
[From: A.Zampolli, N.Calzolari (eds.) Computational and mathematical linguistics. Proceedings of
the International Conference on Computational Linguistics, Pisa, 1973, vol.II (Firenze: Olschki,
1980)]

ALAN K. MELBY

JUNCTION GRAMMAR AND MACHINE
ASSISTED TRANSLATION

1. The Junction Grammar Model of Language.

Junction Grammar is a generative grammar with multiple levels
of representation. The deep level is a nonlexical conceptual level, where
the meaning of a segment of discourse is represented by a set of inter-
secting branching trees, each tree consisting of conceptual units (or
sememes) and junctions.1 The junction patterns (whence the name,
Junction Grammar) are selected from a finite language-independent
pool, and are used to describe the relationships between the sememes.

The basic concepts of Junction Grammar were developed at Brigham
Young University by Dr. Eldon G. Lytle from 1968 to 1970, but sig-
nificant refinements to the theory continue to be added. We will first
examine the Junction Grammar model of language, then the model of
translation suggested by the model of language, and finally an appli-
cation of the model to mechanical translation or, as we prefer to term
it, computer-assisted translation.

The Junction Grammar model distinguishes four levels of represen-
tation (see Fig. 1).
Level I is the real world, where objects represent themselves. Level II
is the conceptual level at which we postulate that a person has a pool
of base sememes from which he draws to form segments of discourse by
the application of junction rules. These sememes correspond to a par-
ticular meaning of a word, phrase, or part of a word at level IV. At
level II, we call a meaningful segment of discourse a “Well-Formed
Syntacto-semantic Statement” or WFSS (pronounced /wufəsəs/). A
WFSS is a statement about the syntax which joins a set of concepts
to form a segment of discourse. This level II syntax is not to be confused
with surface syntax, which deals with such matters as word order. Our

1 Other work in the area of conceptual grammar includes that of Roger Schank at
Stanford University. See various ARPA reports.

Note: Levels II and III are in the mind.

Fig. 1. The Junction Grammar Model of Language

level II sememes are not words, but rather the concepts behind them.
Words are not introduced until level III. In fact, our model requires the
application of a set of lexical rules to pass from level II to level III. Our
lexical rules govern ordering (to order the elements of a WFSS), hiatus
(to omit understood elements), matching (to match sememes with lex-
emes), and agreement (to add inflections). They apply to a WFSS

786 ALAN K. MELBY

JUNCTION GRAMMAR AND MACHINE ASSISTED TRANSLATION 787

(without altering the WFSS) to produce a level III lexical string. This
is the level of mental words, which can then be related to level IV (the
surface level) in a variety of surface forms - spoken, written, printed,
etc. - by phonological or graphological rules specific to some natural
language. At this point it might be useful to consider a sentence at the
various levels of representation. Consider the level IV sequence: It
surprised me that the boy whom we saw caught many fish (see Fig. 2).

Sample Semanticon

Sememe Level IV Explanation

214... it - proform for a nominalized clause
119... (to) surprise
299... personal pronoun
376... boy
186... (to) see (physically)
248... (to) catch
179.. many
235 .. fish (aquatic animal)

Fig. 2. A Level II WFSS

The Junction Grammar level II conceptual representation of this
sentence would consist of two intersecting trees, one for It surprised me
that the boy ... caught many fish, and one for ... we saw, intersecting on a

788 ALAN K. MELBY

pair of nodes from which the word whom is lexicalized. The level II
representation contains no words, but only arbitrarily assigned semantic
indices and features interrelated by junction patterns. Of course, the se-
mantic indices are not independent of each other. For example, the con-
cept “boy” is a subset of the concept “human”. This relationship is
derived from a person’s experience and logic. We have not represented
this facet of level II in Fig. 2. Instead we have used the stopgap approach
of assigning the feature < + human > to the index for “boy”.

The inherent relationships between concepts form a kind of semantic
syntax.2 These relationships are important in a model of language, but
our level II intersecting trees show another kind of semantic syntax: the
temporary junctions formed between sememes to create a segment of
discourse.

It is important to note that the order of level II elements does not
vary when different word order options are used in the input sentence,
but is governed by the form of the junction rules. In level III, a sentence
consists of a string of lexemes in the same order as the words of the sur-
face level sentence. In Fig. 3, we represent the lexemes at level III by in-
dicating the key necessary to retrieve the level IV word.

Level III Level IV

ENG (214.0) it
 ENG (119.0) + splice surprise +

ENG (0.3) d
ENG (299.2) me
ENG (0.9) that
ENG (0.2) the
ENG (376.0) boy
ENG (0.8) whom
ENG (299.3) we
ENG (186.2) saw
ENG (248.2) caught
ENG (179.0) many
ENG (235.1) fish

Fig. 3. Semantic Indices

2 See S. M. LAMB, Lexicology and semantics, in A. A. HILL (ed.) Linguistics Today,
New York-London 1969, pp. 45-46.

JUNCTION GRAMMAR AND MACHINE ASSISTED TRANSLATION 789

This key consists of the semantic index and the lexical agreement dis-
placement. The displacement is a number calculated by language spe-
cific lexical agreement rules. Lexemes not derived from any particular
semantic index are represented by a zero index and a language-specific
displacement.

Now let us briefly examine the set of junction rules used to form
level II representations. The junction rules are computable from two basic
schema (involving three junction operations) and a list of axioms. The
schema are full-junction and interjunction (see Fig. 4).

