
[Translating and the Computer 7. Proceedings of a conference… 14-15 November, ed. Catriona Picken 
(London: Aslib, 1986)] 

 
Translation and information processing: a 
Canadian viewpoint 

Benoît Thouin 

Programme Co-ordinator and President, CLC Ltd, Quebec, 
Canada 

Translation – at least to some extent – and computer science come under 
the field of information processing. They both have played and are playing 
a major role in the information revolution which is dominating this second 
half of the twentieth century. They both help us realise that information is 
just as much a resource for an organisation as are people, equipment and 
capital. 

It took quite some time for computers to become really useful to the 
language fields. Computer science (considered here to include electronic 
data processing) had to undergo a whole evolutionary process and its place 
today still gives rise to questions and debates, perhaps not for specialists, 
but at least for its potential users. This evolution in computer science has 
resulted in a number of tools for translators; it still is and will be a 
determining factor in the changes we observe or foresee in the translation 
environment. The major aspects of this evolution will be described below, 
together with some of their effects on the language profession. Some 
attention will also be given to translation and adaptation of software as a 
new field of activity for language specialists. This will lead to some 
thoughts on the future of machine translation (MT) and computer-assisted 
translation (CAT) systems. 

THE EVOLUTION OF COMPUTER SCIENCE 

Hardware 
The concept of generations of computers is well known. The fifth genera- 
tion,   in   any   case,    is  the  topic  of  much  discussion,   and  not  only  in 

95 



96          Translating and the Computer 7 

specialised circles. These generations correspond to the successive tech- 
nological advances made in the production of the main computer units: 
first generation – vacuum tubes and germanium diodes, triodes and pento- 
des; second – transistors; third — integrated circuits; and fourth – large- 
scale integrated circuits, as used in present microcomputers. The fifth 
generation has more of a software connotation. On the hardware side, 
which is still at the research and prototype stage, it integrates circuits on 
an even larger scale and might integrate newer technologies such as laser 
memory, superconductivity at very low temperatures, and parallel pro- 
cessing. 

The successive jumps from one generation to another have until now 
resulted in a significant increase in processing capacity, the miniaturis- 
ation of circuits and a decrease in production costs. These improvements 
have led to the most extraordinary machine that the human race has ever 
created. While machines can multiply our physical speed and strength by 
factors of the order of thousands, the computer is capable of increasing a 
million times over our capacities for calculation, data storage and informa- 
tion processing, which are much more fundamental human skills, all at 
relatively low cost and with almost no energy consumption. 

The consequences of this on the language profession are numerous. The 
most obvious one is that computers are small, ordinary and cheap enough 
so that small groups and even individual translators can afford them and 
enter the electronic information age. The electronic medium is slowly but 
surely taking over paper to the point that in some instances the translator 
uses only magnetic and electronic media. But one should not forget that 
these media have a lower level of compatibility, readability and security 
than hard copy. 

All this brings new problems and new opportunities to the language 
profession. Translators now have to worry about investing thousands of 
dollars in a single piece of equipment, something they never faced before. 
They do such things as product comparisons, cost-benefit analysis, selec- 
tion, purchase, installation, training. They see new products every week, 
do not know what to choose, would like to avoid obsolescence, fast 
depreciation, and incompatibility with their clients' equipment. 

Larger translator offices are created to share the initial investment, but 
translation permits few economies of scale and new problems arise with 
overheads, quality control, co-ordination of large projects etc. 

New formulas emerge: group purchase of equipment and supplies, 
networks and co-operatives of translators, translation brokerage and dis- 
patching. 

These complex and sometimes dramatic changes in the translation 
picture are welcome since they force translators to think seriously about 
work   organisation,    to   select   appropriate   tools,    and   not   necessarily 



Canadian viewpoint         97 

computerised ones, according to the type and size of text, to get more 
information and training. But they must also be careful not to put too 
much emphasis on hardware and equipment, which is the most visible but 
least important aspect of the information processing revolution. 

