
PRACTICAL EXPERIENCE OF MACHINE TRANSLATION
V. Lawson (ed.) 129
North-Holland Publishing Company / ©ASLIB, 1982

QUALITY CONTROL PROCEDURES IN MODIFICATION OF THE
AIR FORCE RUSSIAN-ENGLISH MT SYSTEM

Dale A. Bostad

Hq Foreign Technology Division
Air Force Systems Command
United States Air Force

The paper gives the background leading to the development
of current quality control procedures used in modification
of the Russian-English system. A special program showing
target language translation differences has become the
central control mechanism. Procedures for modification of
dictionaries, homographs and lexicals, and generalized
linguistic modules are discussed in detail. A final
assessment is made of the procedures and the quantitative
results that can be obtained when they are used.

The Air Force Russian-to-English MT system, operational since July, 1970, is an
immense software package that has translated about 500,000 pages of Russian text
to date. Through the years the system has been enhanced by the addition of new
routines and extensive modification of the dictionaries and linguistic modules.
These optimization efforts were of course subjected to some degree of quality
control at all stages. However, in this paper I intend to concentrate on the
quality control procedures currently used in the Russian system. They have
evolved in recent years as both the software developer, LATSEC, Inc., and the
user, the U.S. Air Force, gained insights into the system and realized the neces-
sity of developing new procedures for its modification. Because we are dealing
with a natural language translation system, these procedures have some unique
features; however, in the main they do not differ significantly from those used
in other software applications.

Another term often used for quality control is configuration control management.
It has been defined as the control of changes to established baselines.1 At
question is maintaining the integrity of a software system during its evolution.
Configuration control management, then, is the administrative structure for ini-
tiation, evaluation, and incorporation of changes into a system.

To understand how we arrived at our present position in terms of configuration
control management, it is necessary to review some aspects of the system and our
approach to modification a few years back.

A great deal is asked of the Russian system: accurate translation of random
Russian text in a wide range of technical fields with no pre-editing and only
limited interactive post-editing. Hence we rely heavily on the accuracy and
resolution capabilities of our linguistic software and it has been our long-
standing policy to improve the software as much as possible. And there has been
little doubt that the system could be improved. In a five year period the number
Of homograph subroutines doubled; during the same period of time stem entries
increased by about 30,000. New features were constantly being developed: new
routines, new parsing expressions, new macros, new codes. The system was in a
constant state of flux; it underwent rapid change as we attempted to address an
apparent infinitude of small and large problems that arose.

130 D.BOSTAD

There was substantial evidence that the system was being improved: readers of
the product often commented that they thought the product was better; the dic-
tionaries became so comprehensive that they were often used by experienced in-
house translators. There was also evidence from other sources. A study2 con-
ducted by Battelle Columbus Laboratories concluded that the carry-over effect of
concentrated dictionary update was 40% in related technical fields and that sig-
nificant improvements were obtained in the raw translation output. Yorick Wilks'
study3 showed that the carry-over effect of dictionary and program changes in a
different subject area, i.e., from scientific areas to social and political
topics, on balance was 20% net improvement.

But there was a growing concern that progress was not linear, that in fact, a
certain degree of degradation was occurring. Several events suggested this:
frequent linguistic abends after loading a new system; the subjective judgment of
post-editors that something that used to work in the system no longer operated
correctly; and the fact that certain acute errors were detected after system mod-
ification. One question became pressing: how can modification to the system be
quantitatively and qualitatively measured? The answer came in 1978 when a pro-
gram was developed to measure and ultimately to control change. It was called
COMPUP (comparator) and became the cornerstone of our quality control procedures.
Briefly, the program prints out all target language sentences showing translation
differences between two system versions. Review of the output provides quick and
accurate data on the rate of change and types of change between two systems and
whether the changes are positive or negative, producing, in effect, an
improvement/degradation ratio.

When comparators were run against new system versions over a period of months the
improvement/degradation ratio was consistently around 7:3. Wilks' figures also
showed approximately 30% degradation in sentences changed. The conclusion was
that system modification was coupled with a risk factor, that system-wide impact
of modification was unpredictable, and that improvement in one area could degrade
something elsewhere. This created a cycle of construction and destruction: in
the aggregate there was considerable progress, but it was not uniform and we were
incurring substantial losses.

At this point we decided that new quality control procedures for modification of
the system had to be implemented, with the comparator the chief mechanism of
control. The general approach was based on several concepts:

- Zero degradation, or at least minimal degradation, was the goal.

- Baseline systems had to be defined and maintained.

- The rate of modification had to be reduced.

- Permanent data bases for specific problems and routines had to be developed.

- Comparator tests run against random Russian text would be the final test
for validation of change and system acceptance.

