
[From: Overcoming the language barrier, 3-6 May 1977, vol.1 (München: Verlag
Dokumentation, 1977)]

661

SLUNT (SPOKEN LANGUAGES UNIVERSAL NUMERIC TRANSLATION)

W. Goshawke

Pearl Assurance Company Limited

Abstract

Results of computer translation research have hitherto been
disappointing. Most researchers use free-input systems, whereby
texts are fed into computers as authors wrote them, with ambiguities
and idioms unaltered. Better results are obtainable by restricted-
input systems, whereby such parts of texts which are ambiguous or
complex are rewritten (retaining their original meaning) in forms
which programs can accurately translate, before being input. SLUNT
is such a system, designed for writers wanting their work translated
into several foreign languages.

SLUNT translations take place through Number Language, an
intermediate language consisting of numerals. Number Language
statements are unambiguous and, although designed for computers,
are decipherable without using a computer by anyone knowing the
rules of Number Language and having a Number Language dictionary
for a language which he speaks. All messages are sent in Number
Language. Number Language numbers will be accurately defined in
all spoken languages.

SLUNT programming is easy. Programmers need only know their mother
tongue and the rules of Number Language, which are simple.
Progressive and easily distinguished grades of SLUNT are planned,
starting with simple sentences and limited vocabularies, and moving
to complex sentences and larger or specialised vocabularies. SLUNT
is valid for all spoken languages.

662

1. A new approach to automatic translation
Millions of dollars and hundreds of man years have been spent in

recent decades on research into computer translation of spoken

languages. So little has been achieved by this that many respons-

ible people sincerely feel that the task is an impossible one.

Consequently, any new attempt to solve the problem is apt to be

met with scepticism. This scepticism is only justified if the

new researcher is tackling the problem in the old way. This is

definitely not the case with Slunt. Slunt has many characteristics

not present in the methods of other researchers and is intended

for the writer who wants his work translated into a number of

different spoken languages, and who is willing to co-operate by

rewriting any sentences not readily translatable by computer.

2. Pre-editing
2.1. One important feature of Slunt is that it is a restricted-

input system, whereas earlier researchers have usually

preferred a free-input system. With a free-input system the

text is fed into the computer just as the author wrote it,

without any modification whatever. This causes difficulties

of various kinds, three of which, (a) ambiguities, (b) idioms

and (c) unusual or complex sentence structures, are discussed

in the following paragraphs.

2.2. (a) There are many ambiguities in spoken languages, where a
sentence can have more than one different meaning. The human

reader can usually resolve the ambiguity by examining the

context. Attempts have been made to examine contexts by

computer, but this is a very formidable task. It increases

enormously not only the complexity and length of programs but

also the complexity and size of the dictionary necessary

to be retained in store. Moreover, the results cannot be

wholly relied on. Some ambiguities can only be resolved by

reference to the author himself. Slunt programs do not examine

contexts.
2.3. (b) Writers frequently use idioms which cannot be translated

literally. For example, English business men sometimes say

they have "caught a cold" when they have taken a risk which

663

has turned out to their disadvantage. It is possible to

program a computer to treat this as "made an unwise decision".

Some idioms are so common that it is necessary to include them

in programs in this way. To include all idioms is impossible,
as new idioms are constantly being created. The method

suggested for Slunt is that acceptable idioms are listed and

made known to users of the programs. All idioms in the list

are treated as idioms when they occur, except when otherwise

stated. Thus "catching a cold", if on the list of idioms,

would never be taken as meaning having an illness, unless this

were specifically stated.

2.4.(c) Sentences can be long or short, simple or complex. With

a free-input system the programmer tries to make his program

capable of dealing with every type of sentence. If the

writer of the material to be translated uses very unusual

or complex sentence forms, the program may fail. With Slunt,

only acceptable sentence forms are input.

2.5.The above are the most common causes of failure of the
free-input method. With Slunt they are avoided. All texts

are edited before being input. When they are ambiguous, the

ambiguity is resolved, if necessary by reference to the author.

Each idiom which the programs cannot handle is rewritten in

a form which has the same meaning but which is acceptable to

the computer. Unusual and complex sentences which cannot be

handled are rewritten in a simpler and acceptable form, but

retain their original meaning.

