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1 INTRODUCTION 

This paper tries to give an overview of the state of 
EUROTRA development at the beginning of 1985. The 
system is under development in the sense that the project 
is now an official project of the European community, 
much basic preliminary work has been done, and work in 
the Member States has started. However,  as will be seen, 
linguistic work is in a very early stage, and no very 
concrete results are as yet available. 

The paper is composed as follows. In the first two 
sections, we describe the project 's purpose, some of the 
external factors influencing its organisation, its infra- 
structure and some of the design principles deriving from 
these general considerations. 

Section 3 discusses in more detail the model of trans- 
lation on which the project is based and some of the 
linguistic and metalinguistic issues involved. 

In section 4 we turn to the issue of communication 
between the linguists developing the linguistic modules 
and the computer. It presents our choice of a software 
environment that allows rapid development and modifi- 
cation of problem-oriented notations for linguists. 

Section 5 describes the architecture of the current 
software prototype, which has been implemented follow- 
ing the principles outlined in section 4. 

Since EUROTRA, as already noted, is barely out of its 
preparatory phase, the final sections do little more than 
sketch some factors that will determine the project 's 
future development. 

2 PROJECT HISTORY, BACKGROUND, 

AND ORGANISAT1ON 

EUROTRA is a research and development programme of 
the European Communities. It is intended to produce a 
comparatively small operational prototype translating 
operational prototype translating from each of the seven 
official languages of the Community into any one of the 
other seven languages. The programme period of five 
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and a half years started in November  1982. The total 
budget is roughly equivalent to 25 million dollars. 

The system is to be developed cooperatively, by inde- 
pendent teams working in each of the Member  States. 
Seven teams, some of them involving more than one 
Member  State, take primary responsibility for work on 
their own language. Two smaller teams carry out support 
work used by all the other groups, such as acting as a 
software clearing house or as expert terminologists. A 
further group, independent of the organisation in the 
Member  States, ensures coordination, is responsible for 
the linguistic framework within which the language 
groups agree to work, and provides documentation both 
for the software and for the linguistics. Software specifi- 
cations also are being developed by an independent team. 

At the time o f  writing (May 1985), seven of the 
Member  States of the Community have already signed 
the contracts of association under which the linguistic 
work in the Member  States is to be done. Signature of 
the remaining three is expected in the near future. 

The first peculiarity of EUROTRA can already be seen 
from this: it is very much a linguists' project. The aver- 
age size of a group working on a language will be on the 
order of 10-12 people. This gives a total of around a 
hundred linguists - a term that should be taken very 
broadly as including linguisticians, translators, lexicogra- 
phers and so on - as against perhaps ten people working 
on software. This fact has had a profound influence on 
the system design. 

Development is broken down into three phases, of 
which the first is drawing to its end: 
1. 1983-1984:  

The main tasks to be achieved during this period 
were the definition of a basic software to be used by 
all the groups and a preliminary definition of the 
linguistic framework to serve as the basis for work 
during the second phase. 

The manpower available during this phase reflects 
the concentration on setting up the basic framework. 
Some twelve people have been involved in producing 
software and linguistic specifications, whilst the 
language groups remained comparatively small, 
mostly equivalent to two or three people. 

2. 1985-1986:  
During this period a first working system is to be 
produced, taking all the seven languages as potential 
source and target languages. This system will be 
corpus based, and cover approximately 2,500 lexical 
entries for each of the languages. The corpus will be 
a Community text in the domain of information tech- 
nology. The choice of a corpus is constrained by 
two factors: equivalent versions of the corpus must 
be available in all of the languages, and, although the 
subject area should be technical, it should be an area 
with which the people in the language groups are 
reasonably familiar in order to minimize dependence 
on outside help for technical terminology. Certain 
Community texts fulfil both these conditions, and at 

. 

the same time provide an interesting range of sub- 
text-types, which is important in demonstrating the 
generalisability of the first system. It is perhaps 
superfluous to remark that testing and evaluation of 
the first system will not be based on the corpus 
alone. The system's ability to translate similar texts 
in the same subject area and with the same vocabu- 
lary will also be taken into account. 

The construction of the first system serves two 
main purposes. First it demonstrates the feasibility 
of the approach taken. A number of aspects are 
relevant here: it is laid down in the requirements the 
system must meet that it must, as well as being multi- 
lingual, be easily extensible in order to incorporate 
new subject areas, new text types, new linguistic 
techniques, and even new languages. To this end the 
system is designed to be as modular as possible and 
also puts a great deal of emphasis on the declarative 
representation of linguistic knowledge. Extreme 
modularity, besides ensuring easy extensibility, also 
makes it easy to repair the system, even, if necessary, 
re-writing sub-parts completely. 

Secondly, the construction of the first system 
provides the feed-back needed to refine and stabilize 
the linguistic framework. Of our seven languages - 
Danish, Dutch, English, French, German,  Greek and 
Italian - most have received comparatively little 
study within computational linguistics, and for nearly 
all of the language pairs contrastive work is almost 
entirely lacking. For this reason, many of the deci- 
sions taken about linguistic representation during the 
first phase cannot be known to be correct until they 
have been thoroughly tested during the second 
phase: indeed it is a fair assumption that they will 
have to be modified. Hence the emphasis in section 
three on the tentativeness of current proposals. Firm 
decisions will be made only towards the end of the 
second phase. 
1987-1988: 
In this phase, the real prototype system will be 
constructed. Once again, it will cover all the seven 
languages and will be corpus based, but the vocabu- 
lary will be approximately 20,000 lexical entries per 
language. The time allowed for this phase is only a 
year and a half (the programme period stops in mid- 
1988), so the importance of establishing reliable 
linguistic models by the end of the second phase is 
clear. Note that the prototype is still only a proto- 
type rather than an industrial system. During this 
last phase the question of industrial development will 
be considered for the first time. 

The twin constraints of multilinguality and decen- 
tralized development essentially determine some 
fundamental choices in system design. The system 
will be transfer based, but in the interests of keeping 
the transfer components as small as possible an 
attempt has been made in the definition of the 
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linguistic representation that is input to transfer, to 
determine what linguistic information can be consid- 
ered interlingual across the European languages and 
to treat it as such. For example, differences in 
syntactic structure between the languages are effec- 
tively neutralized before transfer, emphasis has been 
put on an attempt to define an adequate set of 
semantic relations common to all the languages, to 
define language independent representations of time, 
modality, and so on. In short, the linguistic represen- 
tation is semantically based, and as close to an inter- 
lingua as seems possible, whilst still recognising that 
a pure interlingua based system is out of the ques- 
tion. The primary aim of defining a representation 
rich in semantic information is always to reduce the 
size and complexity of the transfer components. In 
fact, in the ideal (but unrealistic) case, transfer 
would consist of simple lexical substitution. The 
desirability of keeping transfer small is obvious on 
purely economic grounds (42 transfer modules versus 
7 analysis and 7 generation modules). But at the 
same time, the extraction and use of interlingual 
information should do much to improve the quality 
of the translation. 