Fig. 4. Rule Schema

Interjunction rules account for all types of relative structures,
including
adjectives and prepositional phrases, which we group with relative
clauses because we consider them all to involve a point of intersection.
Nonrelatives are classified under full-junctions. Full-junction rules fully
subtend the operands under one label node, whereas interjunction rules
involve an interjoining effect at a point of intersection (which we call
a topic). The topic may be a relative pronoun or other pro-form or may
have no surface realization. Fig. 4 also shows a few examples of junction
rules. The junction operations are conjunction (used for all types of
coordination – “and”, “or”, “but”, etc.), adjunction (used to form
all types of predicates and predications) and subjunction, which is used
for all derivations and also to show set relationships in modification.

The axioms impose constraints on allowable categorial combina-

790 ALAN K. MELBY

tions within the context of the rule schema. We distinguish five basic
categories (N=noun, V=verb, A = adjective or adverb, P = pre-
position or relation, and E = empty) and eight complex categories,
formed from the basic categories by adjunction. When the axioms apply
to the schema, they produce about 200 theoretically valid rules; but in
practice, fewer than 100 rules (which are numbered for computer imple-
mentation) are needed to account for the level II structures of most of
natural language. This statement is based on the examination of the fol-
lowing languages by Junction Grammar specialists - English, Spanish
Portuguese, Russian, Tahitian, German, Finnish, French, and Samoan.
 It is clear that there are certain differences between the Junction
Grammar model of language and other current models. One is a matter
of terminology (see Fig. 5).

REFERENCE SYNTAX

LEVEL II

CONTEXT

Fig. 5. Junction Grammar Definition of Semantics

We define semantics to be the study of level II, which consists of refe-
rence (semantic indices), syntax (junction rule patterns), and context
(human experience acted on by logic and emotion). Many other mod-
els separate semantics and syntax, but this is because they deal with
surface syntax, which we would place under the lexical and surface
rule systems.

A major distinction between Junction Grammar and Transformation-
al Grammar is that Junction Grammar uses no transformations to alter
the level II representation because the junction rules, alone, seem to be
sufficient to describe directly any structural pattern of natural language.3

It should also be emphasized that as far as we can tell, the 200 junction
rules form a universal set from which all languages draw.

3 According to the informal definition of transformation suggested by J. LYONS
in Introduction to Theoretical Linguistics, London 1968, p. 248, our lexical rules would be
considered transformations. However, we do not classify Junction Grammar as a trans-
formational grammar. See E. G. LYTLE's thesis (listed in the Appendix I for further dis-
cussion.

JUNCTION GRAMMAR AND MACHINE ASSISTED TRANSLATION 791

Level II semantic indices are relatively language independent be-
cause in our system a sememe can be realized as a word or a phrase or
even part of a word. The junction rules emphasize the generalities be-
tween languages and the lexical rules reveal the vast differences in
surface manifestations.

It is also significant that the universal set of about 200 junction
rules can be computed from two schema and a short list of axioms.
We use a computer program to apply the axioms to the schema and pro-
duce the list of rules. Those interested in the theoretical development of
the Junction Grammar model are referred to publications by E. G.
LYTLE and his associates listed at the end of this paper. An important
result of the closed nature of the set of junction rules is the possibility
of formally defining the set of all well-formed syntacto-semantic state-
ments. By choosing a semanticon with which to work, and then applying
the lexical and surface rule systems of some language to the elements of
that set, one would theoretically obtain the set of all grammatical
sentences in that language (within the restrictions of the vocabulary of
the semanticon). Further semantic constraints on the level II statements
would then produce the set of all meaningful sentences in that language,
with the same restrictions. TH. NORMAN has begun research on random
sentence generation.4

2. The Junction Grammar Model of Translation.

The ability of the bilingual human to translate with ease languages
that differ greatly at the surface level implies that at some level the
languages do have much in common. The Junction Grammar model of
language suggests that level II might capture much of that which is
common between languages. The obvious experiment to test this hy-
pothesis would be to select at random a passage in some source language,
apply the surface and lexical rules to it to produce a level II WFSS, and
then to run that WFSS through the lexical and surface rules of another
language to produce a passage in that language.

We have found that such an approach can be useful in producing
with some degree of success translations, and their quality can be sharply
improved by performing some adjustments on the WFSS in level II

4 His work is reported in our 1972 symposium report. See Appendix. I.

792 ALAN K. MELBY

before lexicalization in the target languages. These adjustments we call
transfers between languages, not to be confused with transformations
within the grammar of a single language. Junction Grammar, it must
be remembered, does not use transformations at level II within the de-
scription or generation of a single language.

We call the above approach “translation by analysis, transfer, and
synthesis” (see Fig. 6).

Fig. 6. The Junction Grammar Model of Translation

The merits of such a system are clear: First, the task of translation is
modularized, facilitating the design of computer subroutines to ac-
complish specific tasks. Second, such a design is suited for an efficient
system to translate from or to several languages because many of the
routines can be language-independent and, therefore, shared.

Most approaches to machine translation use some process of neutra-
lization. In our case, this process is the formation of an intermediate
level II representation. The question is how much neutralization should
occur, and in what form neutralized language should be represented.
Perhaps time and experimentation will provide definitive answers to
these questions. In the meantime, however, we will review the nature

JUNCTION GRAMMAR AND MACHINE ASSISTED TRANSLATION 793

of our neutralization process by discussing the differences we attempt to
neutralize.