3. Universality and accuracy
3.1. Unlike other methods, Slunt is applicable to all spoken

languages. Most researchers have confined their work to

translation of one specific language into another specific

language, such as Russian into French, or Chinese into

English. Such projects, even when successful, have only a

limited usefulness. Slunt uses an intermediate language,

and the intention is that all messages shall be sent and

364

received in this. Moreover, all messages in the intermediate

language are unambiguous, and the intermediate language

version of the message, once despatched, becomes the official

version. This system reduces enormously the amount of

programming to be done and minimises the educational

qualifications needed by the programmer.

3.2. The intermediate language used in Slunt is called Number
Language and consists entirely of numerals. Messages sent in

Number Language can be handled by any digital computer in the

world, whatever alphabet it uses. English words such as man,

book, office and so on are represented in Number Language by

Number Language numbers or NLnumbers. Bearing in mind that

the Number Language version of the message is the official

one, it is intended that all NLnumbers shall be defined

accurately in all spoken languages which use Slunt. It is

well known that an English word may not have an exact

equivalent in French or German and vice versa. This means

that an NLnumber may be equivalent to a single word in one

spoken language, but may need several words to define it in

other languages. There is also another feature of spoken

languages to allow for. A word in English or any other

language may have three or four different meanings. If so,

there must be three or four different NL numbers to express

these meanings. Accurate definitions in the dictionary are

fundamental to the system. It follows from this that the

Number Language message can be made to express the precise

meaning of the writer, and that the message can be

translated accurately into any other language by computer,

provided efficient programs are available. In the event of

any doubt, the Number Language message can be deciphered

without the aid of a computer by anyone with a knowledge of

the rules of Number Language and a Slunt dictionary for a

language which he speaks.

4. Stages of vocabulary
Because of its importance in the system and of the paramount need

665

for accuracy, the creation of the dictionary will be a very

lengthy task. It is proposed to undertake it in stages, starting

with the simplest vocabulary and moving to less common words,

bearing in mind the needs of users. Each stage will be clearly

defined and numbered. About a hundred words are needed for

testing programs. For the next stage, a very important one, when

programmers exchange elementary messages with programmers in

other countries, a vocabulary of about 500 words is needed. For

business correspondence a vocabulary of about 2000 words is

proposed. At a later stage there will be special vocabularies for

different branches of science and technology and for other

purposes. The limitation of the vocabulary for a particular

purpose reduces the scope for ambiguities, and is very valuable.

It also has the advantage that if users can identify which stage

of vocabulary they and their correspondents are using, they can

limit the storage necessary for the dictionary and reduce the

dictionary search time. This does not mean that rigid restriction

of vocabulary must be practised at all times. If on occasion

additional words are necessary and are used, a list of these can

be appended to the message.

5. Grades of difficulty
5.1. The writing of programs is also a lengthy task and is also

graded, in this case according to difficulty. At all

levels accurate and grammatical translations are obtained.

The lowest grade has only simple sentences and later grades

have progressively more complex ones. This feature is

particularly valuable for researchers. It enables them to

know what grade they have reached compared with other users

and researchers. Thus at a very early period they can

exchange simple messages in simple language with

correspondents in other countries through computer

translation. Not only does this give realism to the research,

but it enables them to test programs of a simple nature in

real life conditions before embarking on more complex ones.

The grading of Slunt is made possible by one of the most

powerful features of Number Language, the Statement Code.

666

5.2. Every statement in Number Language contains a Statement

Code, and this shows clearly the nature of the statement.

There are many types of statement. Some are very simple,

consisting of a subject and a verb. Others are more complex.

Each different type of statement has a different Statement

Code. When a Number Language text is input for translation

into a spoken language, the program tests each statement

for its Statement Code to ascertain whether the program can

translate it. Thus no attempt is made to translate a

passage if the program is not versatile enough to handle it.

Similarly, when a spoken language text is input for

translation, a Statement Code has to be input immediately

preceding each sentence for the same reason. At present,

the Statement Code for each sentence in the spoken language

has to be determined by inspection. At a later stage it is

proposed to write programs which will allot Statement Codes

by computer. It is expected that these will be successful

in the great majority of cases. Where a Statement Code

cannot be allotted automatically, this will usually mean

that editing of the text is necessary.

6. Slunt programming
6.1. Slunt programming is easy. The English programmer has to

write programs for translating Number Language into English

and for translating English into Number Language. The

French programmer writes programs for translating French

into Number Language and Number Language into French; the

German programmer for German into Number Language and Number

Language into German; and so on. The programmer has to know

the grammar of his own language and the rules of Number

Language and needs to know nothing of other spoken languages.

