
[From: Overcoming the language barrier, 3-6 May 1977, vol.1 (München:
Verlag Dokumentation, 1977)]

647

'PROTRAN' - A GENERALIZED TRANSLATION TOOL

FOR NATURAL AND ALGORITHMIC LANGUAGES

I. D. K. KELLY

Calikarn Ltd., London

Abstract

Considerations of the problems inherent in mechanically trans-
lating between natural languages have given rise to a software
tool, PROTRAN, which runs on IBM 36O/37O, and has been used
successfully to translate between a wide range of computer
languages. PROTRAN is a generalized double-string syntax
analyzer-synthesizer to which are given, in a language-descrip-
tion language, two descriptions: that of the language to be
translated from, and that of the language to be translated into.
These descriptions are called "correlators".
The system includes (i) the ability to parse input text according
to such descriptions, (ii) the ability to transform conditionally
parse trees into other, non-isomorphic, trees, (iii) the ability
to manipulate text: in particular, to generate text from trans-
formed parse-trees, (iv) the ability to both update and look-up
tables (dictionaries), and (v) the ability to re-analyze partially
parsed strings.
The paper describes the general operation of PROTRAN, and
illustrates specific techniques both by reference to computer-
language translation, and to an Esperanto-English project.

Possible future developments are discussed.

648

1. Background

1.1 The problem

In the mid 1960s a group of people in a particular commercial

environment had need of a general tool to help them transport

computer programs between a range of machines which had diff-

ering levels of high-level language support. No control could

be exercised over the programs - they were, in fact, custom-

er's programs - and they came in a variety of high-level

algorithmic languages peculiar to certain machines. It was

necessary to transform these programs to run on different

machines, and hence to transform the dialects in which they

were written, and sometimes even to translate them into quite

different languages.

Two members of this group, Dr. Raphael Mankin and the present

author, already had strong interest both in compiler construc-

tion and also in non-computational linguistics, and we began

to view the problem of translating from, say, the IBM/36O

dialect of Cobol into the ICL 19OO dialect as merely a weak-

ened form of the problem of translating natural languages:

English into French, for example. The syntax and idiom of

the two languages might differ markedly, but it is the

semantic mapping that is required.

1.2 A Solution

A preliminary survey of the techniques then available showed

considerable weaknesses in all of them, and we decided to

construct a tool with the best features of the work of Alpiar

[1], Tosh [2], and the Compiler-Compiler of Brooker and

Morris [3] without their limitations, and accordingly we set

about building a program to run on the IBM/36O, which we

called PROTRAN.

It was essential to the operation of PROTRAN that we should be

able to describe any practical language transformation for

high-level computer languages in an easy-to-understand

fashion. We also wished to be relieved of the chore of coding

649

afresh for each translation the syntax analysis routines,

table handling routines, and the many other standard functions

on which such a transformation relies.

PROTRAN is conceptually a very simple program which firstly

reads the description of the syntax of a language, then the

description of a transformation to be applied to that syntax.

These two descriptions are written in a language-description

language: we call them 'correlators'. When these correlators

have been read, PROTRAN re-configures itself to recognize and

analyze texts in the first of these languages, and transform

them into the second.

2. Description

2.1 Action of PROTRAN

PROTRAN executes in three main repeated sections. The first

section reads the text to be translated into an input buffer.

The second section analyzes the syntax of the contents of the

buffer according to the rules specified in the input correl-

ator, using a top-down parser. When this buffer has been

successfully analyzed the syntax tree thus formed is passed

over to the third phase which scans that tree from the root,

filling an output buffer. The output correlator drives this

third phase, which amongst other things determines when and

if to write the output buffer. We call this phase the SOUTAX,

because it is the converse of SYNTAX.

