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Abstract 

This paper attempts to systematize natural 
language analysis process by (I) use of a 
partitioned semantic network formalism as the 
meaning representation and (2) stepwise 
translation based on Montague Grammar. The 
meaning representation is obtained in two steps. 
The first step translates natural language into 
logical expression. The second step interprets 
logical expression to generate network 
structure. We have implemented set of programs 
which performs the stepwise translation. 
Experiments are in progress for machine 
translation and question answering. 

i. Introduction 

Conventional AI systems dealing with natural 
languages paid much efforts on the problem, how 
to translate natural language input into the 
internal knowledge structure such as micro 
PLANNER statements[14], semantic networks[6], 
frames[l], etc. Most of these systems directly 
translate input sentences into task oriented 
internal structure. The architecture of these 
systems will be much simplified if systematic 
meaning representation and analysis method based 
on a formal theory is incorpolated. 

This paper proposes a stepwise translation 
system based on Montague Grammar (MG for 
short)[3]. Partitioned semantic network[6] is 
employed as a meaning representatin. Input 
sentence is firstly translated into logical 
expression and then semantic network is 
generated by interpreting it. Semantic network 
is the output of the natural language analyzer. 
This will be further compiled into task oriented 
representations to be used by a task oriented 
problem solver. This paper concentrates on the 
natural language analyzer. The following is a 
summary of our approach: 

NATURAL LANGUAGE ANALYZER 

& LE .&. PSN - - - .  task oriented 
representations 

where NL: natural language, 
LE: logical expression, 
PSN: partitioned semantic network, 
T: translation mapping, 
I: interpretation mapping. 

We have developed natural language analyzers 
for English and Japanese respectively. This 
paper describes the one for English. The 
experiments are in progress with these systems. 
The applicability of the proposed approach is 
discussed briefly. 

2. Overview of the approach 

This section gives the readers an overview 
of the system by illustrating an example. 
Before illustration we shall present the 
formalisms of LE and PSN. 

LE -- lo$ical expression 
The notion of LE is based on Cresswell's 

%-categorial language[2]. The following is the 
syntax of LE: 

- the set of syntactic categories (Syn): two 
basic categories are used, i.e., 0 of 
sentence and 1 of name. Given categories 
T,O~, ... ,O,, then <T,Ol, ... ,On> is the 
category of a mapping that makes an 
expression of category T out of expressions 
of category ol, ... ,~, respectively. 

- the set of symbols (F): F = #~y~FO, where Fo 
is a finite set of symbols, and if Ol#o 2 
then FO,~F~=~. 

- the set of variables (X): X= ~5~Xo, where 
Xo is a set of variables such that if ~i#o~ 
then X~znXa~=~ , and that intersection of F 
and X is empty. 

- the set of expressions (E): E = ~ ~E~, where 
E~ fills the following properties: 

(i) Xo GEo, 
(ii) FocE~, 
(iii) if ~ gE<T,Oi, ... ,~a> and 

~I, ... ,~gEot, ... ,E~a, 
then the expression ~(~I, ... ,~n) £ET, 

(iv) if B gXo and ~cET, 
then the expression 18[~] e E<Y,O>, 
where I is a distinguished symbol in E. 

PSN -- partitioned semantic network 
PSN denotes the semantics of LE. The notion 

of network partitioning is based on Hendrix's 
K-net [6]. The constituents of PSN are: 

- a space which denotes a possible world 
- a typed nodes 
- an arc with a case label 
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SENTENCE 

NG 

DET NOUN 

/ 
Every man 

VP 
/\ 

VT NG / / \  
DET NOUN 

I I 
loves a woman 

((EVERY MAN) (LAMBDA X ((A WOMAN) (LAMBDA Y (LOVE X Y))))) 

~E~MAN) (LAMBDA~~(LAMBDA Y (LOVE X Y)))) 

EVERY MAN LOVE (A WOMAN) 

I I A A WOMAN 

I I 
Every man loves a woman 

(a) the syntax tree. (b) the semantic tree. 

Fig. 3. Syntax analysis and generation of LE for the sentence, 
"Every man loves a woman." 

Sometimes linear notations are used instead of 
PSN structure. The linear notation can be 
further interpreted by meta language [8], 
however this is beyond the scope of this paper. 
Fig. 1 illustrates PSN structures together with 
linear notations. 