Natural languages differ in many ways. Junction Grammar suggests
a categorization of these differences (see Fig. 7):

Rule Systems
Involved in

Language Differences to be Neutralized Neutralization

1) Different word orders for sentences of the same

meaning L-Rules

2) Different patterns of inflection. L-Rules

3) Different choice of words for the same concept. L-Rules

4) Different syntactic properties of words with the
same concept. L-Rules and J-Rules

5) Source language idiomatic expressions which must
be translated as a unit. L-Rules

6) Rejection of certain junction rules as productive
in a given language. J-Rules

Fig. 7. Neutralization of Language Differences by Junction Grammar

1) different word orders for sentences of the same meaning (e.g.
color adjectives are preposed in English and postposed in French);

2) different patterns of inflection (e.g. possessive adjectives depend
on the gender of the possessor in English but the gender of the possessee
in French);

3) different choice of words for the same concept (e.g. tree in
English but arbre in French – the most obvious difference between lan-
guages);

4) different syntactic properties of words with a similar concept
(e.g. in English please takes a direct object – That pleases the girls – but
the French translation plaire takes an indirect object – cela plait à la
fille);

5) source language idiomatic expressions which must be trans-
lated as a unit (e.g. he kicked the bucket);

6) rejection of certain junction rules as productive in a given
language (e.g. English accepts N* N(PV + N/L) =. N as in He came,
which surprised me, but Japanese rejects this rule in preference to N* SV
= . N as in It surprised me that he came).

The first attempts at mechanical translation dealt mainly with the

794 ALAN K. MELBY

most obvious difference between languages, namely difference (3), dif-
ferent choice of words for the same concept. But a simple word-for-word
approach cannot entirely neutralize even difference (3) because of the
problem of multiple meanings of a single word. Even words with one-
word equivalents usually have several translations, depending on con-
text, and many words must be translated by a phrase to reflect one or
more of their meanings.

The Junction Grammar approach neutralizes difference (1) (differing
word orders) automatically by the application of the lexical ordering
rules to the level II representation. Difference (2) (differing patterns of
inflection) is neutralized automatically by the application of the lexical
agreement rules to the nodes of the level II diagram. And difference (3)
(differing word choice) is neutralized by the lexical matching rules ap-
plied to the level II sememes which are free of the ambiguities found at
level IV. The neutralization of differences (4), (5), and (6) (differing syn-
tactic properties of words, idioms and rule productivity) are facilitated
by the standardized form of the level II representation.

3. An Application of the Junction Grammar Model to Mechanical Transla-
tion with Human Interaction.

The Brigham Young University Language Research Center has
chosen to apply the Junction Grammar model to the development of a
system of mechanical translation from English simultaneously into sev-
eral languages. Our tentative initial goal is to have an operational in-
teractive system for evaluation within five years.5 This system will re-
quire human interaction to complete the analysis phase. Longer range
goals include the expansion of the system to at least twenty major lan-
guages of the world, preliminary work in voice-to-voice translation, and
development of the logic component.

We are presently operating an experimental version of the system on
the University's IBM 360/50. Most of our programming is done in PL/I
although some subroutines are written in assembly language. Our pres-
ent system requires about 200k bytes of main storage and one 2314
disk pack for various files.

6 We have so far worked with synthesis in Spanish, Portuguese, German, French,
and Japanese.

JUNCTION GRAMMAR AND MACHINE ASSISTED TRANSLATION 795

One of the most difficult problems encountered in implementing
the Junction Grammar model in the form of working programs was
how to best represent a WFSS in the machine. We finally decided on
a method where the nodes and operations of each branching tree are
represented as one linear table in postfix notation with cross references
to the semantic indices and features, which are stored in a separate array.

A brief description of the analysis, transfer and synthesis programs
will further explain our approach. In analysis, as mentioned previously,
we are using an interactive approach. A sentence is read in and analyzed
by general algorithms, but the machine is not always able to determine
how certain words are related structurally, or which semantic index is
to be assigned to a word in a given context. In order to resolve ambigui-
ties in these cases, the present program queries the (machine) operator
through a typewriter or video terminal. While the operator is respond-
ing with the appropriate answer, the program allows other programs
to use the central processing unit.

Plans for future development of analysis include the implementa-
tion of a memory net simulating human experience to be used as an
aid in correctly analyzing ambiguous sentences.

Although analysis is currently a fairly laborious process, and will be
until the logic component becomes highly developed, two points should
be kept in mind:

1) The human operator who is assisting the machine with analysis
need not know the foreign language into which the text is to be transla-
ted.

2) Once an input sentence has been converted to a level II WFSS,
it is used as input to the transfer-synthesis program for any language
which is a part of the translation system.

After analysis is completed, the transfer program retrieves one WFSS
at a time from a file created by analysis, and prepares it to be used as
input to some synthesis program. The transfer program next takes one
entry at a time from the sememe vector and examines it for needed trans-
fers. If the entry is a non-empty semantic index, a special file is checked
to see if a transfer is needed. If the entry points to the label of a junction
pattern, a transfer program is called to determine whether the rule which
formed that pattern is productive in the target language. In either case,
when the need for a transfer is detected, the transfer is retrieved from
another file in the form of a list of linguistic commands. These commands
are written in our own linguistic programming language, called “trans-
fer-language”, which is embedded in PL/I.