One advantage of this technique is that no output action is

taken until the syntax of the input has been fully recognized,

so that we do not have the problem of undoing actions embedded

into a parse, when that parse has to back-track (a frequent

failing with syntax-driven compilers). In general we do not

want to write one-track grammars (or bottom-up parsers), even

when they exist, as these are usually very difficult to alter,

and do not represent intuitive understanding. For example,

the common stem "the quick" in the phrases "the quick brown

fox" and "the quick and the dead" serves two totally different

functions: a grammar which never had to back-track over it

650

would be unwieldy and expressed in terms of categories quite

different from the English speaker's traditional 'noun' and

'adjective'. A second advantage of PROTRAN's technique is

that there is no enforced isomorphism between the syntax

analysis tree of the input, when it has finally been determ-

ined, and that of the output. Primitives exist within PROTRAN

to transform nodes of such analysis trees by re-ordering or

omitting branches, moving nodes to other levels, and changing

their connectivity. Moreover, both the syntax scan and the

'soutax' scan are conditional, and the rules encoded in the

correlators which express them may depend on the contents of

tables, counters and switches which themselves are manipulable

in an algorithmic language.

2.2 Notation

Good notations for expressing the syntax of a language are

hard to come by; though, interestingly enough, the earliest

example of formalism was also the most ambitious: the complete

syntax of the Sanskrit language - a natural language -

compiled by Paņini in the third or fourth century B.C., using

the Devanagari alphabet:

No real advance was made on this notation until the BNF of

1958, rather more suited to the Roman alphabet:

<a> :: = | c <d> e | <f> <a>

We began by expressing syntax in an equivalent notation to

this, but again altered to suit the alphabet - this time that

of the punched card computer input:

LOAD A

B, C'C' D C'E',

F A ;

which represents the same fragment of syntax as the BNF above.

651

It is found in practice to be advisable to delimit the term-

inal strings, but leave the non-terminals (the category class

names) undelimited, as these are referred to much more often.

The main features of the syntax notation can be gleaned from

the fragment given: 'LOAD' to mark the left-hand-side of a

definition; a terminating semicolon; alternatives separated by

a comma rather than a vertical bar; and character strings for

terminal symbols of the form: C'text'.

2.3 Notation - Soutax

Consider the following grammar:

BNF PROTRAN

<sigma> :: = <alpha><beta><gamma> LOAD SIGMA
<alpha> :: = AA | A ALPHA BETA GAMMA ;

LOAD ALPHA
<beta> :: = B <beta> | B C'AA' , C'A' ;

<gamma> :: = C LOAD BETA
 C'B' BETA , C'B' ;
LOAD GAMMA
 C'C' ;

which allows sentences of the form A2,1BnC, taking SIGMA to be

the root of the language; and suppose that we require to

transform texts in this small language in the following way:

input output

ABC CAWAZBZ1ONE1
ABBC CAWAYBYZBZ2ONE2

AABBBC CAAWAAYBYYBYZBZ3TWO3

... ...

that is, move the C to the front; duplicate the A's separated

by a W; surround each B with a Y, except the last which is to

be encased in Z's; and finally, produce a count in words of

the number of A's, surrounded by a numeric count of the number

of B's. The soutax for this is:

LOAD SAMEKH
&GAMMA &ALPHA 'W' &ALPHA
PUSHCLEAR POPGLOB COUNTER
(BETA) BETH PUSHGLOB COUNTER PUTNUM
(ALPHA) ALEPH PUTNUM APOP ;

652

LOAD BETH
COUNT 'YBY (BETA) BETH ,
COUNT 'ZBZ' ;

LOAD COUNT
PUSHGLOB COUNTER AUGM POPGLOB COUNTER ;

LOAD ALEPH
'TWO' , 'ONE' ;

and it may be understood as follows:

SAMEKH is used to process the syntax rule SIGMA - it will

become clear later how this correspondence is set up.