6.2. The rules of Number Language have a similar function to that
of the grammar of spoken languages, but are not identical

with the grammar of any spoken language. Spoken languages

abound with irregularities and idiomatic features. The aim

in devising the rules of Number Language has been to be as

667

logical and consistent as possible. The English programmer

will find that many everyday expressions in English cannot

be translated literally into Number Language because they

are idiomatic. This is especially the case with sentences

involving prepositions. The same will also apply to German

and French and to all other spoken languages. Nevertheless

the programming is simple. It is just a question of applying

the rules.

7. The Slunt package

7.1. A package has been produced and is available which translates
simple English sentences into German by Slunt. It includes

four translation programs and a miscellaneous file which

contains dictionaries and material suitable for translation.

Two of the programs (E002/3) translate English into Number

Language, another (E00l) translates Number Language into

English, and the fourth (G00l) Number Language into German.

The package only handles sentences with Statement Code 0001,

the simplest of all the Statement Codes, which indicates that

the statement includes a subject and a verb.

7.2. The programs not only carry out the translations, but also
provide detailed explanations of all the programming methods,

and it is intended that they shall be used as prototypes

which can be modified so as to produce similar programs

for other spoken languages, or to produce programs for

translating English or German sentences which are more

complicated.

7.3. The programming language used in the package is Slunt Cobol,

which is a very elementary subset of Cobol. This means that it

can be easily adapted for use on any computer which uses

Cobol or PL/1. The package is stored in the Archives of the

University of Essex, Colchester, Essex, England, and is

readily available to users all over the world. Copies of the

package have already been sent to a considerable number of

668

people in various countries.

7.4. The fact that Cobol is the programming language used in the

package must not be taken to imply the opinion that Cobol

is the most suitable programming language for Slunt

programming. Many other programming languages may be just

as good or better.

8. Natural Language Translation Specialist Group

8.1. It is important that the maximum possible co-operation be
established between users and researchers of Slunt in all

countries. Programs and dictionaries created by one

researcher can be used by others working on the same spoken

language. Workers in different countries who are aware of

each others' existence can begin exchanging messages in

Number Language at an early stage, and can so test their

methods in practical conditions. By this means standard

practices can be established, duplication of effort can be

avoided and greater rapidity of progress can be achieved.

8.2. With these objects in view, a Natural Language Translation
Specialist Group of the British Computer Society has been

formed. Anyone interested in computer translation is

eligible to join the Group, whether involved in Slunt or not,

whether resident in Britain or not and whether a member of

the British Computer Society or not. A number of Slunt

enthusiasts from various countries are members, and replies

to a recent survey show that Slunt research is being

undertaken or contemplated in seven different spoken

languages.

9. Who can help with Slunt?

9.1. Many universities are already engaged in a variety of kinds of

literary and linguistic research involving computers. Many

have created dictionaries. Such universities are well

equipped to engage in Slunt research, and it is hoped that

669

many will do so. Valuable work can also be done in schools

and colleges, in commercial undertakings and by individuals

working alone. A number of wellwishers have expressed their

willingness to donate free computer time for Slunt research.

9.2. It is particularly desirable that Slunt research should
begin in as many countries as possible, so that Slunt can

be shown to be valid for all spoken languages. Every new

spoken language for which Slunt programs are written will

benefit users in every country.

10. Where to write for more details of Slunt

A much more thorough description of Slunt is to be found in an

unpublished paper entitled "Spoken Languages Universal Numeric

Translation (Slunt)", which is obtainable by writing to the

author, Walter Goshawke at 68 Harrington Road, Bexleyheath,

Kent DA7 4UW, England.

APPENDIX

11. A summary of certain of the more elementary rules of Number

Language and an example of a sentence coded in Number Language

are given in this appendix. An example of the output of the

package mentioned above is also provided.

RULES

12. NLstatements, NLunits and NLnumbers

12.1. The characters of Number Language are the ten digits
0, 1, 2, 3, 4, 5, 6, 7, 8 and 9 and always appear in

10-digit units called Number Language units or NLunits.

Any of the ten digits may appear more than once in an

NLunit, Number Language statements or NLstatements are

always made up of NLunits.

12.2. There are three kinds of NLunit, and all three kinds appear
in every Nlstatement. Type 1 Units give general information

670

about the structure of the NLstatement. Every NLstatement

begins with a Type 1 Unit which includes as its four

final digits the Statement Code of the NLstatement. Type

2 Units give precise details of the structure of the

NLstatement, identifying the subject, verb, direct object

and so on. Type 3 Units usually have a dictionary meaning
but sometimes have other functions such as indicating

tense. When a Type 3 Unit has a dictionary meaning this

occupies the first eight digits of the NLunit and is

called a Number Language number or NLnumber.