We were advancing radical changes in modification procedures. The magnitude of
problems in the system and the seeming ease of their resolution by rapid modifi-
cation led to overloading the system, keeping it in a constant state of turmoil.
It was time to step back, reevaluate existing control procedures, and proceed in
a slow methodical manner. It was the realization that more was not necessarily
better.

Let us now turn to those quality control procedures and examine them in some
detail.

DICTIONARIES - STEM EXPRESSION

The incorrect addition of a code to a word or group of words in the dictionaries
can have disastrous consequences; yet, we consider dictionary modification the

MODIFICATION OF THE AIR FORCE RUSSIAN-ENGLISH MT SYSTEM 131

easiest kind to control and that causing the least worry. Mechanical error dur-
ing coding is largely reduced by two computer programs called NDEDIT and DAUDIT
that reject illegal transactions and check for missing fields or conflicting
codes. Subjective decisions on particular translations, setting of linguistic
relationships, and the addition of syntactic and semantic codes are more diffi-
cult to control. Accurate decisions are usually based on common sense tempered
with experience with the system. Our procedure is that all dictionary change
submissions must be accompanied by evidence in the form of the word or phrase in
context, a diagnostic printout, concordance examples, or source evidence from
dictionaries, reference books, or subject experts. In addition there is a hier-
archical screening process so that each submission is reviewed by 3-4 people,
with the most experienced personnel making the final decisions. Lastly, diction-
ary entries are reviewed a final time after insertion into the dictionaries.
This is a final check in an effort to weed out inadvertent error.

Certain other features have proved successful in controlling dictionary modifica-
tion:

(1) No expressions are entered into the dictionaries without prior testing.

(2) All dictionary modifications are accompanied by note cards (N-cards)
that document the history of changes to that entry.

(3) Words and expressions vital to the system are called security entries
and cannot be modified without a password code. A joint decision by senior devel-
oper and user personnel is necessary to modify a key-lock entry.

(4) As in all modification, comparator runs against random Russian text
allow us to pass final judgment on dictionary modification. Inadvertent error in
modification of any frequent term or expression will be picked up.

HOMOGRAPH AND LEXICAL SUBROUTINES

We define these subroutines as relatively self-contained modules that solve pro-
blems apart from the mainstream of abstract linguistic analysis. They contain
their own internal logic and errors are easily traced. As with dictionaries, we
have developed set procedures for modification of homographs and lexicals.

The first step is to develop a data base for a particular routine by selecting
sentences from concordances and using query messages to extract sentences from
our library of Russian input text (approximately 50 million words on tape).
Initially we strive for a comprehensive solution of a routine: sentences are
collected that illustrate all major linguistic decisions within the routine and
any other linguistic patterns not covered by the routine. These are called posi-
tive tests. The data base also contains negative tests, i.e., sentences which
exemplify conditions when the routine does not operate or should not operate.
The size of the data base depends on the complexity of the routine and the number
of sentences available - we have data bases from 15 up to 125 sentences. The
data base is put on tape, it is translated to determine the accuracy of the rou-
tine, and then the routine is modified. After modification, the data base is run
against the modified and unmodified versions of the routine via comparator. The
comparator may also be run against random Russian text, depending on the relative
frequency of the word(s) in the routine or its complexity.

It is important to emphasize the development of permanent data bases for homo-
graphs and lexicals. In the past, routines were modified in response to events
in individual sentences, but the sentences themselves were not retained. All
that remained was the abstract logic within the routine, which might or might not
have been sufficiently documented. We believe that retention of data base sen-
tences is at least as important as internal documentation. Once a routine has
undergone comprehensive modification no further change is ever allowed to that
routine without running the modified source against the entire data base. One
final point: there should be absolutely no degradation as a result of

132 D. BOSTAD

modification of lexicals and homographs. If any occurs, further debugging is
necessary.

GENERALIZED LINGUISTIC ANALYSIS PROGRAMS

The heart of any machine translation system has to be its main linguistic algo-
rithms. In the Russian system, generalized linguistic programs have less modu-
larity, later linguistic decisions are contingent on the success of earlier ones,
and the coding is extremely complex and interwoven - the handiwork of several
linguistic programmers. This is the part of the system where the so-called
ripple effect is most evident and where great care must be exercised in modifica-
tion.

It is a data processing truism that the best time to influence system design is
in the early stages of development. The Russian system is over ten years old and
at this point in time it would be unprofitable for us to restructure the system
using contemporary programming techniques. We are simply accepting the original
design as a given and proceeding from there. This means that our efforts are
mainly directed at fine tuning the system rather than making design modifications
of significant magnitude. Nevertheless, a great deal of improvement is possible,
in our experience, if good quality control procedures are used and enforced.