AND(P,Q) OR(P,Q) NOT(P) V?X.P(?X) 
(a) (b) (c) (d) 

ANY j I 

3?X.P(?X) V?X.B?y.p(?x,?Y) 3?y.V?X.P(?X,?Y) 
(e) (f) (g) 

Fig. i. Basic PSN structures, 
(with linear notations). 

Some special structures are used to denote 
intensional entities. See fig, 2 below. 

I .,l p 
~_ i . . , ,  ?X ~" D•.., ~ P SETOF I ?x 1 1 

INDEF[?X; P(?X)] 
of. gx[p(x)] 

DEF[?X; P(?X)] SETOF[?X; P(?X)] 
of. Ix[p(x)] el. {xlp(x)} 

Fig. 2. Intensional structures in PSN. 

Overview of the meanin$ analysis process 
Now we illustrate an example. Consider the 

following simple sentence: 

(EX-I) Every man loves a woman. 

(STEP i) Morpholo$ical analysis 
Input sentence is analyzed by consulting 

dictionary in which LE expression and 

grammatical category are assigned to each word. 
For the given sentence (EX-i), we obtain: 

Every: cat=DET, sem=EVERY 
man: cat=NOUN, sem=MAN 
loves: cat=VT, sem=LOVE, (form=+S) 
a: cat=DET, sem=A 
woman: cat=NOUN, sem=WOMAN 

(STEP 2) Syntax analysis and seneration of LE 
Morphologically analyzed sentence is further 

analyzed by a set of grammar rules. Each 
grammar rule consists of syntactic generation 
part and semantic composition part. For the 
sake of illustration, let the grammar rules be: 

SENTENCE -->NG+VP, 
sem=list[sem[NG];sem[VP]] 

NG -->DET+NOUN, 
sem=list[sem[DET];sem[NOUN]] 

VP -->VT+NG, 
sem=Iist[LAMBDA;?X; 

list[sem[NG];list[LAMBDA;?Y; 
list[sem[VT];?X;?Y]]]] 

The syntax analysis and semantic composition are 
done in parallel. If one of them detects 
anomaly, the application of the rule is aborted. 
Fig. 3 illustrates the result of the syntax 
analysis and semantic composition for our 
example. The syntax tree shows the phrase 
structure of the sentence. The semantic tree 
shows the history of semantic composition. The 
root node of the semantic tree is the LE (in 
LISP notation) obtained from the sentence. 

(STEP 3) Interpretatign of LE 
Extracted LE is evaluated 

generation procedure as follows: 
by a network 

(i) interpretin$ (EVERY MAN) 
A fragment of a universal quantification is 

generated. 
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(2) intepretin$ (A WOMAN) 
An intensional node is generated. 

MA, 

Jante~c°n~se~INDEFA WOMA " ~' - N 

(3) interpretatin$ LOVE 
A relational node for the two place 

predicate LOVE is generated. 

I "7- ~ a /  \.o .[ WOMAN]I 
NDEF~,- ?Y~' , :!] 

(4) to replace the OBJECT slot of LOVE 
by its extensi0n 
Since the verb "love" is an extensional 

verb, the OBJECT slot is extensioned, i.e., is 
replaced by an existentially quantified 
variable. In our system new individual node is 
generated in the sense of Skolem constant. We 
treat scope ambiguity at this time; if this 
Skolemization is to be done in a local world, 
scope ambiguity is announced. In this case 
three ambiguities are detected as for where the 
Skolemized node is placed, i.e., 

(i) the innermost space ~3: 
V?X.[MAN(?X) -~.~?Y[LOVE(?X,?Y)]], 

(ii) the middle space ~2: 
V?X.3?Y[MAN(?X) -~ ?Y[LOVE(?X,?Y)], 

(iii) the outermost space ml: 
H?Y.V?X[MAN(?X) --~ LOVE(?X,?Y)]. 