Software 
Application software, those instructions to perform some function for the 
user, also has its generations, more or less five years behind those of the 
computer. The first programs were directly encoded in binary numbers or 
written in a language very close to the internal structure of the computer. 
Therefore, only specialists could use computers since there was no distinc- 
tion between using a computer and programming it, and it was necessary to 
understand thoroughly the structure of a computer in order to write 
programs. Moreover, a program could never be transferred from one 
computer to another. 

Then appeared the so-called ‘high-level’ programming languages that 
could give the equivalent of a number of machine instructions in a rela- 
tively understandable statement. Some of these languages, for example 
FORTRAN, were sufficiently standardised to enable the transfer of pro- 
grams from one type of computer to another. This second software genera- 
tion, however, did not give users direct access to the computer; instead, 
users had constantly to enlist the aid of computer specialists. 

The third generation was that of software packages: general programs 
equipped with a specialised command language through which users can 
operate the computer without having to program it. A software package 
can be designed for a single purpose, such as word processing, book- 
keeping or inventory control, or it can combine several applications. A 
good package has menus, pictograms, or other action-selection features, 
error-detection routines, easy-to-understand messages, a help facility and 
appropriate documentation, that make it easy to use. Trends in third- 
generation packages include improvements in human-machine communi- 
cation: increased use of graphics and pictograms, touch-sensitive screens, 
some voice input etc., and the integration of several applications in one 
package through split screens and interconnection of parallel processes. 

Fourth-generation languages began to appear several years after the 
fourth-generation computers. These languages, built around a database 
management system, allow the user not only to operate the computer but 
also to define and implement applications by him or herself much more 
rapidly than before and with a minimum of help from computer 
specialists. The emphasis is no longer on procedures to access and process 
data, which are relatively standardised, but on data definition and organ- 
isation. There is also a new emphasis on functional definition of systems 
rather than their technical structure, the whats rather than the hows. 



98        Translating and the Computer 7 

The data administrator has emerged as the main user representative as 
far as computer applications are concerned, and his/her role has become 
much more important than that of the computer systems analyst. 

Fourth-generation languages and software are still undergoing develop- 
ment, but the real phrase à la mode is ‘fifth generation’, defined by the key 
words ‘artificial intelligence’ (AI), with expert systems thought of as a sort 
of an intermediate step. It is expected that this generation will set itself 
apart by, among other things, the logical inference capabilities of its 
systems, human-machine communication in natural language, and know- 
ledge representation systems, at least in some limited fields. Let us not 
delude ourselves, however; as long as we do not understand the working of 
our own minds and as long as we have not established that it is possible to 
simulate it through the limited operations of the computer, artificial 
intelligence will remain much more artificial than intelligent. 

The scope of software applications has also evolved: from military to 
scientific to business applications before entering the domain of the 
humanities (including language) and new technologies. The first effect of 
that evolution on the language profession is that third-generation packages 
were made available to writers and translators. Nowadays, several user- 
friendly packages are used daily without too many problems. 

The world of software covers many application areas that ignore each 
other, which results in duplication of effort and lack of utilisation of new 
developments in other areas. For instance, terminology banks and infor- 
mation retrieval systems have resulted in large and powerful database 
systems not encountered at all in management information systems. On 
the other hand, fourth-generation languages and techniques are under- 
used in linguistic applications. In MT and CAT, integration of general 
database management systems with specialised linguistic and logic meta- 
languages is achieved only in a few instances, as is a recognition of various 
software tools as complementary instead of opposed to each other. The 
building of more bridges between subdomains of software is certainly a 
desirable step for the coming years. 

Access to the computer 
The methods of operating computers have also developed in a spectacular 
way over the short history of computer science. In the beginning, the user 
had to be by the computer in order to enter data through switches, but 
later he or she could prepare data independently by means of unit record 
devices, particularly punched cards. Batch processing would then most 
often be done: the user would group the records into batches, bring them 
to the processing centre, and later obtain printed results. 