1. Problem Definition and Analysis

A baseline system is defined such that the software developer and the
user have exactly the same system. Then a linguistic problem is defined - in our
particular case 90% of the time by the user - based on analysis of large amounts
of translated material. An attempt is made to establish a data base using pro-
duction sentences, concordances, error collection files, or queries run against
the 50-million-word data base. Sufficient sentences must be obtained to exem-
plify the parameters of the problem; no modifications are made on the basis of a
few sentences. If a satisfactory data base is not obtained the problem is
shelved.

The software developer writes a verbal analysis of the problem, listing
all programs affected by the problem down to specific subroutines, estimates the
degree of improvement that can be expected if the problem is tackled, and gives
an estimate of the time and personnel required for writing and testing the solu-
tion. On the basis of this information the user decides whether to proceed with
modifications, and if the go-ahead is given a priority is set for the problem.
For ease in debugging, no more than 5-7 abstract linguistic problems are worked
on during a three-month system modification cycle.

2. Testing and Documentation

The solution is tested against the data base developed using both posi-
tive and negative tests. Debugging continues until the projected degree of
improvement - within reasonable limits - is obtained with minimal or no degrada-
tion. The source code is documented and a final report is written stating
whether the solution reached its projected degree of improvement and, if not,
the reasons for the shortfall.

The system developer then sends an updated system version to the user,
accompanied by a report specifying all linguistic changes in that system version.
Finally, the control data base is delivered to the user and it is input on tape
and becomes part of the permanent library of problems and solutions.

3. Evaluation and Acceptance

a. The user runs comparators against the original controlled-text data
base to verify the developers' results.

b. The user runs comparators against random production text. This is
the crucial test: verification of whether the positive results of change in the

 MODIFICATION OF THE AIR FORCE RUSSIAN-ENGLISH MT SYSTEM 133

data base carry over to random input without degradation. Approximately 30,000
random sentences are run comparing the two system versions.

c. The comparator results are judged. There has to be zero or minimal
degradation. Depending on the user's appraisal, the new system version can be
accepted, accepted with immediate minor debugging, or returned for major debug-
ging until the degradation level becomes negligible.

d. After final acceptance, the modified version becomes the new base-
line system.

The discussion so far should give a good idea of our quality control procedures.
But what kind of quantitative improvement in the product can be expected by using
them? Comparators run against random text in all subject areas show that the
total impact of modification - dictionary, lexical, homograph, and generalized
linguistic - will affect 1-3% of sentences. This figure may seem low, but in the
perspective of 5,000 pages per month the number of improved sentences can be
substantial. Obviously, the greater the frequency of a word, phrase, or lin-
guistic structure that has been modified, the greater the impact on the final
product. Comprehensive modification of lexicals and homographs has resulted in
improvement from 10 to 50% in the data bases; enhancement of recognition of long-
form adjectives as predicates yielded a net improvement of 35% in the data base.
Again, visible impact is largely a matter of frequency: a 50% improvement in a
high-frequency homograph will have substantial impact; 35% enhancement in a
relatively infrequent subject/predicate structure will be less noticeable.

Organizations that achieve a high level of quality in their products first estab-
lish an acceptable level of quality and then build a mechanism that assures this
level is maintained. The quality control procedures described above attempt to
do this and the results have proven to be quite satisfactory. I wish to stress
however, that quality control is not simply evaluation of the final product. It
involves a lot of detailed administrative work that is not glamorous: collect-
ing error sentences, keeping data base tape libraries of routines and problems,
keeping historical records of problems worked on or set aside. In short, it is
an on-going process throughout the evolution of a system as new baselines are
established.

Configuration control management of a machine translation system is ultimately
the responsibility of the user. He has to get deeply involved in the develop-
ment and control of the system because he has to judge the final results and live
with the product. The easy way out is to forget about quality control manage-
ment, or if you have it, slack off and not enforce it as should be done. How-
ever, the price you pay may be high. A commitment to improving a machine trans-
lation system is a commitment to quality control.

REFERENCES:

[1] Boehm, B, et al. (1978) Characteristics of Software Quality.
(TRW Systems and Energy, Inc., Redondo Beach, CA)

[2] Battelle Columbus Laboratories (1977) The Evaluation and Systems
Analysis of the SYSTRAN MT System. (Report RADC-TR-76-399)

[3] Wilks, Y., and LATSEC, Inc. (1979) Comparative Translation Quality
Analysis. (Final Report, Contract F33657-77-C-0695)

Perry, W. (1977) Effective Methods of EDP Quality Assurance.
(Q.E.D. Information Sciences, Inc., Wellesley, Mass.)