796 ALAN K. MELBY

The major advantage of using transfer-language commands on lev-
el II representations, rather than manipulating surface-level sequences
with some string-manipulating language, is that level II is much more
regular and well-defined than level IV. Level II capitalizes on the genera-
lities in language and allows adjustment routines to be written in a much
more general fashion than they could be in level IV. For example, all
inflected forms of a concept share the same semantic index, and all seg-
ments of discourse with the same structure are grouped by their com-
mon rule number. Fig. 8 gives several examples of the use of this lan-
guage.

He came, which surprised me. → It surprised me that he came.

Note: Words are used instead of indices for convenience only.

Fig. 8a. An Example of Transfer and the Use of "Transfer Language"

I miss him.→> Il me manque.
(He misses to me.)

Fig. 8b. An Example of Transfer and the Use of "Transfer Language"

Simple Passive → Active

Fig. 8c. An Example of Transfer and the Use of "Transfer Language"

798 ALAN K. MELBY

After transfer, each WFSS, being tagged for a specific language, is
passed on to the synthesis programs. The synthesis programs retrieve
the appropriate WFSS’s and synthesize them into the target languages.
Perhaps the most significant aspect of synthesis is that the programs
for the various languages have the same supervisory program and uti-
lity routines, varying only in the language-specific subroutines.

To date, we have found the Junction Grammar model to be a very
adequate theoretical base for the development of machine-assisted trans-
lation programs, allowing modularity of design, and helping to avoid
ad hoc solutions.

APPENDIX I.

1971 Interim Report

1) A. MELBY, Toward a Formalization of the Theory.
2) D. GIBB, An Application of the Model to the Automatic Analysis of Lan-

guage.
3) A. MELBY, B. THOMPSON, An Application of the Model to the Automatic

Synthesis of Language.
4) E. LYTLE, Conclusions, Recommendations and Proposals.

1972 Symposium

1) R. L. BAIRD, Essentials of Junction Grammar.
2) A. K. MELBY, A Formalization of Junction Grammar.
3) L. S. SMITH, The Evolution of a Computer Model of Automatic Translation

Based on Junction Grammar.
4) R. B. THOMPSON, Some Basic Principles of Computerized Language Ana-

lysis.
5) L. M. SCOTT, Analysis by Resolution of Syntactic Fragments.
6) D. GIBB, Transfer-Structural Modification in Language Translation.
7) M. STRONG, Machine Translation and German Verb-Class Systems.
8) R. MILLETT, The Generation of Articles in Spanish Synthesis.
9) T. NORMAN, Random Generation of Well-Formed Syntactic Statements.

10) F. BILLINGS, T. THOMSON, Some Proposals for Ordering Well-Formed Syn-
tactic Statements.

11) B. L. BROWN, Speech Synthesis as a Tool in Psychological Assessment.
12) G. LYTLE, Remarks on the Structure of Discourse.
13) S. FLORENCE, A Proposal for Teaching Grammar in Grammar School.
14) R. OLSEN, Junction Grammar: Its Application to Foreign Language Pedagogy.

1973 Symposium

1) R. B. PURVES, Toward the Machine Recognition of Spoken Language.
2) B. BROWN, Verbal and Vocal Indices of Personality.
3) R. B. THOMPSON, Three Approaches to Translation.
4) CH. BUSH, Synthesis without a Computer.

800 ALAN K. MELBY

5) A. K. MELBY, Interactive Sentence Analysis and Transfer.
6) F. BILLINGS, Procedures for Ordering Well-Formed Syntactic Statements.
7) E. G. LYTLE, An Analysis of Non-Verbal Participles.
8) D. GIBB, English Analysis: What You See Is What You Get.
9) R. OLSEN, The Effect of Language Trees on Foreign Language Acquisition.

10) L. S. SMITH, Development of a Text Concordance and Statistics System.
11) S. P. GAMERO, Transculturalization in the Translation Process.

Other Sources

F. H. BILLINGS, An Application of the Junction Grammar Representation as a
Basis for Generating German Word Order Patterns (thesis), Brigham Young
University, forthcoming.

D. K. GIBB, An Application to Mechanical Translation of a Variable Recursive
Algorithm Based on the Operations of Union and Intersection (thesis), Brig-
ham Young University, 1970.

E. G. LYTLE, A Grammar of Subordinate Structure in English, The Hague, 1973.
E. G. LYTLE, Structural Derivation in Russian (dissertation), University of
Illinois (Champaign-Urbana), 1971.

APPENDIX II

(Concerning the formalization of Junction Grammar which was mentioned
in the main paper in the discussion of the closed nature of the set of junction
patterns).

A FORMALIZATION OF JUNCTION GRAMMAR

INTRODUCTION

This appendix is a description of recent work on the formalization of
Eldon Lytle’s junction grammar. In mathematics, a formal and rigorous course
in calculus is often delayed until some informal and intuitive concepts are
internalized by the student. Likewise, this paper is not intended as an intro-
duction to junction grammar but rather as a formal re-examination of cer-
tain aspects of Dr. Lytle’s theory. Therefore I assume on the part of the au-
dience a good understanding of Dr. Lytle’s junction rules and the branching
diagrams they produce. I also assume an understanding of basic mathemati-
cal concepts such as set, subset, mapping and tuple.