The system is designed to be integrated into an overall 
text-handling system suitable for use in a heavily pressed 
translation service. Thus, it is not intended that there 
should be any significant human intervention during the 
translation process, although, of course, the possibility of 
human revision of the output text is allowed for. The 
amount of post editing to be foreseen depends on the use 
to which the text is to be put. For simple text, or text to 
be used for information gathering, there should be little 
or none. For more sensitive text, careful post-editing will 
be required. Special input modules are being designed to 
eliminate any need for pre-editing. 

Although the primary purpose of EUROTRA is to build 
a working prototype for the seven languages, it is also 
intended to serve some important secondary purposes. It 
aims at stimulating research in Europe on machine trans- 
lation and related areas, including computational linguis- 
tics and natural language work in artificial intelligence, 
whilst at the same time building expertise in these areas. 
This is reflected in the software design, where an attempt 
has been made to design a general purpose tool for 
computational linguistics applications which is then 
specialized down into a machine translation software. 
The basic design is best seen as a system generator rather 
than as one particular software system. As will be seen 
later, the flexibility of a system generator is very useful 
even within the specific application of machine trans- 
lation. It makes it possible to offer the linguist a range of 
tools with which to express himself, leaving him to 
choose the tool most appropriate to the linguistic task in 
hand. 

3 SOME FUNDAMENTAL CHOICES 

It is clear from the preceding section that EUROTRA is a 
very ambitious project with a very special set of initial 
requirements, which, at the time of writing, distinguish it 
from all other machine translation projects of which we 
are aware. In particular, there are three a priori decisions 
about the general organisation of the project that have 
strongly influenced our whole methodological approach: 
decentralisation, diversification, and size. 

3.1 DECENTRALIZATION 

EUROTRA is intended from the start as a collaborative 
venture between groups working in all the countries of 
the European Community. Since the European Commu-  
nity institutions are set up to perform a political and 
administrative function, there is simply no place in the 
organisation for establishing large research institutions, 
particularly to serve R & D projects. In any case, the vast 
majority of the contributors to EUROTRA are faculty 
members in Universities and it would just be impractical 
to attempt to move them to one place for a period of five 
years. 

The consequence of this is that most of the EUROTRA 
work will be carried out by teams working semi-autono- 
mously on their own language, or in pairs on transfer. If 
a project of this magnitude is to succeed with such a high 
level of decentralisation, there needs to be a great deal of 
advance planning to ensure that all the components 
developed separately will fit together smoothly and 
correctly. This is why, in EUROTRA, almost all the 
linguistic work done to date has been preoccupied with 
the question of defining interfaces at the points where 
the different components meet. There are implications, 
too, for the software design, in that the software 
provided should facilitate modular construction of 
systems, even, if necessary, at the cost of other desidera- 
ta like efficiency. 

3.2 DIVERSIFICATION 

EUROTRA is also unusual in that it sets out giving equal 
priorities to seven languages and 42 distinct language 
pairs. Some of these languages (especially English) have 
been the subject of very detailed study by theoretical and 
computational linguists. Others, like Greek and Danish, 
have received comparatively little attention. In 
EUROTRA it would be quite foolhardy to base the entire 
design of the system on our experience of working with, 
say, English or French, assuming that the same linguistic 
and computational strategies will be appropriate every- 
where else. In any case, many of the countries of Europe 
have their own strong linguistic traditions, and we should 
expect these traditions to be reflected in the way scholars 
in these countries go about handling their own language 
on a computer. 

These considerations add to the problems we already 
face as a result of decentralization. On the one hand, 
such a level of inherent diversity increases the impor- 
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tance of initial /planning and particularly of a well 
defined; well understood, and adequate interface repre- 
sentation. On the other, we have to try to ensure that 
the representation chosen is sufficiently general to meet 
the requirements of all languages (and linguists) in the 
system, and sufficiently constrained to be practically 
effective. Here again, there are implications for the soft- 
ware design, of quite similar nature: we want to constrain 
the software so that it helps users to express what they 
want to express about their language; and we want to be 
flexible enough to cope with the idiosyncrasies of all the 
languages. 

This tension between generality, on one side, and a 
need for constraints on the other is pervasive in 
EUROTRA, and constitutes one of the most interesting 
and challenging aspects of the project. 

3.3 SIZE 

The last of the partice ar features of EUROTRA is the 
question of sheer size. Even in the development of the 
first initial prototype with a lexicon of a mere 2500 
words per language, we can expect the number of active 
contributors to the system to be over 100. Not only do 
numbers of this magnitude clearly compound the serious 
problem of diversification, but the mass of linguistic 
knowledge which has to be encoded in a relatively short 
time to meet the requirements of the full project term of 
5.5 years is quite staggering. In our view it will just not 
be feasible to try to encode such vast quantities of know- 
ledge using specialised programmers as intermediaries. 
We must expect that the people who have the knowledge 
(linguists, lexicographers, translators) will themselves 
have to interact directly with the system. Therefore we 
have concentrated on designing a software system 
intended to perform .computations on the basis of (mainly 
declarative) user knowledge as input. 

3.4 SUMMARY 

Although the idea of EUROTRA has been with us since 
1978, we are only now, at the time of writing, nearing 
the end of the design stage, and just beginning to exper- 
iment with the first prototype software system. Because 
of the peculiar circumstances of EUROTRA, the gestation 
period has been extraordinarily long, and we have been 
forced to reason at length and in some depth about the 
theory and methodology of machine translation. We 
believe, in retrospect, that this long preparatory phase 
has led to better  and more secure design, and will lead in 
its turn to a more manageable and robust machine trans- 
lation system. By the time this paper is published, the 
first intensive efforts at linguistic development will have 
taken place, and we shall know whether or not we are 
justified in that belief. 

In the remainder of this paper, we discuss first the 
current state of the EUROTRA linguistic specifications; 
then we outline our approach to the development of a 

suitable software environment for a project such as 
EUROTRA, and finally we finish with some speculations 
on the future of EUROTRA and on the question of evalu- 
ating our results. 

4 THE THEORY OF LINGUISTIC REPRESENTATION 

4.1 BASIC NOTIONS 

The following diagra m forms a good basis for the study 
of representations in a transfer-based translation system: 

(1) 

AN 

TRF 
Rs Rt  

I I 

1 I gEN 
| 1 
| I 

Ts T t  
TRA 

In (1), Ts and Tt are texts, where a language is regarded 
as a set Of texts. TRA is a binary relation, consisting of 
pairs of texts [Ts, Tt] where Tt  is a translation of Ts. So, 
given two languages, SL and TL, TRA < S L x T L .  We 
introduce, furthermore, p, which is a set of represen- 
tations of some kind. Rs and Rt are both members  of 
this set. We will write R when it is unimportant whether 
we are dealing with Rs or Rt, or when the context makes 
it clear which is intended. 