Since the reading (i) and (ii) are logically 
equivalent, there are essentially two 
ambiguities. If the reading (i) is selected, 
the final network structure is: 

' IMP IES 
ANY ~ m ~ - k _ ~ . ~ . ~ . ~ J  LOVE WOMAN 

[ - " - i , ?X  ,, - - - - - - - -  ' 

Comments on scope ambiguity 
One of the interesting feature of MG is the 

treatment of scope ambiguity of quantification. 
In MG, scope ambiguities are captured as 
ambiguities of semantic composition. However, 
considering the following two points: 

- how to filter out redundancies; sometimes 
this redundancy is reduced in the 

interpretation process, 
- the resulting parsing 

inaccurate readings, 
sometimes involves 

it is plausible to treat scope ambiguities in 
the interpretation process as shown in the above 
example. 

3. Implementation of translation mapping (T) 

This section treats the translation 
mapping T. Firstly, we show how we associate LE 
with each phrase of English. Then we describe 
the rule based parser. 

The association of LE with En$1ish phrases 
(l) Simple sentence 

Simple sentence is composed of a subject and 
a verb phrase. Subject is a noun phrase. The 
LE for a noun phrase is in category <0,<0,i>>. 
The LE for a verb phrase is in category <0,i>. 
The LE for a sentence is a functional 
composition of an NG and a VP. See the 
following illustration: 

np(vp) e E0 

n ~ v p  e E<O,i> 

(2) Verb phrase 
Basic part of a verb phrase is composed of 

either an intransitive verb or a transitive verb 
plus an object. For example, The LE for a 
phrase "have a book" is obtained as follows: 

Ix 1[ (a(book)) (ly l[possess(x,y) ]) ] e E<0,1> 

possess ~ E<O,i,i> a(book) e E<0,<0,1>> 

(3) Noun phrase 
A noun phrase maps a one-place predicate 

into a sentence, that is, in category <0,<0,i>>. 
The constituents of a noun phrase are: 

- determiner (DET) in E<<O,<0,1>>,<0,1>> 
- number (NBR) in E<<0,1>,<0,1>> 
- adjective (ADJ) in E<<0,i>,<O,i>> 
- head noun (NOUN) in E<0,1> 
- plural morpheme (+S) in E<<0,1>,<O,I>> 
- post modifier (Q) in E<<0,1>,<0,1>> 

(example) "the two efficient algorithms" 

the(two(*pl(efficient(algorithm)))) E E<O,<0,1>> 

the~two (*el (~ef ficient (algorithm))) 

~o *m~ifef: [cie~nt(~l ith " 

efficient(algorithm) *pl 

I I 
the two efficient algorithm +s 

(DET)(NBR) (ADJ) (NOUN) (+S) 
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(4) Postmodifier 
(i) Relative clause 

A relative clause is composed of the symbol 
'which' and a sentence. 'Which' makes a 
postmodifier of a noun out of the sentence. A 
special symbol #ante (in E<O,<0,1>>) is supplied 
for the eliminated antecedent in the relative 
clause. See the following example: 

g E<<0,1>,<0,1>> 
which (#ante (Ix, [ (a (input)) (ly I [accept (x, y) ] ) ] ) ) 

which #ante (/Ix I [ (~nput)) (ly I [accept (x, y) ] ) ] ) 
/ 

(a (input)) (lye [accept (x,y) ] ) ] #an[e xXlC /'''-- 
accept a (input) 

which qb accep t ( s )  a put 

(ii) Adjective prepositional phrase 
The LE for a preposition is in category 

<<0,0>,i>, that is, makes an adverb out of a 
name. The LE for an adjective prepositional 
phrase is constructed using a special symbol 
*ape E<<<<0,1>,<O,i>>,i>,<<0,0>,i>>. Roughly 
speaking *ap converts an preposition into "an 
adjective preposition" which makes an adjective 
phrase out of a name. See the following example: 

. . . . .  £ E<<0, i>, <0,i>> Ip< n 1~[~yl[(theisystem)) 
~'~- ~ ( tx,  [ ((*ap (of) )  (x)) (p (y)) ]) ] ] 

*ap (of) the (system) 

of the system 

(5) Noun clause 
A noun clause is constructed from a key 

word (e.g., "that", "whether", etc) and a 
complement sentence. The LE for the keyword 
maps a sentence into a noun phrase, that is, in 
category <<0,<0,1>>,0>. See the following 
example: 

whether(it(Ix_[(the(input)) _<^ <^ _>> 
x , y ) ] ) ] ) )  e~  U, U , l  

/ t(XXl[(the(Inp~[accept(x,Y)])]) 

whether it accept the input 
(WHETHER) (SENTENCE) 