Before proceeding we will mention a few of our reasons for attempting
a formalization of junction grammar. First, researchers who apply junction
grammar to automatic language processing need a precise and explicit de-
scription of the set of all well-formed junction grammar structural diagrams.
Automatic analysis programs must be able to build structural diagrams.
Transfer programs must be able to modify them. And synthesis programs
must be able to interpret them. A human can do all these things using a less
formal presentation of the theory than found in this paper by using his vast
experience with language. But a machine which is to do the same thing re-
quires much more explicit and detailed instructions than does the human be-
cause the machine lacks human experience. This is the first reason for at-
tempting a formalization of junction grammar.

A second reason for a formalization is to point out logical inconsistencies
within the system by allowing formal conclusions. Sometimes the system
will produce ridiculous results which can be traced back to some false as-
sumption. Initial attempts at formalizing junction grammar have already
pointed out inconsistencies in such areas as the exact nature of the dominant
nodes in branching diagrams, the definition of the linking operation,1 and
details of the general ordering algorithm.

1 In this paper I will use “operation” in the mathematical sense of a mapping from
a set (say ‘A ‘) crossed with itself (i.e. A x A) to itself (i.e. A x A → A).

51

802 ALAN K. MELBY

A third reason for attempting a formalization is the hope that new under-
standings will be gained through formal predictions. Surely, the most signi-
ficant example of this in junction grammar was the prediction of a whole
range of junction rules based on the pattern X X S seen in relative clauses.
Details of this significant observation are found in A Grammar of Subordinate
Structures in English by Eldon G. Lytle. More recently, simple principles of
ordering have been shown to apply to non-Indo-European languages which
were not even considered in the initial formulation of the ordering prin-
ciples.

In summary, the more formal and explicit a theory is, the more easily
it can be applied to automatic language processing. Also, a formal theory
points out both inconsistencies and generalities which may otherwise have
been missed.

NOTATION AND TERMINOLOGY

We will now note a few differences in notation and terminology between
junction grammar as taught in linguistics classes and as presented in this for-
malization. Structural diagrams are drawn on the blackboard in the form of
branching diagrams. In this paper, structural diagrams will be sets of strings
of symbols. For our structural diagrams we will use the term “Well-Formed
Syntactic Statement”, which is sometimes written acronymically as WFSS.
Both branching diagrams and well-formed syntactic statements are made up
of nodes and operations. There are two ways to represent nodes, one more
formal than the other. Fig. 1 shows these two notations for the fourteen
nodes of junction grammar.

Each node, when written in formal notation, is of the form aX
(see Fig. 2a).

The X (called the nucleus) is E, U, N, V, A, or P; and the a (called
the coefficient of adjunction) is 1, 2, or 3. Note that the co-efficient of adjunc-
tion must be one if the nucleus is E or U. This is because units labelled 1E
of 1U cannot be used as primary operands in adjunction rules.

That all nodes are of the form aX is useful in discussing adjunction rules.
For example, the rules 1V + 1N 2V and 2V + 1N 3V and many
others fall into the pattern shown in Fig. 2b.

This generalized adjunction rule indicates that adjunction raises the co-
efficient of adjunction, as would be expected.

As mentioned before, structural diagrams are made up of nodes and
operations. Having discussed the two notations for nodes, we will now turn
to the various notations for the operations. The junction operations are
written the same in all three forms of structural diagrams: branching dia-
grams, labelled brackets, and sets of strings. However, the labelling operation
is represented differently in each of the three forms of structural diagrams.

JUNCTION GRAMMAR AND MACHINE ASSISTED TRANSLATION 803

Fig. 1. Two notations for the fourteen nodes of junction grammar

When written in formal notation, each node can be written in the following form:

Fig. 2a.

A generalized adjunction rule
aX+bY= (a + 1) X

Examples:
2V+1N=3 V

1V+1N=2 V

Fig. 2b.

804 ALAN K. MELBY

Fig. 3 shows how the labelling operation is represented in the different types
of structural diagrams.

Now that we have discussed the various notations for nodes and opera-

tions, we will discuss what we mean by strings. Then we will use strings to
define oriented expressions and oriented expressions to define syntactic state-
ments. Finally, we will define which syntactic statements are well-formed.
This will complete the present formalization of junction grammar. Later
formalizations will hopefully include theorems about well-formed syntac-
tic statements and a description of the lexical rules which convert structu-
ral diagrams into strings of words.

STRINGS

One definition of “string” is “a series of things arranged in or as if in
a line” (Webster's III International). This is essentially what we mean by
“string”. Given some non-empty set (that is, a set with one or more
elements), we will define a string to be one or more elements of that set
arranged in a line. We will allow the same element to be used more than
once in forming the same string. For example, given the set (Q, +, $), Fig.
4a shows some strings which could be formed from that set.

JUNCTION GRAMMAR AND MACHINE ASSISTED TRANSLATION 805

Given the set {Q, +, $} we can form, for example, the following strings:

Q Q + Q

+

++

 $ Q Q $ + Q + Q Q Q

Q

$ $ + $ etc.

Fig. 4a.

We will require each string to be of finite length, but we establish no
upper bound on the length of a string. Thus, a string may consist of one sym-
bol or thousands. In writing strings, it should be made clear by commas or
some other delimiter where one string ends and another begins.