Developments in the theoretical study of processes, in parallel process- 
ing   and  in   communication  between   processes   led   to improvements in 



Canadian viewpoint 99 

operating systems, from monoprogramming to batch processing of input/ 
outputs, multitasking and time-sharing. Time-sharing enabled the intro- 
duction of online processing through terminals connected to a mainframe 
by relatively short cables, and later remotely connected by telephone. 

Telephone links were used at a later stage to connect computers to each 
other, in increasingly larger networks. Computer specialists also learned to 
operate a number of CPUs together in the same location, thus increasing 
the reliability of computer installations and leading to various concentra- 
tions of similar functions within computing centres. A now typical appli- 
cation is the use of a separate computer, called a front-end processor, to 
handle communications with the terminals. 

More recently, the replacement of standard terminals by so-called ‘intel- 
ligent’ terminals, which have their own processing capability, and then by 
true computers (generally microcomputers) has added a great deal of 
flexibility to all kinds of computer systems. While the user is back to a 
by-the-computer situation, he/she has immediate access not only to more 
powerful means at divisional or organisational levels, but also to national 
and international networks. The result is multilayered systems whose 
throughput can be maximised by optimising the distribution of data and 
workload among levels and among computers at the same level. Such 
distributed processing systems are now so sophisticated they no longer 
require that all databases be centralised, as was thought to be inevitable. 
We have not yet explored nor implemented all the new possibilities 
created by these developments. 

Language specialists now have access not only to various system con- 
figurations, but to numerous makes and models of hardware and software 
of all kinds. It is very nice to have several alternatives, but too much is too 
much. Over 300 makes of microcomputers, a few times as many models, 
thousands of pieces of software ... 

Moreover, any single user can have his/her computer custom-modified 
through chip programming and/or software: new character generators, 
multiple keyboards, printer drivers, special instruction sets, anything you 
can think of. Such customisation is more like ‘modifications not 
authorised by the manufacturer’ (did you read your warranty card?) than 
just selecting the colour or a few options on a new car. For one standard 
that is painfully set up, five are violated, if they ever existed. Multilingual 
character set definition, for one, is near chaos. Even standard pieces of 
software will modify such things as the BIOS (Basic Input/Output Super- 
visor) and make the most innocent and plain microcomputer behave like a 
non-standard one. 

For sure, standards deserve what happens to them. How can one 
comply with a standard for French characters where ë and ï do not exist, 
and   where   ten   accented   letters   are   present   only because ten standard 



100        Translating and the Computer 7 

characters (square brackets for instance) have disappeared? Indeed, stupid 
standards are in essence self-destructive. 

Shall we give up compatibility between systems? Or create new stand- 
ards that deserve this name? Sometimes the latter might be a difficult 
decision. One should admit, for example, that the old 8-bit byte is obsolete 
in a truly multilingual environment. The 16-bit and 32-bit architectures, 
plus lower memory and storage costs should help us make the step up to 
more powerful character representation systems. 

Methodologies 
Our ability to develop and implement systems that satisfy the user’s 
requirements has always lagged far behind our technical skills. Until the 
Seventies, there was no defined systems development methodology.    
Phased approach and systems theory, for example, did not exist, although 
some successful project leaders had used similar methods more or less 
intuitively. 

An important concept that emerged was that of the system – a set of 
inputs, procedures and outputs, and of human, material and financial 
resources, which perform a well-defined function. Only recently has infor- 
mation been considered as another type of resource involved in the 
development and operation of a system. The recognition that a systems 
development project is in itself a system with its own resources, inputs, 
procedures and outputs led to the phased approach of systems develop- 
ment, or the ‘systems development life cycle’. 

This approach was the first clear methodology available for recognising 
the need for a new system, and then developing and implementing that 
system. With a few variations, the approach consists of seven phases, 
which are as follows: 

1. Project initiation   Analysis of the situation and identification of 
problems, user requirements and new opportunities, ending in the 
decision to develop or not to develop a new system. 