(6) Mood 
We treat 

uniformly. 
different mood of a sentence 

Declarative is default. 
Interrogative is denoted with a symbol #QUES. 
#QUES may be paraphrased as: 

Ip[I(Ix1[(you(ly1[P(IZl[aSk(x,Y,Z)])]))])] 
~"I ask you .., " e E<0,<0,<0,1>>> 

Indirect questions and direct questions are 
treated uniformly. For YES-NO questions, a 
symbol (whether) is used which maps a 

sentence into a noun clause. For example, 

"Does he run?" ~#QUES(whether(he(run))) EE0 

For WH-questions, see the following example: 

"Who runs?" ~#QUES(who(#ante(run))) E E0 

where, the symbol (who) maps a sentence into 
a noun clause. 

- Imperative is denoted with a symbol #IMP. 
#IMP may be paraphrased as: 

%p[I(lXl[(you(lYl[P(lZl[order(x,y,z)])]))])] 
~"I order~you .~. " g E<0,<0,<0,1>>> 

For example, 

T 
"Take it."~#IMp(inf(Ix[it(ly[take(x,y)])])) 

6 E0 
(7) Other features 

Some other features are shown by example. 

(i) possesive 
e E<0,<O,i>> 

l~n 15 (the(ship)) (%x1[ ((*poss(x)) (name)) (z) ])] 

l~n 1~l~n 1~(the(ship)) name 
"~ '~"  (lx%'~f(*poss (x)) (y))  (z) ])) ] ] [ 

~ ~ .  E E<<0,<0,1>>,<0,1>> 

I the(ship) *poss 

the ship 's name 
(NG) ('S) (NOUN) 

where *posse E<<<0,<0,1>>,<0,1>>,i>. 

(ii) Passive 

E<0,1> 
%Yl [ (the (automaton)) 

(Ixl~*psub~ ~accept))(Y))])] 

*en(accept) %So[ (the(automaton)) 
(Ix I[ (*psubj (x)) (s) ]) ] 

/ ~  *psubJ the(automaton) / 

be/ acc~epted Jy thS ~u~tomaton 

where *ene E<<0,1>,<0,1,1>>, 
*psubj E E<<0,O>,i>. 

A rule based parser 
This section describes a computer program 

which analyzes input sentence and translates it 
into LE. The set of rules defined in this 
section so far are given to the parser in the 
following format: 

<advice>, <score> 
A ~ 

<sem> 

where ~ is a sequence of nonterminals 
or nonterminals with holes. 
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The <advice> section treats syntax 
augmentation of a rule by means of message 
passing and testing mechanism. A program is 
embedded which tests whether the messages 
received from descendants are consistent and 
which may also send messages to its parent. 
These messages convey syntactic information 
about number, person, ease, verb form, ~tc. The 
format of a message is: 

... .> . ) ( <attributei>=<value I .. 

For example, see the following illustration: 

PSN=3 
NBR=SGL 

CLAUSE 

"--2 ~P/ ~VERB-FORN=+S 
He has a book. 

The <sem> section is a semantic composition 
program which will construct LE for the node 
from decendant nodes. In implementing programs, 
the use of semantic markers is effective. A 
semantic marker conveys some auxiliary 
information approximately describing semantic 
constraints. The LE and semantic markers for a 
node are packed into a data structure, called a 
word frame D and manipulated by <sem> section 
programs. 

The <score> section determines the priority 
of the rule. A rule with the highest priority 
will be tried first. 

The grammar system has a feature that allows 
a user to write elimination rules directly. For 
example, the following is a rule for a relative 
clause: 

NP -~NP+(CLAUSE-NP) 

This means that a relative clause is a clause 
wlth Just one NP eliminated. The semantic 
coupling of the antecedent and the eliminated 
noun phrase is described in the <sem> section of 
the rule. 