It should now be clear that if we take as our set all the letters of the alpha-
bet and such punctuation as the apostrophe and the hyphen, then the words
in Webster's III International dictionary are simply elements of the set of strings
formed from the alphabet set. Similarly, certain strings of words are sen-
tences.

Of course, the set of all strings which can be formed from any non-empty
set is infinitely large. Even if there is only one element, say E, in the set, we
can still form the strings E, EE, EEE, EEEE, etc.

Given a non-empty set A, we will denote the set of all strings which can
be formed from elements of A by A with an asterisk placed on the upper right
corner (A*). This will be read “ey-star” (See Fig. 4b).

The set of all strings which can be formed from a set A will be denoted

A*

Fig. 4b.

Now that we have defined strings in general, we note that we are not
interested in all possible strings. We are specifically interested in strings which
correspond to well-formed labelled brackets.2 Therefore, we will set up the
formalization so that it will distinguish between those strings which corres-
pond to well-formed labelled brackets and those that do not.

2 Well-formed labelled brackets normally represent the structure of phrases or clauses.

806 ALAN K. MELBY

ORIENTED EXPRESSIONS

Now we will define “oriented expression” in terms of strings. Let us
begin with the set consisting of the fourteen nodes and the four operations,
using the equivalence sign () for the labelling operation. We will call
this set B, standing for basic symbols. Now let us form the set of all strings
which can be formed from B, which we denote B*. Finally, we will form the
set of all subsets of B*, which we will denote P(B*). Thus each element of
the set P(B*) is itself a set of strings. The empty set, denoted Ø, is also an
element of P(B*), since the empty set is a subset of every set.

Now we define an oriented expression to be an ordered pair consisting
of a string and a set of strings. Thus an oriented expression could be written
as the ordered pair (α β) where α is a string and β is a set of strings, (see
Fig. 5 for a few examples of oriented expressions).

An oriented expression is an ordered pair of the form

(α β), where

α ε β*, and

β ε P (β *).

Examples of oriented expressions:

(N V + + &, {V V * * + &})

(SA SV SP P, Ø)

Example of an oriented expression which is also a wellformed syntactic statement:

(V N + PV N N* N + SV ,

{A E + PA N + S A })

Fig. 5.

In the last example, the arrow between the Ns indicates that the two nodes
are linked together. In contrast with our present practice of showing links
explicitly in structural diagrams, we here suggest that links should be re-
garded as a device which is exterior to the structural diagram proper.

In order to explain why we have defined the oriented expressions, we
must mention the notion of rank as used in junction grammar. Generally,
the highest ranking unit of a structural diagram of a sentence corresponds to

JUNCTION GRAMMAR AND MACHINE ASSISTED TRANSLATION 807

the main clause of the sentence stripped of its modifiers. For example, con-
sider the sentence The newspaper reporter who was at the scene of the fire received
third degree burns. The highest ranking unit of this sentence’s structural dia-
gram would correspond to The reporter received burns.

The highest ranking unit of a well-formed syntactic statement is always
one of its strings. Each well-formed syntactic statement is also an oriented
expression. And each oriented expression has one string as its first element.
As might be expected, we will arrange the definition of “well-formed syn-
tactic statement” so that the first element of a well-formed syntactic state-
ment will be its highest ranking string.

Having defined the oriented expression, we will define the syntactic
statement as a subset of the oriented expression.

DEFINITION OF THE INITIAL SYNTACTIC STATEMENT

We will define the syntactic statement in stages. First, we will define six
initial syntactic statements. The initial syntactic statements are shown in Fig. 6.

(E, Ø)
(U, Ø)
(N, Ø)
(V, Ø)
(A, Ø)
(P, Ø)

Fig. 6. The initial syntactic statements

When we generate a well-formed syntactic statement we always begin
with syntactic statements chosen from this list of six.

We define the highest ranking string of an oriented expression to be its
first element. So the highest ranking strings of the initial syntactic statements
are the nodes E, U, N, V, A, and P, respectively. When one of these nodes
appears as the first element of an initial syntactic statement, it is called a “ter-
minal node”. Note that only E and U are always terminal. The others (N,
V, A, and P) can also appear as “label nodes” or “intersect nodes”.

We will shortly add other syntactic statements to this initial list of six.
One of the distinctions between syntactic statements and other oriented ex-
pressions is that syntactic statements will be made up entirely of labelled strings.
A “labelled string” is simply a string for which we have defined a “label
node”. We define the label node of a terminal node to be the node itself.
Later, when we wish to define more syntactic statements than our initial

808 ALAN K.
MELBY

six, we will also define what is the label node of the highest ranking string.
The label node may be any of the nodes except E and U.

In summary, we have defined a set of strings (B*) using the nodes and
operations (see Fig. 7).

nodes E, U, N, V, A, P, PN, PV, PA, PP, SN, SV, SA, SP

operations {+, &, *, }

. . . are used to define . . .

strings B*

. . . which are used to define . . .

Then we used strings to define oriented expressions. We are now in the

process of defining the syntactic statements as a subset of the oriented expres-
sions.

As already mentioned, we call the first element of a syntactic statement
the highest ranking string. We call the second element the remainder. Thus
any syntactic statement is an ordered pair consisting of the highest ranking
string and the remainder. We would like to add to the set of syntactic state-
ments, but we must first define the junction rules explicitly. And in turn
we must define the “junction label mapping” before we can define the
junction rules.