AN, TRF, and G E N  are all binary relations: 

AN _< SLxp ,  GEN < p x T L ,  and TRF _< p x p  

We define the composition AN o TRF o G E N  as the set of 
pairs [Ts,Tt] such that there exist Rs and Rt such that Ts 
AN Rs and Rs TRF Rt and Rt G E N  Tt. We will restrict 
our attention to those cases where AN o T R F o G E N  = 
TRA 

Analysis, transfer, and generation are systems that 
compute the relations AN, TRF, and GEN.  For  the 
reasons given in the previous section, EUROTRA tries to 
produce a detailed specification of the contents of the 
relations as input to the research teams that write the 
computational systems. For  this, we have a theory of 
representation. This should not be confused with the 
schemes for representation of knowledge proposed by, 
amongst others, Hayes (1978). Together with the know- 
ledge linguists and bilinguals have of their languages, this 
theory will specify the contents of AN, TRF and GEN.  
The contents of the theory itself depend in part on the 
aims of the EUROTRA linguistics (cf. section 2 above),  
and in part on experience gathered by the writers of the 
various subsystems. 
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4.2 THREE PRINCIPLES 

4.2.1 DIVISION OF LABOUR 

An important consequence of decentralized development 
in EUROTRA is that a serious amount of attention must 
be given to the nature of Rt, because a research group 
writing generation for language L should have concrete 
ideas about the class of inputs to expect. Moreover, this 
class should make sense to people who only know about 
L. In EUROTRA, we relate Rs to Rt, where these are 
both representations of texts in L, one would expect 
there to be some similarity between the Rs of some text 
T and the Rt that represents the same text. 

At first sight, one may be inclined to think that AN 
and GEN must be each other 's "mirror image", that is: 

(2) [T,R] E A N ( L ) i f f  [R,T] e GEN(L)  

Given (2), there is a lot of structure in the framework. If 
a given representation theory determines the Rs for some 
text, it also determines the Rt. This has two advantages: 
• First, since the class of Rs for language L is clearly 

understandable to linguists of L, the class of Rt is also 
understandable. 

• Second, given (2), it becomes possible to relate simplici- 
ty of transfer directly to the "depth"  of the represen- 
tations (for discussion, see section 4.2.2). 

However,  (2) is too strong, and may be in conflict with 
the idea of simple transfer. For example, if surface 
constituent structure is taken as (the basis for) a theory 
of representation, then (2) implies that TRF relates 
source language surface word order to target language 
word order, which clearly involves a lot more than substi- 
tution of lexical elements. 

Therefore, we define an equivalence relation between 
representations. We will not say anything about the 
contents of this relation here, since its definition clearly 
depends on the contents of the representation theory 
discussed in section 4. However,  it should be clear that 
we can use this relation (called isoduidy, which is an 
invented name) to relate GEN(L)  to AN(L)  as follows: 

(3) Relation between AN(L)  and GEN(L) :  

[RP,T] GEN(L)  iff [T,R] AN(L)  and R r isoduid to R 

In practical terms, this means that generation will relate 
each R r that is isoduid to R to the T that R belongs to. 

If we think again of surface constituent structure as a 
possible basis for a theory of representation, one could 
imagine that R p isoduid to R if they have the same verti- 
cal geometry but not necessarily the same left-to-right 
order of constituents. In that case, whatever structure 
transfer is presented with, it would only have to produce 
a representation with the target language vertical struc- 
ture. Generation then produces the text from that. 

As a consequence of this, the representation theory 
will, amongst other things, contain a substantive defi- 
nition of isoduidy. 

4.2.2 SIMPLE TRANSFER 

The reasons for the desirability of simple transfer have 
been stated in section 2. In order to give this notion 
some content, we have to be rather specific about the 
nature of the representations. 

In EUROTRA, the structure input to transfer (the 
interface structure) is always a hierarchical structure, that 
is, a tree. For our present purposes the linguistic inter- 
pretation of the nodes of the tree is irrelevant; it could be 
surface constituents, units of meaning, or whatever. 

We then introduce another relation, called trans la tes -  

as. This relation must not be confused with TRA or TRF. 
Translates-as is a binary relation, probably many-to-  
many. If we call 0* the set of all subtrees of all elements 
of 0, then translates-as 0* x 0". Its left-hand term is a 
subtree of the source language interface structure. Its 
right-hand term is a tree. The relation TRA is entirely 
different: it is a relation between texts. TRF is a subset 
of translates-as: it is the set of those elements of trans- 
lates-as for which the left-hand term is the topmost node 
of a representation of a complete text. 

The following example may clarify the idea of trans- 
lates-as. Dotted lines indicate instantiations of the 
relation. 
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(4) 

/ \ o P 
• T o m / \  

B . . . . .  F C . . . . . . . . . . . . . . . . . . . . . . . .  I (Tom) om/  
D . . . . .  g E . . . . .  0 

tzwem) (swim) (g~aag) 

Q R 

A (likeA 
O K S 1 ( l i k ~  (emptg)(swim) 

L M 
(emptg) (swim) 

Translates-as is a straightforward generalization from 
two notions that have already existed for a long time in 
various machine translation projects: 
• TRF, which is the same relation but only between root 

nodes of representations of whole texts; 
• the bilingual dictionary, which is the same relation but 

only between terminal nodes. 
We now turn to the notion of simple transfer. 

The basic EUROTRA view (see section 2, above) is 
that the relation translates-as is trivially simple in all 
cases except terminal nodes, which then correspond to 
the lexical units of the two languages. Actually, if this 
view were guaranteed to be correct, then the generalized 
relation introduced here would be just a useless compli- 
cation of the description of transfer: instead, we then 
would just say that transfer equals substitution of the 
lexical unit in a given representation. 

However,  there are three reasons for modifying the 
basic view. 

First, and most important, there are well known prob- 
lem cases such as the translation of the Dutch adverb 
graag to the English verb like: 

(5) Tom zwemt graag translates as 'Tom likes to swim' 

Many examples like this are caused by lexical holes in the 
languages; in the example, English does not have the 
adverb corresponding to graag. If we stick to the basic 
view, examples like these force us to have a rather 
abstract, "deep"  theory of the interface structure. Such a 
deep theory may cause difficulties to analysis and gener- 
ation in many cases; it would be motivated on the 
grounds of exceptions. 

Second, we assume that whatever theory we choose at 
the end of the second phase of the project has to stabilise 

and undergo no further modification during the third 
phase. Thus, even if it were feasible to construct this 
deep theory, it would be hard, if not impossible, to guar- 
antee that problems like the one described will never turn 
up during the third phase. 