Now we shall go into the detail of the 
parser, called EASY (for the English Analysis 
SYstem). The organization of EASY is summarized 
in the following diagram: 

input sentence 

I MORPHOLOGiCAL dictionar 
~ANALYZER 

IRULE ~internal ~PRE- ~external~ 
IINTERPRETER I Irule I ;COMPILER~ ~grammar J 

\structure/ \rule / 

LE 

Before starting parsing, given set of rules 
are pre-compiled. Nonterminal nodes are 
connected together and a data structure like 
ATNG is generated. For example, if we compile 
the example grammar given in section 2, the 
following structure (called an expectation path) 

is generated for the nonterminal DET: 

DET ~ NG ~ SENTENCE 
(NOUN) (VP) 

This reads that a DET will grow up to be an NG 
if a NOUN follows it, and the NG will, in turn, 
grow up to be a SENTENCE if a VP follows it. 

The rule interpreter analyzes input sentence 
with this compiled rules and a dictionary. EASY 
is a top-down parser and reads input sentences 
from the left to the right. EASY starts parsing 
by expecting the node SENTENCE. The main loop 
of the rule interpreter is: 

- test if the current word has an expectation 
path to the expected node, 

- if the path is found, select the path with 
the highest priority and save other paths, 

- if no path is found, try the following two 
rules: (i) try a left recursive rule since 
this type of rule is not compiled in the 
pre-compile phase, and (~) test if the 
expected node is eliminated via antecedent 
elimination rule, 

- if both of them fail, memorize the failure 
and backtrack. 

4. Implementation of interpretation mapping ~I) 

The interpretation mapping I generates a 
partitioned network structure as a denotation of 
the meaning of a sentence. 

We don't use the truth-conditional 
formalism. If complete knowledge about the 
world is givens a computer program can simulate 
the model to compute the truth value as in [4] 
or [7]. However in the actual situation of 
natural language understanding process, complete 
knowlegde cannot be given, but only partial 
knowledge is available. Accordingly, it is 
plausible that new knowledge is acquired from a 
given sentence in the context of old knowledge 
structure. For this purpose, Montague's truth 
conditional approach is indirect and more direct 
a programming language. 

In what follows we try a direct approach. 
The style of generating networks resembles 
Scott-Strachey's semantic function [13] which 
generates a denotation from a statement of 
programming language. 

In order to generate network structure, we 
use a system which consists of a supervisor 
function GEN plus dictionary, The arguments of 
the supervisor are: 

(LE, space#, environment, message). 

LE is a logical expression. The space# 
specifies the space in which LE is interpreted. 
The environment specifies the denotation of each 
variable by a llst of variable-denotation pairs. 
The message is used for communication between 
network generating word specialists. 

A dictionary entity for each lexicon of LE 
contains a case pattern or an embedded word 
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specialist program. 

Interpretation of the LE for each category 
In what follows we use linear notation of 

PSN beacuse of the space limitation, and we 
refer to the LE for each category simply by 
the category name. 

(i) Interpretation of a sentence 
The meaning of a simpie sentence is governed 

by the meaning of the verb. A dictionary entity 
for a verb includes a case pattern for the verb. 
According to the verb type, the case pattern 
looks like: 

intransitive verb: ((SUBJ, EXT, ... )), 
extensional transitive verb: 

((ACTOR, EXT, ... ) (OBJ, EXT, ... )), 
intensional transitive verb: 

((ACTOR, EXT, ... ) (OBJ, INT .... )), 

where, the first element of a case slot is a 
case label which is used only for distinguishing 
the slot, and the second element of a case slot 
indicates extensionality of the slot. If the 
slot indicates extensionality, the filler will 
be replaced by its extension. This manipulation 
will be treated later in this section. 

(2) Interpretation of a noun phrase 
Most significant noun phrase may be in the 

form, DET+NOUN. The formula is interpreted as 
follows: 

(a/an)+noun: %?P[?P(INDEF[?X; noun*(?X)])], 
the+noun: I?P[?P(DEF[?X; noun*(?X)])], 
every+noun: %?P[ANY[?X; noun*(?X)-~?P(?X)]], 
no+noun: %?P[ANY[?X;noun*(?X)~~?P(?X)]], 

where p* means the denotation of p. 

Personal pronouns is interpreted as follows: 

I: the SPEAKER attribute, 
you: the HEARER attribute, 
he: paraphrased as the male, 
she: paraphrased as the female. 

Proper name is interpreted as follows: 

proper-name: DEF[?X; NAME('proper-name,?X)]. 

(3) Interpretation of an adjective 
An adjective maps a noun into another noun. 