2. Feasibility study   Examination of various possible system solutions 
and comparison of these in terms of their technical and economical 
feasibility. Recommendation of one solution, based on cost-benefit 
analysis, including estimates of the development and operating 
costs. 

3. Systems analysis   Definition of what the system will do: descrip- 
tion of the various functions and their interactions within the sys- 
tem, definition of inputs and outputs, all from a user's non-technical 
point of view. 

4. Systems design   Technical description of how the system will 
work:   screen   and   report   layout   for   inputs   and outputs, physical 



Canadian viewpoint 101 

organisation of data and files, programs, modules and interfaces. 
5. Programming and testing   Writing of programs and testing of 

individual modules, followed by more general testing of the inter- 
faces between modules. 

6. Implementation   Physical installation of the system, data conver- 
sion, user training, and acceptance testing by the user under normal 
operating conditions. Final acceptance of the system. 

7. Post-implementation evaluation   An on-going review, detection of 
problem areas and maintenance of the system, in whole or in part, 
when any major problems are detected or improvements projected. 

Since 1980, ‘structured’ techniques have been more and more widely used 
to develop and to maintain computerised systems. 

Data flow diagrams represent the circulation of data and the processes 
that use and produce information. Each process can be further broken 
down at lower levels, to give not only a general overview of the system but 
also an accurate representation of details. 

The data dictionary contains a definition of all data at the elementary 
and higher levels. It ensures that each piece of information used or 
produced by the system, or created temporarily within a process, is clearly 
and consistently described. Where necessary, it also contains a statement 
of the validation conditions for data elements. 

Structured language is a means of describing processes. It is a subset of 
a natural language that imposes a strict use of designators as they appear in 
the dictionary, together with the primitives and connectors of structured 
programming languages like Pascal. Structured language also prohibits 
the use of vague verbs to describe the action performed over input data 
flows. It can very well be thought of as a system description Language for 
Special Purpose (LSP). 

The structured-module representation of the processes describes how 
each process is divided into programs, modules and routines. It shows the 
arguments received and the results produced by each program component 
of the system. 

All these structured techniques include a mathematical means of check- 
ing for consistency and balance between the various components of the 
system, both at the same level and between two consecutive levels. Data 
flow diagrams, the data dictionary and structured language are used 
mainly at the systems analysis stage, while structured-module represent- 
ation is a systems design technique. Data flow diagrams can also be used to 
describe the existing systems, and the various drafts of the proposed ones, 
in the early stages of the development cycle. 

Structured techniques do not in fact represent a new methodology. 
They  only  provide  a  more  handy  means  of  describing  the  existing  system 



102         Translating and the Computer 7 

and of representing it under development during the two critical and 
complex phases of systems analysis and design. 

It is only lately that there has appeared what can be considered as a real 
second-generation methodology, known as prototyping. Unlike the 
phased approach, which can be described as the vertical development of a 
whole system in five to seven phases, prototyping consists in the complete 
and relatively fast development and implementation of a prototype, fol- 
lowed by a horizontal expansion to the full system. 

The prototype can be one of the many functions of the full system, 
selected because of its priority to the user, its self-contained character or 
its strategic position in the overall flow of information; or it can be a very 
simplified version of the whole system, without the special or difficult 
cases, just to see whether the general principle of the system is sound or 
not. 

The availability of a fourth-generation package is important to proto- 
typing, because it accelerates the development and implementation of the 
prototype, and provides a highly flexible tool to rework the data structure 
as needed in the course of expansion to the full system. 

An advantage of prototyping often encountered is that the user is 
provided with ‘something that works’ very early in the development 
process. But more important is that the prototype allows one to see exactly 
what kind of a system one has defined and permits early adjustments that 
can't simply be thought of over a pile of abstract diagrams and definitions. 

Methodologies appear to be far behind the development of computer 
hardware and software. Other emerging techniques, like automatic pro- 
duction and proof of programs, are almost always absent from linguistic 
systems. The reason given is that linguistic applications are too specialised 
to be developed in a general framework adapted to more classical environ- 
ments. The evolution of systems development methodologies has little 
affected the language profession. Let us hope it will, be it only as will be 
seen below to help language specialists better participate in the adaptation 
of software. 