Third, one importar  ~. way in which EUROTRA is said 
to be extensible is the possibility of adding other 
languages. But it is really impossible to have a version of 
the representation theory, based on the current seven 
languages, guaranteed to be compatible with the basic 
view on simple transfer when languages like Spanish or 
Portuguese are added. 

For these reasons, we believe that the possibility of 
some "complex transfer" will have to be accepted, where 
"complex" means that the relation translates-as is not 
always trivial. However,  the intention of the basic view 
remains valid. That is, the number of complex transfer 
relations must be minimized. 

A more precise formulation is the following. 

If A translates-as A t, then we will call A t a TN of A. 
We now call an element [s,t] of the set defined by 
translates-as a simple element iff 

either 
s and t are both terminal nodes, 

or  

( i )  

and 
(ii) 

and 
(iii) 

and 
(iv) 

s is a subtree, whose root node is the nontermi- 
nal node A. 

t is a tree, whose root node is A p, 

A p is a copy of A, 

the immediate daughters of A'  are copies of the 
TNs of the immediate daughters of A. 
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The principle of simple transfer then says that the 
proportion of simple elements in translates-as must be 
maximal. 

The generalised relation translates-as makes it possible 
to put some order into complex transfer. It localises it in 
a natural way, based on a tree structure. In (4), only the 
pair [C,I] is complex; all the others are simple. This view 
on transfer is easy to implement by means of an built-in 
strategy that simulates recursion. (See also section 4.4 
below). 

4.2.3 SPECIFICITY 

The problem of this section is the relation between the 
representation theory on the one hand and AN and GEN 
on the other. 

Clearly, the representation theory must be "specific", 
in the following sense: given the representation theory, a 
language group must be able to produce a device that 
characterizes the right set of pairs [T,R]. That is, a 
language group must be able to infer from the represen- 
tation theory 
(i) what the Ts are, 
(ii) what the Rs are, 
(iii) what the pairings between Ts and Rs are. 
It is likely (but not entirely obvious) that (i) will be 
unproblematic (it might be problematic if some special 
restriction on text type were imposed). But the same 
cannot be said for (ii) and (iii). A language group needs 
clear guidelines in order to be able to analyse its language 
in a way that is compatible with the principle of simple 
transfer. 

So, the representation theory must be rather specific. 
The obvious way to specify the pairings of texts and 
representations is to provide some full grammar that 
enumerates all the pairs [T,R]. However,  it is certainly 
not the task of the representation theory to define each 
of the languages in full. Its task is only to enable the 
language groups to do just that. So, the representation 
theory must be not only specific but also global. 

In the ideal case, the representation theory should 
strongly suggest a "discovery procedure"; that is, given 
the representation theory and some set of relevant data 
of some language L, it should be possible to construct the 
"right" grammar of L: 

(6) the representation theory + knowledge of L yield 
correct grammar of L 

However, the state of the art of discovering useful 
discovery procedures or even evaluation metrics in 
linguistics is not such that we may hope to achieve this in 
EUROTRA. So, in practice, there will be a representation 
theory that is not specific enough, and the grammars of 
the languages will not necessarily be "right". 

In EUROTRA, we try to partly overcome this problem 
by relating the representation to the text via some inter- 
mediate representations. That is, some "level" of repre- 
sentation is defined with respect to some other "level", 

for which it is easier to relate it to the text. Note that 
this only applies to the definition of the relations AN and 
GEN,  and not necessarily to the working of analysis and 
generation. Furthermore, we try to stick as much as 
possible to traditional linguistic analyses and provide a 10t 
of exemplification. Finally, there is a central linguistic 
team that can bring into agreement the work in the 
language-specific centres and the general representation 
theory. 

4.3 THE GENERAL THEORY OF REPRESENTATION 

4.3.1 LEVELS OF REPRESENTATION 

Texts are represented in different ways in EUROTRA; 
these are called levels. 

First, there is the level of normalized text, roughly a 
sequence of words and special symbols. A word is any 
string of characters. In what follows, by " text"  we will 
always mean "normalized text". 

Second, there are the intermediate levels. In 
EUROTRA, there are three of them: 
• the EUROTRA Morphological level (EM) 
• the EUROTRA Surface Syntactic level (ESS) 
, the EUROTRA Deep Syntactic level (EDS) 

Third, there is the Interface structure, intended to be 
the level at which transfer (i.e., simple transfer) takes 
place normally. 

One may wonder what all these levels are for. 
While the purpose of the level of normalized text is 

clear, as well as the purpose of the interface structure, 
this is less obvious for the intermediate levels. Their 
purpose is threefold: 
• They serve specificity, in that they make it possible to 

talk about the interface structure and its relation to 
texts in a well-defined way; 

• They may be the basis for some stratificational analysis 
or generation strategy; while such a strategy may ulti- 
mately turn out not to be the most desirable one, espe- 
cially in the case of analysis, it could serve as a "safety 
net"  if a more "intelligent" strategy fails to yield a 
result; 

• Representations at the intermediate levels may serve as 
safety nets for transfer; this holds certainly for the 
"morphological level", as at least the lexical units have 
been identified there. 

4.3.2 THE NOTION OF CONSTRUCTION 

The fundamental notion in EUROTRA representations at 
all levels is the construction. A construction is a struc- 
ture, made out of primitive elements and other 
constructions; a text is considered a construction itself. 

4.3.2.1 DEPENDENCY CONSTRUCTIONS 

The primary principle of the EUROTRA representation 
theories is dependency. In this section, we describe the 
intuitive basis for this notion. 

A dependency relation is said to hold between two 
elements in certain circumstances. One member  of this 
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relation is called the gov(ernor), the other element the 
dependent. 

Two intuitive ideas determine the existence of a 
dependency relation between a gov and some dependent. 
• The gov expects to find certain types of dependents in 

its neighbourhood. This expectation is inherent to the 
element that constitutes the gov, and may be a piece of 
dictionary knowledge. 

• The goy is felt to be modified by the dependent. 
Thus, to say that there is a dependency between two 
items is to say that the dependent element is either a slot 
filler or a modifier of some other element, called the gov. 

One further principle determines the nature of 
EUROTRA dependency grammar: the gov must always be 
a primitive element (with respect to the level involved). 
The nature of what are called primitive elements may 
vary amongst levels of representation. 

A dependency construction is the collection of 
elements consisting of one gov and all its dependents. 

The description given here is rather abstract; each 
distinct level of representation instantiates dependency in 
its own fashion. 

4.3.3 CATEGORIES 

Constructions as well as primitive elements can be cate- 
gorized in various ways. For example, if we take words 
as primitive elements, then we can classify them with 
respect to lexical class. Constructions can be categorized 
according to syntactic category, like sentence, or noun 
group, which cross-classifies with the distinction between 
dependency and coordinate constructions. 