JUNCTION GRAMMAR AND MACHINE ASSISTED TRANSLATION 809

THE JUNCTION LABEL MAPPING

The “junction label mapping” determines what will be the label node
of a string formed by a junction rule. The label node of a new string is se-
lected on the basis of the junction operation involved and the label node of
the highest ranking string of the primary operand. Thus we define the “junc-
tion label mapping” in terms of two variables – a junction operation and
a node. See Fig. 8 for the precise definition of this mapping, which we call L.

L (*, aX) = aX, for any node except 1E and 1U.

L (&, aX) = aX, for any node except 1E and 1U.

L (+, aX) = (a + 1) X for any node of the form 1 X
or 2 X except 1 E and 1U.

Fig. 8. Definition of the junction label mapping L

We do not define the junction label mapping on 1E or 1U because units
with these labels are not allowed to be primary operands in junction rules.
Also, we do not define L (+, 3X) because this would give rise to nodes of
the form 4X, which we have not found a need for.

FORMAT OF THE JUNCTION MAPPINGS

We will now define mappings which correspond to the junction rules.
Each junction rule is either a full-junction rule or an interjunction rule.
Fig. 9a shows the general format of these two types of junction rules.

Generalized junction rule format full-junction rules:

Interjunction rules:

Fig. 9a.

We will now define the format of the corresponding junction mappings.
Then we will define the mappings themselves. We define a full-junction map-
ping to be a 4-tuple which satisfies the following conditions:

1) The first element is a junction operation symbol, i.e. +, & or *.
2) The second element is a node, which dictates the label node of the

810 ALAN K. MELBY

primary operand. If the operation is sub-junction or conjunction,
this node may be any node except 1E or 1U. If the operation is
adjunction, the node may be any node except 3N, 3V, 3A, 3P, 1E,
or 1U.

3) The third element is a node, which dictates the label node of the
secondary operand(s). It may be any node.

4) The fourth element is a positive integer which indicates the number
of iterations of junction to be performed.

Fig. 9b shows the general format of a full-junction mapping.

Junction mapping format full-junction mappings:

(O, aX, bY, n)

Interjunction mappings:
(f, aX, cI, bY, n)

Fig. 9b.

The O is the junction operation. The aX corresponds to X in the junc-
tion rule, and bY corresponds to Y. Finally, n is the iteration factor, as it is
in the junction rule.

We define an interjunction mapping to be a 5-tuple which satisfies the
following conditions:

1) The first element (f) stands for either a P or an S, which indicates
whether the adjunctive intersect (sometimes called the intersection
topic) is the primary or secondary operand of the adjunction rule
associated with the interjunction. This is called the format of the
adjunctive intersect.

2) The second element is a node, which dictates the label node of the
primary operand. It may be any node except 1E or 1U.

3) The third element is the node of the intersects. It may be any node
except 1E or 1U. If the adjunctive topic is the primary operand of
the adjunction, we further require that it not be 3N, 3V, 3A, or 3P.

4) The fourth element is a node, which dictates the category of the sec-
ondary operand(s). It may be any node if the format of the adjunc-
tive intersect is the primary operand, If the intersect is the second-
ary operand of the adjunction, then it may not be 1E, 1U, 3N,
3V, 3A, or 3P.

5) The fifth element is a positive integer which indicates the number
of iterations of interjunction which are to be performed.

See Fig. 9b, for the general format of an interjunction mapping.
f is P (primary operand) or
 S (secondary operand)

JUNCTION GRAMMAR AND MACHINE ASSISTED TRANSLATION 811

aX corresponds to X in the interjunction rule format.
cI corresponds to Y in the interjunction rule format.
bY is one adjunctive level lower than the D in the interjunction rule

format, but with the same nucleus.
n is the number of iterations.

To show how these mappings correspond to junction rules, we give a
few examples in Fig. 10.

Fig. 10.

Of course, we have not yet defined the junction mappings themselves
but only their form. We will define the junction mappings themselves after
we define the junction operations and the intersect nodes.

The operations.

For completeness, we will formally define the junction grammar opera-
tions. In isolation, all four operations act the same. Let O stand for +, *, &
or . Then the operation O is a mapping from ordered pairs of strings to
strings. A pair of strings is simply mapped onto one string consisting of the
two strings concatenated together and the operation symbol placed on the
right. See Fig. 11 for an example of how junction grammar operations work.

812 ALAN K. MELBY

Intersect nodes.

An intersect node is simply a node linked to another node of the same
type. That is two 1N nodes or two 3P nodes, etc., can be linked to form pairs
of intersects. We will not specify the nature of the linking, although we will
mention that in computer work, the links are simply numerical pointers.
To indicate explicitly that a node is linked to another, we can write an 1/
after it and indicate to which node it is linked. Figure 12 shows various ways
to indicate that two N nodes, for example, are intersect nodes and are linked
together.

Fig. 12. Different ways to indicate that N nodes are linked together

The label node of an intersect node is defined to be the node itself; and
thus we can add the set of all intersect nodes in the form (X 1/, Ø) to the
set of syntactic statements.

The Full-junction mappings.

Now we are in a position to define the junction mappings explicitly.
Let us begin with any particular full-junction mapping. By definition this
mapping will be of the form

(O, aX, bY, n)

This mapping corresponds to the full-junction rule.