The soutax rule begins with &GAMMA which means "copy from

the input buffer all that text which was analyzed as an

example of 'GAMMA' ". Then &ALPHA 'W' &ALPHA twice

copies that part of the text analyzed as being of class

ALPHA, putting the explicitly stated character string 'W'

between the two copies. The structure PUSHCLEAR POPGLOB

COUNTER firstly pushes onto a last-in-first-out notional

accumulator stack a zero cell, and then pops that into the

variable COUNTER, which would have to be declared elsewhere:

we call such arithmetic variables 'globals' as they may be

referred to from all trees (rules). Then the structure

(BETA) BETH which we read as "point to BETA, call BETH",

uses the soutax rule BETH to determine the next output, and

passes it the actual analysis performed by BETA as a para-

meter. In fact this 'point' determines three things for

the subsequent recursive call to SOUTAX (the 'BETH'):

(i) the input buffer pointer is set to the start of the

text analyzed as BETA (the original is restored on

exit),

(ii) only those non-terminals referred to in BETA may be

referred to in BETH: a new 'root' is set, and

(iii) the same number of commas is skipped in invoking rule

BETH as had to be skipped in rule BETA to get the

successful scan achieved.

This notion of 'point' is fundamental to PROTRAN, and at every

level it is what matches the syntax to the soutax rules: it is

what matched SAMEKH to SIGMA in some higher-level rules not

653

quoted here. To fix a clearer idea of what 'point' means look

at the structure (ALPHA) ALEPH . This invokes the first

alternative of ALEPH only if in the actual text being parsed

the first alternative of ALPHA was the one recognized, and so

on.

2.3 Other Features

This superficial introduction has not shown the full range of

constructs available for manipulating syntax trees and their

associated texts, but amongst the other features of PROTRAN

are:

• the selection of a soutax rule or alternative
as the result of dynamic computation

• conditional syntax (and soutax); that is, syntax
rules which are 'tailored' dynamically as the

result of past actions of the parser or synthesizer

• the stacking of output buffers, and the passing
them back to be re-analyzed by SYNTAX, using a

possibly different set of rules

• table handling routines of great generality
• error recovery from syntax failures which might
be due either to a failure of the input text to

match the language defined, or of the supplied

rules to match the language intended.

3. Usage and Development of PROTRAN

3.1 Already Active

PROTRAN has been used in actual commercial projects with a

high degree of success. The first pair of correlators to be

completed translated from Algol to PL/I: the Bourrough's

dialect of the former, and the IBM dialect of the latter.

Rather more than a million Algol statements, representing a

particular customer's research and development systems, were

successfully converted.

Cobol-to-Cobol correlators have been coded, making strong use

of the conditional syntax features mentioned above. The Cobol

654

recognized is extended to cover both slack use of the language

and also parameter cards which can set any combination of the

following dialects:

input output

Honeywell 200 Honeywell 6000

IBM/360 ANSI IBM/360/370 ANSI

ICL 1900 ICL 1900

IBM/360 'F' ICL 2900

DEC PDP/11

DEC PDP/10

together with a lot of other options (default clearing of

working-storage, layout options, use of working-storage rather

than buffer areas for files, etc.). The Cobol language

produced is always very strict and carefully laid out. These

correlators too have been used to translate over 700,000 Cobol

input records to contract. The quality of the translation is

such that after translating a complicated payroll suite from

ICL 1900 dialect into IBM 370 (ANSI) dialect, only one state-

ment in every 2000 required manual alteration to achieve

successful running in the new environment.

A Coral 66 compiler for the IBM 370 has been written and

installed. These correlators to translate from an Algol-like

block-structured language into and assembler code were written

and tested to acceptance in well under a man-year.

3.2 The Future

Apart from extensions to existing correlators for computer

languages that are now being worked on, there are two main

avenues of development that we are following simultaneously.

These are: enhancements to PROTRAN itself, and the development

of natural language correlators. Two main enhancements are

planned: the embedding of correlators into a higher-level

language, and the use of 'zig-zag' parse techniques which are

a mixture of top-down and bottom-up, to improve analysis

speed. Neither of these is strictly necessary: they merely

655

ease the production of correlators, and speed their operation,

without adding any fundamentally new powers.