Dependency relations can also be categorized. For 
example, notions like "subject"  or "object" ,  and also 
"agent"  or "pat ient"  can be taken to be types of depend- 
ency relations. One classification of dependency 

relations must of course be fundamental; since depend- 
ency is said to be based on the notions slot filler and 
modifier, there will always be two categories associated 
to them. We call them complement (for the slot filler) 
and modifier (obviously, for the modifier); abbreviations 
are compl and mod. 

There is an intimate relation between the category of 
the gov and the category of the construction of which it 
is a gov. As the nature of this relation varies across 
levels, we will not discuss it here. 

4.3.4 THE BASIC REPRESENTATION THEORY 

The representational device used in EUROTRA is the 
labelled tree. 

The representational principles are straightforward: 
• There is a one-to-one correspondence between leaves 

of the tree and primitive elements of the construction 
represented by the tree; 

• There is a one-to-one correspondence between nonter- 
minal nodes of the tree and constructions of the text; 

• Labellings on the nodes express the categories of primi- 
tive elements, constructions, and dependency relations. 

This embodies a very strong theory about language: it 
says that each text is a construction, and that each 
construction is a straightforward hierarchy of primitive 
elements and constructions. Elegant though this idea is, 
we will shortly see that it is empirically wrong. Conse- 
quently, the representation theory will have to be 
augmented. 

But first, we give one example of a representation: 

Given the text: 

(7) John and Mary went to Paris 

We may have the following tree: 

(8) 

. . t  g j  \ 
( to )  ] 

yov gov 9ov 
(Oohn) (Ma~y) (Par i s )  

Note that we have omitted all the labellings, except two: 
we have indicated the govs, and the coordinate 
construction has got the label con. 

4.3.5 THE AUGMENTED REPRESENTATION THEORY 

There are two classes of problems to the basic represen- 
tation theory. First, the theory implies that no unit 
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(primitive or construction) can be a member  of more 
than one construction. Second, it implies that every unit 
must be a member  of at least one construction (with the 
exception of the text itself). Both implications turn out 
to be wrong. 

4.3.5.1 UNITS THAT ARE PART OF MORE THAN ONE 
CONSTRUCTION 

The following is a possible type of counter-example to 
the basic representation theories. Suppose that in a 
sentence like John tried to swim the element John is felt 
to be a dependent of tried. It is then a member  of two 
constructions, as described informally: 

n r l  I I I 
Construction John tried to swim 

nr2" I ] 

The element John is a member  of two constructions; this 
is impossible to represent in the form of a tree. 

The second example shows that one unit can also be 
the gov of two dependency constructions. 

nrl .  I I I 
Construction Tom went to Paris and Hanna  to London 

n r2 .  [ I I 

The unit went is the gov of two dependency 
constructions. 

The representation theory is now changed in the 
following way. We introduce the notion of empty 
elements. These are meant to be "shadow elements" of 
their antecedents, i.e. the elements that participate in 
more than one construction. Obviously, the relation 
between an empty element and its antecedent must be 
expressed in some way other than tree geometry; in 
pictures of trees, we will use coindices, but that should 
not prejudice in any way the representation method 
chosen in the actual computational systems analysis, 
transfer, and generation. 

As a consequence of this, the idea of a one-to-one 
relation between leaves of trees and primitive elements of 
texts is now no longer valid: the empty elements in trees 
are leaves that do not correspond to anything at all in the 
text. 

Given empty elements, we can now represent the two 
problem cases as follows: 

(9) 

( i )  ( t ~ i ed )  

g ov em~ t U g ov 
( , J o h n )  ( i )  (swim) 

(10) 

I emptu 
( i )  

dohn to Par is  Hanna to London 

4.3.5.2 UNITS THAT ARE NOT PART OF ANY CONSTRUCTION 

The typical example is: 

(1 1) Frankly, I do not care a bit 

Here,  the element frankly cannot be said to be a depend- 
ent of any gov. The problematic elements are called 
transeonstruetionals. They are counter-examples to the 
basic representation theory. This theory is augmented as 
follows. Transconstructionals are represented as if they 
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were dependents in the construction they are related to 
intuitively. However,  in order to indicate that they are 
not real dependents, a special label is attached to them, 

indicating pseudodependency. The actual pseudodepen- 
dency label depends on the representation level. 

The following is an example tree: 

(12) 

pseudo [ gov I 
(real lg) (am) 

gov gov 
(I) (serious) 

4.4 THE INTERFACE STRUCTURE 

At this moment,  EUROTRA has only preliminary 
proposals about the contents of the interface structure; 
this is natural, since decisive arguments about it must 
come from experience with the writing of transfer 
systems for all the language pairs. On the current 
proposals, the interface structure will be a tree,where left 
to right order of the sub-trees is irrelevant, with a geom- 
etry that is 'deep syntactic' in that its leaves are lexical 
units and surface word order is not necessarily mirrored 
by the geometry. 

The trees will be labelled extensively. 
As well as the more conventional labels indicating 

morphological and syntactic features of constructions, 
there will be labels indicating what in the introduction 
was called interlingual information. There is no space 
here to do more than indicate what kinds of information 
are included in this category. 

For example, there will be labels expressing time and 
modality. 

Modality labels are necessary for disambiguation of at 
least modal auxiliaries. One well-known example: 

(13) E : can 
translates as 
F : pouvoir or savoir 

The choice is made on the basis of a modal label differ- 
entiating between ability and possibility. 

Time meaning is certainly one of the more difficult 
matters in linguistics. Without some semantically-based 
time label, EUROTRA would have to translate from 
morphological tense to morphological tense. That would 
already mean a deviation from simple transfer as defined 
in the framework, as tenses are normally not considered 
lexical units. However,  even if the project accepts such a 
deviation, then there is a severe problem of choice in 
transfer. One example is the translation of 'present '  from 
Dutch to English: 

(14) NL : present 
translates as 
E : present or present progressive or future 

The list indicates the kind of problem transfer writers 
would meet if there was no time label. Example trans- 
lations are: 

(15) NL 
E 

(16) NL 
E 

(17) NL 
E 

These examples are relatively simple, but as soon as 
we take complex sentences and sequences of sentences 
into account, the problem for the transfer writer gets 
really difficult. Therefore, there is good reason for a 
label that captures the "time meaning" of a text; this may 
even be interlingual. In any ease, we expect that such a 
label will considerably simplify the task of the transfer 
writer. 

With similar justification, i.e. the need to simplify 
transfer and to produce good translation, semantic 
relation labels (such as agent, patient), Katz-Fodor  type 
markers, morpho-syntaetie class markers, and represen- 
tations of anaphoric relations are included in the inter- 
face structure. 