User involvement 
The client’s participation in the development and utilisation of computer 
systems has also dramatically evolved since the beginnings of computer 
science. 

At first, the computer specialists were the only designers/clients/users of 
computer systems. Then appeared other people: clients of computer 
specialists and consumers of computer services. They would be more or 
less afraid of those complicated and extraordinary devices and would have 
to rely totally on specialists, like someone who feels ill and can only believe 
the medical science  that says  there is a  cancer there and that some precious 



Canadian viewpoint        103 

but defective part of his/her body has to undergo some strange, painful but 
certainly successful treatment using the latest and extraordinary ‘omega 
ray’ generator. 

With the almost simultaneous advent of the third generation of software 
and of the phased approach to system development, there appeared two 
different types of involvement of the user and/or client. Buyer and user of 
custom-developed software would be consulted at the project initiation 
and systems analysis stages, and would approve the deliverables of all 
phases. (A deliverable is any program, document or other concrete result 
that must be delivered during or at the end of one phase of the develop- 
ment process.) On the other hand, the user of third-generation software 
gets a user-friendly and well-documented package, but only a few people 
supposed to be representative of the target clientele are involved in its 
development, on a consulting basis, as members of test groups etc. 

With fourth-generation software, the end-user becomes the main agent 
of the design and implementation process. The role of the computer 
specialist remains important in the general framework – building the 
fourth-generation environment — but becomes limited to special support 
upon request as far as applications are concerned. 

Through their greater involvement in the development of systems, users 
have learned the golden rules of good computerisation: (1) define your 
requirements (qualitative and quantitative); (2) then look for or define the 
software that will satisfy these requirements and (3) last (and least), choose 
one set of hardware compatible with the above software. 

The composition of research and development teams in linguistic sys- 
tems has followed that evolution, from rather closed teams of mathemati- 
cians, computer scientists and theoretical linguists, to include eventually 
translators, writers, lexicographers and terminologists. The very nature of 
machine translation systems has changed, from fully automatic to human- 
aided machine translation, to computer-assisted human translation. Lan- 
guage specialists have become more and more interested in the develop- 
ment of their own working tools with the result that they get much more 
satisfactory products to work with, and offer less resistance to change. 

Technology integration in the work environment 
The evolution of computer science has led to the integration of systems 
along two different lines. One is the mix of several applications in one 
package. For example, accounting packages will include book-keeping, 
journals, general ledger and financial statements but also extensions and 
links to other applications such as purchase orders, billing, inventory 
control, production scheduling and material requirements planning etc. in 
an all-in-one type of superpackage. 

The  second  line  of  integration  is  much more important in its scope and 



104         Translating and the Computer 7 

effects. Computer science has not only evolved dramatically as a field in 
itself, but also has imposed its tools (computers) and its methods 
(especially programming and top-down analysis) on other fields of activity. 
Here are a few examples of this remarkable and apparently unique 
phenomenon. 

From the chisel to the pen, to printing, to the manual then electric 
typewriter, the evolution of writing instruments has now reached the 
computer stage. A word-processing system is nothing more than a com- 
puter specially programmed to that effect. It is thus not always necessary 
to buy a specialised piece of equipment; in fact, a word-processing pro- 
gram is part of the free package that comes with the purchase of most 
microcomputers. 

Oral communications are also handled by computers: telephone 
exchanges and Programmable Branch Exchanges (PBXs) are simply com- 
puters with telephone receivers as terminals. Computer-controlled dic- 
tating machines have functions similar to word processing that allow for 
moving around paragraphs, deletion of portions of text etc., the operation 
being symbolically displayed on-screen while its equivalent is performed 
on tape. Drawing boards have become computerised as well, offering 
features such as automatic calculation of various sections and movement 
simulation on the screen, all in full colour and with more precision than 
conventional drafting and reproduction methods. In manufacturing, 
assembly lines have become gigantic robots, that is, computers which have 
sensors, articulated arms and various devices as peripherals, instead of the 
usual keyboards, screen and printers. 