The development of natural language correlators is being

researched, though it must be admitted that insufficient

effort has so far been spent on the Esperanto-to-English pro-

ject to judge finally how long this is going to take to yield

practical linguistic results (the first stage of which we

define as being the acceptable translation of business texts,

particularly letters). There has already been a lot of spin-

off into PROTRAN itself as we tend to require facilities for

the natural-language project before there is a call for them

from the algorithmic language correlator pairs being devel-

oped.

Esperanto was chosen initially because of its regularity, but

none-the-less it raises complex problems. We are investig-

ating the use of a multi-dimensional vector-space to represent

meaning, in order to determine the English equivalent of a

single Esperanto word. The basis of this vector-space is an

abridgement of Roget's Thesaurus: the n'th element of the

vector representing the degree of relevance of Roget's n'th

paragraph [4], The search for an equivalent then becomes the

search for a 'close' point within this space (not necessarily

using the Euclidean metric). On top of this must be super-

posed the knowledge of the real world which is used to under-

stand language, and disambiguate texts. We have been strongly

attracted by the Preference Semantics of Wilks [5], and we are

investigating means of associating the dictionary/thesaurus

more closely with the parsing rules themselves, as this

approach seems to require: breaking down the distinction

between syntax and semantics.

Acknowledgements

Particular thanks are due to Dr. Raphael Mankin for both the

means of expression and the basic ideas contained herein. I

must also mention the encouragement and assistance of Mr. John

Cale, with much gratitude.

656

References

1. Alpiar, R.; Double Syntax Oriented Processing Comp J, 14 1
(Feb 1971), pp. 25-37.

2. Tosh, Wayne; Syntactic Translation Janua Linguarum, series
minor 27, Mouton, the Hague, 1965.

3. Brooker, R., et al.; The Compiler Compiler Annual Review in
Automatic Programming, Vol 3, Pergamon, 1963.

4. Roget, P. M.; Thesaurus of English Words and Phrases
Penguin, Harmondsworth, 1953.

5. Wilks, Yorick; An Intelligent Analyzer and Understander of
English Comm ACM, 18 5 (May 1975), pp. 264-274.

657

Appendix

Figure 1.

658

659

Worked Example

In translating from COBOL to PL/I the following problem

arises:

A Cobol qualified name consists of a series of 'words'

separated by 'IN' or 'OF'.

A Cobol 'word' consists of a hyphenated sequence of

identifiers.

The order of the names is from minor to major - most

particular to most inclusive.

A PL/I qualified name consists of a series of 'words'

separated by full stops (points).

A PL/I 'word' consists of a 'broken' sequence of

identifiers.

The order of the names is from major to minor - most

inclusive down to most particular.

Thus in translating a Cobol name to its corresponding PL/I

name it would seem reasonable to:

(i) change all hyphens to 'break'

characters (underline)

(ii) reverse the order of the 'words'

and (iii) separate them by '.' rather than

by ' IN' or 'OF' .

The following sample rules to achieve this fragment of trans-

lation assume that all multiple spaces have been edited to

single spaces, and that ID is a given (built-in) rule with

the same format as the Algol <identifier>; and under these

simplifying assumptions we may code the syntax:

LOAD COBNAME

COBWORD COFIN COBNAME ,

COBWORD ;

LOAD COBWORD

ID C'-' COBTAIL ,

ID ;

660

LOAD COBTAIL

 ID COBTAIL ,

 NN COBTAIL ,

 C'-' COBTAIL ,

 ID , NN ;

LOAD COFIN
C' OF' , C' IN' ;

NN is a built-in rule which recognizes any string of decimal

digits. The corresponding soutax to the above would be:

LOAD PLINAME

(COBNAME) PLINAME &'.'

(COBWORD) PLIWORD ,

(COBWORD) PLIWORD ;

LOAD PLIWORD

 &ID '_' (COBTAIL) PLITAIL ,

&ID ;

LOAD PLITAIL

&ID (COBTAIL) PLITAIL ,

&NN (COBTAIL) PLITAIL ,

'_' (COBTAIL) PLITAIL ,

&ID , &NN ;

Then the use of the combination

(COBNAME) PLINAME

will perform the required particle of translation.