: Ik lees een boek 
: I am reading a book 

: Ik lees vaak boeken 
: I often read books 

: Morgen lees ik zes boeken 
: Tomorrow I will read six books 

5 COMPUTATIONAL TECHNIQUES 

In the present state of the art, the problem of machine 
translation is not fully understood. In some sub-domains 
(e.g., English syntax, English-French lexical equiv- 
alences) we have a good deal of experience, a rich 
theoretical literature, and, hence, the confidence to 
predict in some detail the behaviour of the program to do 
the job. In other areas, (the synthesis of Greek texts, 
mapping Italian representations to equivalent Danish text 
representations), we have virtually no experience and can 
only make informed guesses about the "right" way to do 
the job by computer. In the worst case we are still (at 
the time of writing at least) hopelessly at a loss when it 
comes to characterizing precisely what is preserved in 
translation if more than two languages are involved. In 

164 Computational Linguistics, Volume 11, Numbers 2-3,  April-September 1985 



Rod Johnson, Maghi King, and Louis des Tombe EUROTRA 

other words, we do not have, as yet, anything like a 
complete theory of multilingual machine translation. We 
have argued elsewhere, and at some length (Johnson, 
Krauwer, Rosner, and Varile 1984, Johnson and Rosner 
1984) that it is in the nature of problem-oriented soft- 
ware to embody some theory of the problem domain, and 
we shall not repeat the detailed arguments here. 

We simply restate our view that no existing solution to 
the question of finding an appropriate problem-oriented 
programming language for machine translation seems to 
us to be acceptable for EUROTRA. These solutions fall 
roughly into three categories: 
(a) Assume some theory and implement it directly; this 

approach is fairly rare, but seems inherent, for 
instance, in Jan Landsbergen's Rosetta project 
(1984). 

(b) Use an existing programming language, perhaps 
extended by a library of purposely-built macros, 
sub-routines or functions (depending on persuasion): 
examples of this approach are the IBM macro assem- 
bler in SYSTRAN (Bruderer 1978) and FORTRAN in 
SUSY (Maas 1984). 

(c) Invent a new programming language, embodying a 
very weak, low-level theory of machine translation - 
usually based on explicit tree-to-tree mappings as in 
ROBRA (Boitet and Nedobekjine 1982), Q-systems 
(TAUM 1973), and GRADE (Tsujii 1983). The 
underlying thesis is normally sufficiently weak, in 
such cases, to allow the claim that the language has 
universal or near-universal application for all or most 
of machine translation tasks. 

We have not adopted (a) because there is not suffi- 
cient practical evidence of a single theory that encom- 
passes translations between all pairs of the Community 
languages. We reject (b) on the grounds discussed at 
some length in section 2. above: ordinary programming 
languages are just too unconstrained to be reliably 
handled by a large, loosely-linked community of users, 
many of whom are unskilled in their use; and they 
obscure some of the true issues of linguistic knowledge 
representation and use in the detail of managing a v o n  
Neuman machine (or lambda calculus or Horn clauses or 
what have you). The last option, (c) is more interesting. 
In principle, we reject (c) also, although in the short term 
we have adopted a form of it for reasons of expediency, 
as we explain below in section 6. We are sceptical about 
any kind of universal programming language for machine 
translation, because we believe that the tasks involved in 
machine translation are essentially heterogeneous in 
nature. If we are constrained to use the same language 
to describe syntactic parsing, "semantic" interpretation, 
lexical and structural transfer, resolution of structural and 
lexical ambiguities, in and between seven different 
languages, it follows that either all of these are compara- 
ble or that the language of description gives us very little 
help in saying what we want to say. 

To give a very simple example, suppose we have a 
strategy for parsing English that uses phrase structure 

recognition to construct a network of syntactic relations 
(SUBJECT, OBJECT, etc.) and then maps these relations 
to case relations like AGENT, PATIENT etc. In the 
homogeneous view of the world, we might have to write 
something like: 

given A +B where ca t (A)=NP and ca t (B)=VP 
build C(A+B)  setting ca t (C)=S 

and 
given A +B where ca t (A)=V and ca t (B)=NP 
build C(A+B)  where ca t (C)=VP 

followed in a later process by." 

given A ( B + C ( X * + D + Y * + E + Z * )  
where ca t (A)=S and ca t (B)=NP 
and ca t (C)=VP and ca t (D)=V 
and cat (E )=N P  

build P ( Q + R + X * + Y * + Z * )  
where srel(P)=pred and srel(Q)=subj 
and srel(Q)=obj  and lex(P)=lex(D) 
and lex(Q) =lex(B) and lex(R)=lex(E) 
and semf(P)=semf(D) and semf(Q)=semf(B) 
and semf(R)=semf(E)  

/*  semf stands for "semantic feature", X*,Y*, Z* 
are intended to stand for variables over sequences 
of trees * /  

followed again later by 
given A(B+C)  where srel(A)=pred and srel(B)=subj 

and srel(C)=obj  and action-process in semf(A) 
and animate in semf(B) 

build A(B+C)  adding case(A)=pred and case(B)=agent  
and case(C) =patient 

While the above notation is very informal, it is worth 
noting the very arbitrary semantics that underly it. For 
example, there are clearly conventions about the use of 
identical variable names on the left and right hand side of 
rules; in some cases, right hand nodes may be understood 
as copies of corresponding nodes on the left (indicated 
by the use of where), in others they may be interpreted as 
identified with their left hand counterparts (indicated by 
adding). The arbitrariness is not accidental - indeed, 
since the linguistic theory underlying the notation is so 
weak, the meaning of the notation cannot but be arbi- 
trary to the user. Their arbitrariness, however, is not the 
biggest defect of notations of this kind. Where they real- 
ly fail is in being intolerably cluttered, since the user is 
forced to be explicit about every detail of the operations, 
precisely because in the absence of any strong linguistic 
theory, none of the responsibility for details can be left to 
the machine. 

Consider now the same statements in a more perspicu- 
ous notation: 

S ~ N p [ i s u B J = . ]  v p [ i = , ]  
VP ~- V[ i = , ]  N p [ i o B J = . ]  

and elsewhere (in the lexicon perhaps), 
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if action-process in semf(PRED) 
and animate in semf(SUBJ) 

then [SUBJ-- AGENT,OBJ-~  PATIENT].  

Again the notation is informal, but not totally arbitrary 
(the debt to Lexical Functional Grammar  (Kaplan & 
Bresnan 1982) is obvious). What is significant, though, 
is not so much the syntax of the notation as its semantics. 
Because we have a theory of parsing, we can include in 
the user's machine a large chunk of the meaning of what 
it is to parse within that theory. As a result, the user is 
left with a much clearer view of the task in hand: to 
provide the details of specific cases within the theory. 

The ideal goal of the EUROTRA software design 
should be to provide just such a theory sensitive system 
for machine translation. Unfortunately, and we have 
made the point many times here, we just do not have 
sufficient knowledge of the domain to provide the neces- 
sary theoretical input, and the problem is magnified in 
the special circumstances of EUROTRA. 