JUNCTION GRAMMAR AND MACHINE ASSISTED TRANSLATION 813

In describing a mapping, one generally describes the domain, then the
co-domain (sometimes called the range space), and then the process of get-
ting from the domain to the co-domain. The domain of a full-junction map-
ping is a set of tuples of syntactic statements. In particular, a full-junction
mapping of iteration factor n is defined on a set of (n + 1) tuples of syntactic
statements. Which (n + 1) tuples of syntactic statements are in the domain
of a full-junction mapping depends on the values of aX and bY, An (n + 1)
tuple in the domain must be compatible with aX and bY. By compatible we
mean that the first element of the (n + 1) tuple must have a label node of the
highest ranking string which is the same as aX, and the n other elements of
the (n + 1) tuple must have label nodes of the highest ranking strings which
are the same as bY. For example, consider the full-junction mapping (see
Fig. 13) (+, 2V, 1N, 1).

814 ALAN K.
MELBY

Now if we stopped with the description of the input and output, we would
be no better off than if we had not begun the formalization. We must now
describe precisely the process of getting to the output (see Fig. 15). Let S =
(SØ, S1 ..., Sn be an element of the domain of

(O, aX, bY, n)

Then each Si (Ø ≤ i ≤ n) is a syntactic statement of the form Si = (hi, ri,),
where hi is the highest ranking string of si and ri is the set which is the re-
mainder strings of si. Also, L (O, aX) is a node which is the evaluation of the
junction label mapping (L) at the junction operation (O) and the primary
operand determiner (aX). This node is to be the label node of the highest
ranking string of the output of the junction mapping. Let d = L (O, aX).
Now let j stand for our junction mapping

(i.e., j = (O, aX, bY, n)).

Then, remembering that S = (sØ, si, ... sn) is any element of the domain
of j we write:

j (S) = (hØ h1O h2O ... hnO d , R),

where R is the remainder obtained by taking the union of all the remainders
of the elements of S (i.e. R = rØ ∪ r1 ∪ ... rn). So we are saying formally
that the junction mapping j evaluated at S consists of a highest ranking string
formed by joining the highest ranking strings of the elements of S and plac-
ing a label on it, and of a remainder set consisting of the union of the re-
mainder sets of the junction operands.

JUNCTION GRAMMAR AND MACHINE ASSISTED TRANSLATION 815

816 ALAN K. MELBY

The interjunction mappings.

The interjunction mappings are defined in much the same way as the
full-junction mappings. Let us begin with an arbitrary interjunction mapping.
By definition, it can be written in the form

(f, aX, d, bY, n).

For example, see Fig. 17.

The domain of the mapping will be a subset of the (n + 1) tuples of syn-
tactic statements restricted by the values of aX and bY in the same way as
for full-junction mappings. The codomain of each interjunction mapping
is the set of syntactic statements, the same as for full-junction mappings.

Now to define the process of getting the output, we let j stand for our
interjunction mapping (f, aX, cI, bY, n), and we define two full-junction
mappings as follows:

j* = (*, aX, cI, n)
j + = (+, cI, bY, n), if f = p (primary)
 (+, bY, cI, n), if f = s (secondary)

Then we define the input tuples to these mappings as follows: Form n pairs
of intersects of cI-nodes. For example,

cI1 cI1
cI2 cI2
cIn cln

52

JUNCTION GRAMMAR AND MACHINE ASSISTED TRANSLATION 817

818 ALAN K. MELBY

JUNCTION GRAMMAR AND MACHINE ASSISTED TRANSLATION 819

For example, see Fig. 18.

For example, input operands
(N, Ø) (A E + PA , Ø)

junction mapping
(S, N, N, PA, 1)

output

Fig. 18.

We define the label node of the highest ranking string of the output of
a junction mapping to be L (O, aX) (for full-junctions and L (*, aX) for
interjunction.

Therefore, we can add the output of the junction mappings to the set
of syntactic statements, beginning an infinite recursive process. Thus, one syn-
tactic statement is used to produce another which is used to form another, etc.

Next, we add further constraints on the junction mappings (See Appen-
dix III). Then we define the well-formed syntactic statements as the output
of the constrained junction mappings using only terminal statements and other
well-formed syntactic statements as input. In order to obtain the full-range
of well-formed syntactic statements we also define as well-formed syntactic
statements those expanded syntactic statements (see Appendix III) which are
produced using only well-formed syntactic statements as junction operands.
Now we have defined the set of well-formed syntactic statements formally.

Further work on the formalization is now in progress, and it is hoped
that it will be a significant aid to automatic language processing. This forma-
lization of the junction rules has been used already to write a computer algo-
rithm which randomly produces well-formed syntactic statements. It has
also been used to write a program called the “WFSS building and transfer
program.” This program is described briefly in the main paper. The linguis-
tic commands of the WFSS program act on WFSSs and produce WFSSs.
This concept of constantly maintaining formal well-formedness throughout
the execution of the program contributed significantly to the simplicity of
operation of the program and to the power and simplicity of the algorithms
used in its design.

JUNCTION GRAMMAR AND MACHINE ASSISTED TRANSLATION 821

822 ALAN K. MELBY

JUNCTION GRAMMAR AND MACHINE ASSISTED TRANSLATION 823

824 ALAN K.
MELBY