Here we treat those that plays this role. 
Interpretation of plural is: 

*pl(noun): 
I?X[SUBSET(?X,SETOF[?Y; noun*(?Y)])] 

i.e., *pl(noun) denotes a predicate which is 
true iff the argument is a subset of 
{X{ noun*(x)}. 

Adjectives are interpreted by word 
specialists embedded in the dictionary. A word 
specialist for an adjective examines the 
argument (a noun) and maps it into another noun. 

Thus the word specialist can handle de dicto 
readings of adjectives. For example, 

small(lion) ~ 
%?X[LION(?X)&LESS-THAN(DEF[?Y; SIZE(?X,?Y)], 

average-size-of-lion)]. 

(4) Interpretation of a postmodification 
A relative clause (in restrictive use) maps 

the head noun into a modified noun, as follows: 

(which(sentence))(noun). 

A distinguished symbol 'which' announces the 
occurence of a relative clause and sends the 
denotation of the antecedent as a message. The 
argument of 'which' is a sentence including the 
eliminated noun phrase '#ante' which will 
receive the message and substitute the 
denotation. See the following example: 

the((which(l(%x[#ante(ly[attack(x,y)])]))) 
(problem)) 

"the problem which I attack" 

Interpreting the formula is: 

DEF[?X; 
GEN ~(which(l(lx[#ante(ly[attack(x,y)])])) 

(problem))(z); space#; z:?X; NILE ] 
= DEF[?X; 

GEN ~and(problem(z), 
l(%x[#ante(%y[attack(x,y)])])); 

space#; z:?X; #ante:?X~ ] 
= DEF[?X; AND(PROBLEM(?X),ATTACK("I",?X))]. 

An adjective prepositional phrase also 
modifies a noun. An attributive noun or a 
de-verbal noun is treated as a noun which is a 
one-place predicate in LE, but which takes two 
or more arguments in PSN level. Adjective 
prepositional phrases supply these arguments to 
the head noun. For example, interpreting the LE: 

the(ly 
[(the(car))(lx[(((*ap(of))(x))(color))(y)])]), 
"the color of the car", 

results in: 

DEF[?Y; 
GEN ~(((*ap(of))(x))(color))(y); 

space#; x:DEF[?X; CAR(?X)], y:?Y; NIL~ ] 
= DEF[?Y; 

GEN~color(y); space#; 
y:?Y; *ap:of:DEF[?X; CAR(?X)]~ ] 

= DEF[?Y; COLOR(DEF[?X; CAR(?X)]; ?Y)]. 

Thus in the interpretation process, the message 
communications between specialists play a 
significant role. 

(5) Interpretation of a noun clause 
A space is used to denote the interpretation 

of a noun clause. A noun clause is interpreted 
as follows: 
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I 
fun(sentence)~DEF[?X; fun*(?X,ml)], 

where T(~l,sentence*), 

where 'fun' stands for a symbol such as 'that', 
'whether' ... etc. that maps a sentence into a 
noun clause. Fun* is an appropriate PSN 
predicate. T(~,p) is a meta predicate that 
means the object formula p is true in the 
possible world (or space) denoted by ~. For 
example, interpreting the LE: 

why(not((the(program))(lx[work(x)]))), 
"why the program does not work" 

results in: 

DEF[?X; REASON(?X,m2)], 
where T(~2,NOT(WORK(the-program*))). 

In this case, fun=why and fun*=REASON. The 
resuting denotation roughly reads "the reason of 
the situation m2 and in ~2 the object referred 
to by the expression the(program) does not 
work." 

(6) Interpretation of other features 
- Possessive form is treated as a compound 

determiner. See the following example: 

fRO I$ (the(programmer)) 
-v,~- (%x[((*poss(x))(idea))(z)])], 

"the programmer's idea". 

The resulting denotation is: 

DEF[?X; AND(IDEA(?X), 
POSSESS(DEF[?Y; PROGRAMMER(?Y)]; ?X)] 

- Interpretation of a passive including the 
deep subject. For example, 

(the(sentence)) 
(ly[(the(automaton)) 

(lx[(*psubj(x))((*en(accept))(y))])]), 
"the sentence is accepted by the automaton", 

is interpreted as follows: 

ACCEPT(DEF[?X; AUTOMATON(?X)], 
DEF[?Y; SENTENCE(?Y)]), 

where, *psubJ sends as a message the 
denotation of the deep subject, and *en 
receives the message to supply the OBJECT 
slot of the internal verb ACCEPT. 