What we have therefore built is an environment in 
which new theories and /o r  sub-theories of machine 
translation can be implemented very rapidly on an exper- 
imental basis. The environment consists essentially of 
four parts, not including the usual editing and debugging 
facilities. Two of the parts are quite standard: a compiler 
compiler, which we use to write compilers for the 
languages of a new theory; and a kernel interpreter that 
runs the outputs from the compiler. What  is interesting is 
that we contrive to make the process of compilation as 
much as possible a purely syntactic one, mapping state- 
ments in the user language into a simple tuple language. 
Statements in the tuple language are not, however, 
executable directly by the kernel interpreter, since they 
contain as yet uninterpreted symbols. The interpretation 
of the symbols is given by external definitions, which are 
of two types: control definitions and data definitions. 
As the names suggest, data definitions are essentially 
instructions to a pattern matcher which acts as a slave to 
the main interpreter; control definitions define how and 
when calls to the pattern matcher are made. By judicious 
choice of the definition languages we are able to use 
these external definitions in two ways - to make rapid 
implementation of new theories, and to serve directly as 
specifications for a more efficient implementation, should 
the user agree after experimentation to include a new 
theory in the system. A more detailed description can be 
fou0d in Johnson, Krauwer, Rosner, and Varile (1984). 

This device is already proving very effective in allow- 
ing users to try out new ideas. More important,  it frees 
us from the dangers of committing the user community 
too early to a small number of particular strategies, which 
may turn out to be unsuitable in the medium term, with- 
out making ultimate commitment impossible by imposing 
monolithic homogeneity from the start. 

Nonetheless, we clearly need to make some decisions 
now, however provisional, so that we can get started. 

The remainder of this section describes the first user-lan- 
guage prototype implementation which is being handed 
over to users for preliminary experimentation. 

All our software prototyping has been done under 
Unix, 1 both for reasons of easy portability and because of 
the rich set of available software tools. The original 
prototype was developed on a VAX-11/780 under bsd 
version 4.2, and successful ports have been made to a 
bsd version 4.1 on a VAX 750 and to a Dual Systems 
83/20 running Unisoft Version 7. We are about to 
attempt a port to a Sun Workstation and anticipate no 
serious difficulty. 

It should be noted that our decision to adopt Unix as a 
software prototyping environment (and therefore neces- 
sarily as a linguistic prototyping environment in the short 
term) does not necessarily of itself commit the antic- 
ipated industrial implementation to any particular 
hardware/sof tware  combination. The main purpose of 
our own software prototypes is to help us derive more 
reliable specifications for the industrial implementation, 
and to provide temporary short term support for linguis- 
tic experimentation. 

6 THE FIRST USER-LANGUAGE PROTOTYPE 

6.1 PROCESSES 

The overriding design criterion we have followed is that 
of modular construction. Not only is this generally desir- 
able, it is virtually essential given the organisational 
framework of EUROTRA. The basic unit of a user 
"program" is called a process. Since we want it to be 
possible for users to test parts of a system independently 
of others, and indeed to combine parts together in a reli- 
able way, we have been particularly careful to provide 
ways of limiting or even excluding the propagation of 
unexpected side effects between processes. We achieve 
this by defining a process as a quintuple 

process=[name,  expectation, focus, body, goal] 

The name is just a symbol used to identify the process. 
The expectation and the goal are pattern descriptions 
that serve a number of desirable functions. The most 
important of these is to guarantee that the domain and 
range of the process can be known when the process is 
defined. They achieve this by acting as filters over the 
currently active data configuration. A process may only 
operate on data that satisfy the expectation; correspond- 
ingly, only data that satisfy the goal are allowed to be 
output from the process. Operationally what happens is: 
the system attempts to apply the process by matching the 
expectation against the currently active data set; the 
process is invoked only if a match is found, in which case 
the process is applied in parallel to all data subsets that 
match; on termination (we assume that the process 
terminates) all results are matched against the goal; in all, 
and only, the cases where the match succeeds, the new 

1 Trademark of AT&T Bell Laboratories. 
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results are added to the active data set, and the system 
proceeds to the next task. 

The focus gives a way of narrowing down application, 
to a subset of the data set yielded by the expectation; this 
is necessary, for example, when a process invokes itself 
recursively. 

The process body may be either primitive or non- 
primitive. Processes with primitive bodies are also called 
grammars, and we shall return to them later. Non-primi- 
tive bodies consist of expressions over the names of proc- 
esses, where the meaning of the expression can be varied 
by external definitions. In the current version, we allow 
regular expressions over processes, interpreting the 
concatenation operator as sequential application, the 
union operator as parallel application and the closure or 
star operator as all paths combinatorial application. The 
principle underlying this general scheme of controlling 
pattern directed invocation via a formal control language 
owes much to the work of Georgeff  (1982). Thus, in the 
body of a process, a user might write 

body 
pl ,p2, (p3 I p4) 

with the meaning "apply p l ,  then p2, then p3 and p4 in 
parallel". Our current compiler is defined to translate 
this into the tuple 

[sequence, pl,p2,[parallel, p3,p4]] 

And, in our control definition language (we currently use 
FP, Backus 1978), the definition of apply includes: 

apply= atom--,- execute; 
eq o [1,'sequence] --,- / app ly  o tail; 
eq o [1, 'paral lel]~apply o tail 

where, with some simplification 

execute = 
integrate o filter-goal o apply o filter-expectation. 

It should be emphasised that the user is only concerned 
with writing (and understanding!) statements like 

body pl ,p2, (p3 I p4) 

6.2 GRAMMARS 

The process interpreter continues to try to apply proc- 
esses until it bottoms out at grammars (processes whose 
body is a primitive). The structure of a primitive depends 
on the theory it implements: thus a general rewrite primi- 
tive will be organised - and defined - differently from a 
dictionary primitive, which in its turn will differ from a 
transfer primitive, and so on. We currently have very 
few primitives, since the system is still in an experimental 
stage. The most important is a non-deterministic tree 
transducer, implementing a general re-write system, 
which does not differ in any interesting way from 
Colmerauer 's  Q-system (1971) or Kay's  powerful parser 

(1967). Its main purpose is to provide users with a very 
(excessively) powerful tool for experimentation, and to 
provide fall-back for those cases where there is no 
adequate computational linguistic theory. We also have 
an analysis dictionary (a device that maps strings to 
nodes with complex collections of attributes and 
features) and a phrase structure parser. We are about to 
start on a transfer device to implement the proposal 
outlined in section 3, and, as a more searching test of the 
capabilities of the basic tools, an implementation of a 
multilevel parser inspired by LFG. Once the basic tools 
were built, we found it very easy to build prototype 
implementations quickly. For  example, the general 
re-write system took about two man-months.  The first 
dictionary implementation took less than a man-week. 
We expect that the transfer device will take around two 
to three weeks; the multilevel parser will almost certainly 
take longer - perhaps a month to six weeks. 