12.3. The seventh and eighth digits of the eight-digit NLnumber

indicate which part of speech the word corresponding to

the NLnumber is. Thus 01 is a verb, 05 is a noun, and so

on. In Number Language the NLnumber for a noun is

unchanged whether the noun is singular or plural or

whether it is the subject, or the direct or indirect

object of the sentence. Similarly, the NLnumber for a

verb is unchanged whatever its person, tense or mood. The

differences which occur in many spoken languages in nouns,

verbs and other parts of speech are indicated in Number

Language by NLunits specially designed for the purpose.

13. The tenses of the verb in Number Language

Immediately following a Type 3 Unit containing a verb, there is

always a Type 3 Unit indicating the tense of that verb. The

digits of the latter are as follows.

English examples
Digits 1-2, always 88
Digit 3 active-passive

0 active I ask
1 passive I am asked

Digit 4 tense-type
0 complete action I wrote
1 incomplete action I was writing
2 repeated complete action I usually wrote
3 repeated incomplete action I was usually writing

671

English examples
Digit 5 tense-code

3 past-past I had eaten
4 past I have eaten
5 present I eat
6 future I shall eat
7 future-future I shall have eaten

Digit 6 affirmative-negative
0 affirmative
1 negative

Digits 7-10, zeroes

It will be seen that there are 20 tenses in the active

indicative mood, as each of the tense-types in digit 4 can be

associated with each of the tense-codes in digit 5.

14. Examples of simple Statement codes

The final four digits of the first Type 1 Unit of an NLstatement

are the Statement Code and indicate the type of statement which

follows. Examples of three simple Statement Codes are given

below.

Statement Nature of English example
Code Statement

0001 Subject and verb The man writes
0003 Subject, verb and direct He will be sending

object my letters
0005 Subject, verb, direct The mother gave the

object and indirect books to the
object father

15. An example of coding

15.1. The man comes.
A simple example of coding in Number Language is now given.

The sentence "The man comes" appears in Number Language

as follows.

672

Type 1 Unit Type 2 Units Type 3 Units

 Noun Verb
 The man comes man the to come (present

 (singular) tense)

99030700015004050000 5006070000 0311000500 0537101700 0111000100 8800500000

01 02 03 04 05 06 07

For the sake of clarity the 10-digit units are numbered

(1) to (07) in the above illustration, but this numbering,

although used, is not part of the Number Language statement.

15.2. The Type 1 Unit indicates (a) by its first 2 digits (99)
that a new statement has commenced, (b) by the Statement

Code shown in its final 4 digits (0001) that the

statement contains one noun and one verb and that there

are no further Type 1 Units, (c) by its third and fourth

digits (03) that the final Type 2 Unit is the third and (d)

by its fifth and sixth digits (07) that the final unit of

the statement is the seventh.

15.3. The Type 2 Units indicate which Type 3 Units are associated
with the noun and the verb respectively. In unit (2) the

digits 500405 indicate that the units (04) and (05) are

associated with the noun. In unit (03) the digits 500607

indicate that units (06) and (07) are associated with the

verb.

15.4. All the Type 3 Units in the statement are dictionary units
except unit (07) which indicates the tense of the verb. In

order to alter the tense of the statement it is only

necessary to alter unit (07), the rest of the statement

remaining unchanged. The NLnumber for the verb "to come"

is the first 8 digits of unit (06), (01110001). This

NLnumber for the verb never changes whatever the tense,

person or number.

673

15.5. Similarly the NLnumber for the noun "man" is the first

8 digits of unit (04), (03110005). This NLnumber never

alters whether the noun is singular or plural or

whether the noun is the subject, the object or the

indirect object of the statement. Unit (05) in this

statement includes the NLnumber for "the" in the singular

(05371017). The NLnumber for "the" in the plural is

05371027.

16. Output from the Slunt package

16.1. Figures 1 and 2 illustrate output from the Slunt package.
Figure 1 shows printed output from Program E002, which

translates English sentences into Number Language

statements. The punched card output, produced at the same

time, was used as input for Program G001, which translates

Number Language statements into German sentences.

16.2. Figure 2 shows printed output from Program G001, which has
translated the Number Language statements shown in Figure

1 into German. Figures 1 and 2 taken together illustrate

an example of English sentences being translated into

German sentences by means of Slunt.

674

675