Extensionin~ intenslonal structures 
An intensional PSN structure for a noun 

phrase is extensioned if the PSN structure is 
put into a case slot which indicates 
extensionality. 

An INDEF type PSN structure is replaced by 
an 1-unit (which denotes an individual 
constant). For example, 

I (Ix [ (a(book)) (~y [possess (x,y) ]) ]), 
"I have a book." 

The intermediate PSN structure is: 

POSSESS("I",INDEF[?X; BOOK(?X)]). 

Since the OBJECT slot of the predicate POSSESS 
indicates extensionality, this becomes 

AND (POSSESS ("I", C), BOOK(C) ), 
where C is a Skolem constant. 

For DEF type structure, since the denotation 
refers some uniquely determined object, a 
referent search program is activated. The 
program searches local contextual memory by 
matching each candidate against the given 
intensional PSN structure. The pattern matching 
operation in PSN corresponds to deduction on 
meta language, that is, the deflntion of match 
is: 

PSN. matches PSN^ 
if~ meta(PSNl) ~mplies meta(PSN2) 

In order to find the referent, various kinds of 
knowledge will be needed [5]. However, this 
topic is beyond the scope of this paper. 

The intensional PSN structure is replaced by 
a PSN structure found. For example, consider 
the following two sentences: 

This paper describes a system .... (i) 
The system analyzes programs .... (2) 

After the interpretation of the sentence (i), 
the local memory contains: 

DESCRIBE(A,B)&PAPER(A)&SYSTEM(B). 

For the sentence (2), the intermediate structure 
is: 

ANALYZE(DEF[?X; SYSTEM(?X)],programs*). 

After the referent search procedure, the 
structure becomes: 

ANALYZE(B,programs*). 

Since the denotation DEF[?X; SYSTEM(?X)] matches 
the node B (for, SYSTEM(B) holds), it is 
replaced by the node B. 

5. Discussion 

All the mechanisms presented so far has been 
implemented as LISP programs and are working on 
the personal LISP system in our laboratory. Now 
experiments and improvements are in progress. 

As stated in the first section, advantages 
of our method can be shown if it is applied to 
wide applications. Experiments are in progress 
as for machine translation and question 
answering. 

--91 



Machine translation [12] 
As the first step to the machine 

translation, we are implementing a program which 
generates Japanese from the LE obtained by 
analyzing English. The generator program 
evaluates LE just the same way as the 
interpretation program does. This approach 
investigates the linguistic phenomena in 
analyzing and generating natural language. 

~uestign answerin$ [9]~ [i0] 
Another application is to answer questions 

about the integrated network structure. In 
order to make conversation with a user, the 
input sentence should be further evaluated. For 
example, for user's question actual 
question/answering process must be invoked. 
Thus a pattern directed procedure is used. This 
approach investigates meaning representation and 
deduction. 

Extension to other languages [ii] 
The meaning representation is, in principle, 

independent of which language is used. To show 
this, we must analyze more than one languages. 
Although in this paper, the object language is 
English, we have implemented a Japanese parser 
and are in the course of implementation of 
Japanese to English machine translation program. 

Further work 
The important problems to be solved are: 

- the problem of discourse, especially, how to 
treat focus attention or ellipsis in our 
formalism, 

- the semantics of PSN; the semantics of PSN 
may be defined either by associating each 
network structure with a logic-oriented meta 
language or by defining inference rules on 
PSN explicitly; the semantics must explicate 
implications and synonyms among PSN 
structures; furthermore the semantics must 
be extended to treat the concepts such as 
action or event, 

- accommodation of transformational aspects; 
it seems that the transformational theory 
further decomposes the translation mapping 
T; the introduction of transformational 
aspect will increase the feasibility of the 
system. 

6. Conclusion 

We have shown a logico-linguistic approach 
to the analysis of natural language by computer. 
AI techniques are combined with Montague-type 
grammar. The main features of the approach are 
shown for the fundamental subset of English. 
The promising applications may be semantic based 
machine translation and deductive question 
answering on natural language. 
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