6.3 DATA STRUCTURE 

In our system, there is no data "structure" as such. The 
same effect is achieved through interaction between a 
pattern matcher and a data base of primitive objects 
called nodes. The behaviour of the pattern matcher is 
defined externally through statements in a data definition 
language, much in the same way as the meaning of 
system control constructs is defined in FP. At the pres- 
ent time, we are using Prolog to supply both the data 
base manager and the definition language. This is not 
totally satisfactory, and we expect to have a more appro- 
priate "in-house" data definition language shortly. 'To 
give a flavour of our data definitions, we give a single 
example of the definition and use of a tree, in pseudo- 
Prolog. 

First we define some basic relations, using built-in 
higher-order relations: 

antisymetric (dom) 
intransitive(dom) 
irre flexive (dom) 
$dom(x,x) 
$dom(x ,y) : -  

dom(x,z), 
$dom(z,y) 

/*  reflexive transitive closure * /  

tree (R,x) : -  
Sdom(R,x) /*  tree x with root R * /  

If the notation #x in the user program means "bind x to a 
tree", then we define our compiler to translate #x to [tree 
x]. The control interpreter simply performs elementary 
syntactic manipulation on data requests and passes them 
directly to the data manager, [tree x] is transformed to 
tree (-,- x). Repeated calls to the data manager will yield 
all possible trees x in the currently active data set. 
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6.4 DISAMBIGUATION 

The system potentially has a number of ways of dealing 
with ambiguity. Which ones are used depends on the 
extent to which disambiguation strategy is embedded into 
an implemented theory. 

The simplest device is an extension of the use of goals 
to allow the user to supply an ordered list of goal 
descriptions. The system simply continues to try to 
match goals, in order, until it finds one which succeeds. 
The output from that goal is the result of the process. 
This rather cumbersome device is actually quite useful, 
for example in constructing elementary preference strate- 
gies painlessly. It is, however, not particularly subtle. 

More interesting are strategies that exploit the inher- 
ent parallelism of the system - defined, for example 
through the (apply to all) functional of FP. Normally, 
the results of a parallel process application are all added 
to the current data set "in the same place". We could, 
however implement a primitive that allows the user to 
state criteria for selection between competing represen- 
tations, and to exclude less favoured ones on the basis of 
linguistically motivated judgements. This would only be 
sensible, however, if the user were able to formulate such 
judgements in a general way. 

Finally, we also have the option of implementing a 
relation a l t  (for alternative) directly in the data defi- 
nitions (we have, in fact, done a simulation of a chart 
parser in this way). The problem here is that an alt 
relation between nodes is easy to handle, but an induced 
alternative relation between sets of nodes is not, unless 
the process that constructs it is very well behaved (for 
example, only building alternatives between simple 
constructs like trees). We do not know of any practical 
method of guaranteeing that such a relation can be main- 
tained in a system which can perform transformations of 
arbitrary complexity. 

6.5 EFFICIENCY 

The system we have described here is not particularly 
efficient - indeed it can be dramatically inefficient when 
presented with only moderately large and complex 
computations to perform. We are not (yet) unduly 
concerned by this inefficiency, for two reasons. First, we 
are still at the experimental stage where correctness is 
still more important than speed; there are no plans for an 
industrial implementation before 1988. Second, the 
experimental device we have described here has two 
equally important functions: the first is indeed to permit 
us to generate implementations of new theories rapidly 
for experimentation in the field; the second is to provide 
the basis for a formal specification of the semantics of 
that theory. If we can construct prototypes using precise 
definition languages, with the benign side effect that the 
same prototypes perform tolerably well for experimental 
purposes, we can be confident that an optimized imple- 
mentation derived from the same specifications has a 

good chance of being both correct and operationally effi- 
cient. 

7 CRITERIA FOR SUCCESS 

It is obvious from what has been said already that 
EUROTRA is to be regarded as a research and develop- 
ment programme, rather than as either a pure research 
project or a pure development project. This affects the 
criteria that will be used in evaluating its success or fail- 
ure. Main emphasis, even at the end of the five and a 
half year programme period, will be put on quality of 
translation, with speed and efficiency playing a relatively 
minor role. (Of course, certain minimum limits of speed 
must be reached if only to allow the large amount of 
linguistic development work necessary to be accom- 
plished). Quality will be judged in terms of ability to 
cover the corpus texts and other texts in the same general 
class. The testing procedure will probably bear a strong 
resemblance to that used for evaluating METAL (Slocum 
et al. 1984). 

Apart from the quality of translation, one of the main 
criteria in evaluating t h e  system design will be ease of 
extensibility. Exact procedures for evaluation will be 
decided by the programme's management committee 
towards the end of each phase, when a checkpoint must 
be passed before permission is given to pass to the next 
phase. 

8 FUTURE DIRECTIONS 

EUROTRA's future falls into two distinct parts: the future 
covered by the programme period itself, up to mid-1988, 
and the future after that. During the programme period 
itself, two further languages (Spanish and Portuguese) 
will be added, increasing the number of language pairs to 
72. (It goes without saying that not all 72 language pairs 
would be fully treated by mid-1988.) Apart from this 
extension, it is planned to increase the variety of text- 
types dealt with, although remaining within the general 
area of Community texts. There will also be some exper- 
imentation with subject areas other than the one initially 
chosen. Throughout the programme period, the flexibili- 
ty and modularity of the system design will encourage 
experimentation with different linguistic techniques, as 
well as making it possible to expand and repair the 
system with ease, since the extremely modular approach 
taken makes it possible for any single module, for 
instance a primitive process treating noun groups or 
carrying out dictionary look-up, to be modified independ- 
ently of other processes, even, in the limit, being replaced 
by a completely different process. When a process is 
modified, the goal attached to each process becomes 
important in that by specifying the results to be delivered 
by the process, unforeseen interactions with other proc- 
esses in the system are prevented. 

During the third phase, planning of the future after the 
programme period will begin. The feasibility and desir- 
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ability of an economic development of the working 
prototype system will be investigated, and specifications 
drawn up if it is decided to go ahead. At the' same time, 
by Community conventions for researcfi and develop- 
ment projects, both the prototype system and the kernel 
software will be distributed at cost to Government insti- 
tutions, and to Universities and research institutes in the 
Member States. Indeed, the software can be distributed 
to these parties before the end of the programme period 
to be used as a research tool. This is one of the ways in 
which EUROTRA hopes to stimulate research outside the 
immediate environment of the project itself. 

It could, with some justice, be said that all of 
EUROTRA lies in the future: given the time and resources 
invested in defining a sound linguistic basis and a flexi- 
ble, heavily problem oriented software, it is our hope that 
the future can be faced with confidence. 
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