The adoption of computers and their methods in fields other than 
computer science leads to an easier integration of various functions and 
opens the door to a new synergy. Consider, for example, the development 
of workstations which group together the functions of a computer ter- 
minal, word processor and telephone receiver, and computer-aided design 
and manufacturing (CAD/CAM) applications by which plans designed 
through computer graphics are directly used in manufacturing to operate 
robots. Computer science has given birth to office automation, tele- 
processing or ‘telematics’, computer graphics and robotics – the integra- 
tion of these new technologies in our working environments depends only 
on our imagination. 

Besides the implementation of integrated workstations for language 
specialists, the integration of several advanced technologies has opened 
new opportunities to translators and given much research work to ter- 
minologists. Information, as the raw material necessary to disciplines of 
communication, appears to be not only a renewable, but a self-multiplying 
resource. 



Canadian viewpoint         105 

TRANSLATION AND ADAPTATION OF SOFTWARE 
Our interest in computer aids for translators should not make us forget 
that with the advent of computers and computer science, data processing, 
word processing, office automation, teleprocessing and robotics, more 
work has come to the ‘in-tray’ of technical translators and a new specialis- 
ation has emerged. Moreover, since information systems have invaded 
more and more domains of activity, it has become a must for any 
specialised translator, if not for every translator, to be familiar with at least 
the fundamentals and the basic terminology of information systems. This 
demonstrates the effect of computer science on the language profession. 

Added to the ever increasing use of computer means as an aid to 
translation, this has resulted in a closer symbiosis between the fields of 
translation and information technology. Besides that, the multiplication of 
computer systems and their use by ordinary people in a variety of locations 
and situations has resulted in a quite new and specialised activity: the 
translation and adaptation of the computer systems themselves. 

Given the wider definition of a system (set of inputs, procedures, 
outputs, and various resources), it is clear that the translation of a com- 
puterised information system includes, but is not necessarily bound to, the 
translation of user documentation. Indeed, translation of the document- 
ation is only the first of three levels of translation one can distinguish in 
information systems. 

The first level consists in translating only the documentation of the 
system without modifying anything in the programs. More often than not, 
only the user documentation (and the operations manuals in the case of larger 
systems) is translated, while the system and program documentation is left 
aside. This implies that only individuals fluent in the language of origin of 
the system can understand it in all its aspects and modify it (which, by the 
way, implies rewriting the documentation of the modified parts). 

This level of translation of a computer system is still quite frequent. 
Nevertheless it is very primitive and leads to problems of various kinds. 
As an example of these problems, let us mention the necessity of keeping 
the commands and messages of the system both in the source and target 
languages in the translated documentation, to quote exactly what the 
system displays and expects and to make it understandable for the target 
language reader, leading to either hybrid or heavy text. 

Such a phrase as la commande SUPPRIMER will become in English 
‘the SUPPRIMER command’, or ‘the SUPPRIMER (delete) command’, 
to be more explicit for a reader who has little knowledge of the source 
language. It is the same for sentences like Le système affiche: 'Voulez-vous 
vraiment supprimer cette page (O/N)?', that would be translated, ‘The 
system displays: “Voulez-vous vraiment supprimer cette page (O/N)?” 
(Do you really want to delete this page (O for yes – OUI, N for no)?)’. 



106         Translating and the Computer 7 

There are several ways to translate in this type of situation, but all of 
them are either tedious or incomplete. Moreover, one cannot limit oneself 
to translating more explicitly at the first occurrence and less explicitly 
afterwards, since computer systems documentation is often used for refer- 
ence purposes and very seldom read from cover to cover. 

The second level of translation includes partial reprogramming of the 
system in such a way that at least the messages and reports, and sometimes 
the commands of the system, are in the target language and that the 
system seems to understand and speak the user’s language. 

