelligently

into a computer program that is not too much less efficient than what

a good programmer might have done without the aid of FORTRAN.

So here we have a convenient language for writing programs, and a

447

Session 10: PROGRAMMING

system for translating this language efficiently into computer instruc-

tions. Is this what we should aim for in machine translation pro-

gramming? No. Sentences in a natural language cannot properly be

compared with sets of data to be processed by a compiled FORTRAN

program. A much better analogy would be between a sentence in a

natural language and a program written in FORTRAN statements. A

short program in FORTRAN is, after all, an imperative sentence; it

would make a more complicated grammatical diagram than an English

sentence, but the rules for diagramming FORTRAN are simpler and

fewer than those needed for diagramming English sentences. If this

is a plausible analogy, then an MT system with an input of source

language sentences is in somewhat the same position as the FORTRAN

system with an input of programs in FORTRAN language, between 20

and 30 statements in each. And we do not expect the same kind of

speed from the FORTRAN compiler system that we expect from a

program which has been compiled by FORTRAN. Machine translation

of languages is a little like compiling FORTRAN programs into SAP

symbolic programs without ever assembling and running the SAP

programs.

Let me pursue another line of argument, based more particular-

ly on the kind of general attack on translation which the SLC was

designed to implement. In the SLC system, if there were no general

linguistic instructions supplied automatically with every sentence, and

if no entry in the dictionary contained any linguistic instructions, then

a word-for-word translation would be printed out immediately follow-

ing dictionary lookup. Everything after the word-for-word stage is

done by operations that are initiated by linguistic instructions. The

order in which these are executed, in any one sentence, is established

by examining the 9-bit priority number included in every instruction.

The program looks for the instruction with the lowest priority number

in the sentence, interprets it, deletes it from the sentence, and then

executes it. When all the instructions have been executed, they have

all been deleted, and when no instructions remain in the sentence,

the translation output begins.

It seems to me that this kind of procedure can be carried out

only by some kind of interpretive system. Until a sentence in the

source text is presented to the program, there is no way of knowing

448

Session 10: PROGRAMMING

what linguistic operations will have to be done for that sentence, or

in what order. So a compiler system would have to compile an effi-

cient program for each sentence individually. This would be like

tooling up a factory for mass production, making one automobile,

changing the model, tooling up for mass production again, making

one automobile, changing the model, and so on. An interpretive

program, or a simulator, is inefficient in the same way as building

automobiles by hand; but in the peculiar situation of machine transla-

tion it is probably the least inefficient method available.

A computer programmer thinks of simulation as being very

wasteful of machine time. This is true for, say, simulation of an

IBM 650 by an IBM 704. An "add" instruction in an IBM 650 program

would at most give rise to an "add" instruction in the corresponding

IBM 704 program, if the 650 program were translated into the 704

program by a human being or by a good compiler system. An inter-

pretive routine, on the other hand, would need five or ten 704 instruc-

tions to pick up the 650 instruction, look at it to see that it says "add",

see what memory location it refers to, add the content of that location

to the content of the pseudo-accumulator, and store the sum in the

pseudo-accumulator.

Obviously, a crude 704 program for simulating a 650 will run

5 or 10 times as slowly as a computer with the speed of the 704 and

the logic of the 650. Just so, a 704 simulating an imaginary linguistic

computer will run at least 20 times as slowly as the imaginary com-

puter would if its components were in the same class as those of the

704. But this is a meaningless objection today to the simulation

method. The 704 simulating the imaginary linguistic computer does

take 200 microseconds to achieve what a straight 704 program might

do in 100 microseconds, and it is this 2-to-l ratio that has to be justi-

fied, not the 20-to-l ratio which refers to a non-existent computer.

And it can be justified. What can be packed into 10, 000 words of

core storage in macro-coded operations could be recoded so that

every linguistic operation ran as fast as the 704 could possibly make

it run. The operations would now occupy 100, 000 or 200, 000 words

on a magnetic tape, and there goes the speed. Furthermore, check-

ing out these 100, 000 or 200, 000 words of 704 coding would be a

nightmare. Or could a selection of the 10, 000 words of macro-coded

449

Session 10: PROGRAMMING

operations be made at run time, and compiled into a faster 704 pro-

gram? Yes, but run time begins all over again each time a new

sentence in the source language is presented to the translation pro-

gram; and compiling for every sentence would take many times as

long as the running of the compiled programs.

The only other way of getting rid of the stigma that seems to

attach to simulation and interpretive methods is to compress the

translation system until it can be written as an efficient program for

a real computer, and fitted into that computer's core memory. At

least this means sacrificing flexibility for speed in what seems to

me an intolerable way. And as long as we aim at something like the

translations that human beings produce, I think it is hopeless to aim

at a translation algorithm which is that simple.

450