Usually, this reprogramming affects only data areas in the system and 
not the algorithm itself. Field lengths must be redefined according to the 
target language wording. A little bit more delicate is the problem of 
commands abbreviated in short mnemonics, since two different com- 
mands in the source language may have the same abbreviation in the target 
language. Synonyms must be found, not always a satisfactory solution. In 
some cases, a report that takes up a certain number of lines in the source 
language will require more or less in the target language, resulting in slight 
modification of the algorithm (new statements to add or delete lines, more 
or fewer items per page etc.). 

But this is little compared to the third level of translation, the only 
complete one, which tends to make the translated system as a whole look 
like a genuine system in the target language. In addition to what has been 
discussed before, this implies including the alphabet (and diacritics) of the 
target language in the keyboard, screen, printer, communications proto- 
cols and internal character representation of the system. This can be very 
complex since, for example, the traditional one-byte representation of 
characters is often insufficient, some letters change shape when followed 
or preceded by some others, left-to-right writing is not universal etc. 

Some physical indications on the equipment may have to be translated. 
Moreover, the very principle of the system may have to be adapted to the 
new linguistic and cultural environment. For instance, the operations 
performed by an accounting system will be different from country to 
country (even those that use the same language). This latter case resembles 
the change of technical specification of any device so as to adapt it to 
another environment, which also reflects in the documentation. 

It should be noted that the third and to some extent the second level of 
translation imply that translating and adapting a computer system is in 
fact an activity of system development, which requires more than linguis- 
tic knowledge and renders necessary the use of system-engineering 
methodology. Since few translators (in fact few individuals) master both 
fields, multidisciplinary teams become necessary, and must be properly 
organised and managed. 

Several   system   development   teams   include   one   or   more  technical 



Canadian viewpoint          107 

writers to prepare the user and technical documentation while the system 
is being designed and implemented. The concurrent development of 
versions in several languages or the design of truly multilingual systems 
brings new opportunities not only for writers, but for translators and 
terminologists, to do their communication work under new and exciting 
conditions. 

The fact that so many software packages have been adapted to other 
languages has contributed to the development of foreign-language facili- 
ties on several computers and operating systems. It has also helped several 
translators to participate in the information systems revolution. 

FUTURE DIRECTIONS FOR MT AND CAT 
Looking at the general evolution of computer science, let me suggest some 
directions for research in MT and CAT. Certainly not all of them will 
prove fruitful, but they deserve to be honestly investigated. 

Clearly, the integration of sophisticated database management systems, 
of fourth-generation languages and of parallel processing in MT and CAT 
systems should be examined. 

Research on LSP and expert systems will at some time have common 
features inasmuch as experts use special-purpose languages in their dom- 
ain. AI programming languages like Prolog and LISP might be interfaced 
with linguistic tools such as Q-systems and ATN. 

Serious theories of translation, as well as psycholinguistic theories, 
should find an echo in actual MT systems. Research on knowledge-based 
systems could be made more effective by putting together the contribu- 
tions of information representation and storage activities such as thesaurus 
building, lexicography and terminology. 

As a final example of possible co-ordination of efforts, I can refer to the 
very many computer or high-tech firms that use or plan to use machine 
translation to translate their documentation. I am sure that in some cases, 
the documents to be translated describe a computer system whose formal 
description (data flow diagrams, data dictionary, description of pro- 
cedures) is available somewhere in machine-readable form. I suggest that 
this description could be somehow used as a knowledge base, helping the 
MT system better to translate such things as the operator’s and user’s 
guide, overall system documentation etc. 

These are only a few of the many possible directions for research in MT 
and CAT. In the meantime, we should not forget that translators and 
other language specialists require right now better tools to do a better job, 
to be more productive and to be happier. Such things as the translator’s 
workstation can very well be developed and made ready to include MT as 
another module. 



108          Translating and the Computer 7 

AUTHOR 
Benoît Thouin, President, CLC Ltd, PO Box 420, Station A, Hull, 

Quebec, Canada J8Y 6P2. 


